
Server Implementations for Improving the Performance

of CAR Systems Based on Mobile Phones

Vı́ctor Fernández, Juan Manuel Orduña, Pedro Morillo

Departamento de Informática, Universidad de Valencia, Valencia, Spain

Abstract

Collaborative Augmented Reality (CAR) systems allow multiple users to
share a real world environment, including computer-generated images in real
time. The hardware features of most current mobile phones include wireless
network capabilities that offer a natural platform for CAR systems. However,
the potential number of clients in CAR systems based on mobile phones is
much larger than on CAR systems based on other kind of mobile devices,
requiring a system design that takes into account scalability issues. This
paper presents the experimental characterization of CAR systems based on
mobile phones, providing quantitative results about well-known performance
metrics in distributed systems. The results show that the system saturation
point depends on the overall percentage of CPU utilization in the computer
platform acting as the system server. Also, the results show that it is limited
by the server I/O in some cases. Therefore, this paper also show different
server implementations that can improve the system throughput, as well
as a comparative study. The results show that the implementation based on
UDP messages provides a significant improvement in system throughput with
respect to other implementations based on TCP, at the cost of loosing a very
small percentage of messages. These results validates this implementation
as the most efficient one for large scale CAR applications based on mobile
phones.

Keywords: Collaborative interaction, augmented reality, mobile phones

1. Introduction

Augmented Reality (AR) systems are nowadays widely used in applica-
tions such as medical procedures, scientific visualization, manufacturing au-

Preprint submitted to Network and Computer Applications September 18, 2013



tomation, cultural heritage and military applications. The term Augmented
Reality (AR) refers to computer graphic procedures or applications where the
real-world view is superimposed by computer-generated objects in real-time
[1, 2, 3]. From the beginning of AR systems, the potential of collaborative
AR (CAR) systems was exploited for different activities such as Collabora-
tive Computing [4] or Teleconferencing [5]. Wearable devices were used to
provide CAR systems, where a wearable AR user could collaborate with a
remote user at a desktop computer [6, 7].

On other hand, a lot of different mobile and/or wereable devices com-
prising a computing embedded system pervade our daily life, and they have
been used for CAR systems. Mobile phones have become the most extended
example of these devices [8, 9]. They have become an ideal platform for CAR
systems, due to the multimedia hardware that they include, like full color
displays, integrated cameras, fast processors and even dedicated 3D graphics
chips [10].

As an example, Figure 1 shows a CAR system developed for collabora-
tive training in industrial electricity. In this case, the CAR systems show
the electrical technicians how the circuit-breakers should be replaced in the
electric general panelboards at the construction sites. The figure shows on
the left image the execution of the CAR tool on a Samsung Galaxy NOTE
mobile phone. The image on the center shows a real image of the the panel-
board where technicians collaboratively operate, and the right image shows
the execution of the CAR tool on a HTC Nexus One mobile phone.

Figure 1: Example of a CAR application developed for training in industrial electricity.

Nevertheless, the wide variety of current mobile phones, with different
graphic and processing capabilites, and different operating systems, can have
significant effects on the performance of a large-scale CAR system, in terms of

2



system latency, frames per second or number of supported clients with certain
latency levels. These effects should be taken into account when implement-
ing CAR systems based on mobile phones, in order to avoid a performance
degradation in terms of both system latency and throughput.

In a previous work, we characterized the behavior of different mobile
phones when used in Collaborative Augmented Reality applications [11]. The
purpose of that work was to determine the performance that can be obtained
in a CAR application when this kind of devices is used as client terminals.
Also, we have carried out a preliminary performance characterization from
the server side, measuring the system response time and system throughput
when varying different systems parameters like the number of clients in the
system, the number of clients in the work space (i.e., the number of neighbors
to which messages should be sent), and the cycle time of clients [12]. Since
the results showed that the CAR system throughput could be limited by the
server I/O in some cases, we developed different server implementations [13].

In this paper we present, in a unified manner, the characterization of CAR
systems based on mobile phones and the performance improvement that can
be achieved by using different implementations of the system server. The
characterization results show that the system saturation point depends on
the overall percentage of CPU utilization in the computer platform acting as
the system server, although it is not a fixed value and it is inversely related
to the number of processor cores. Also, the results show that it heavily
depends on the kind of client devices, and it is limited by the server I/O in
some cases. Therefore, we have developed different server implementations
that improve the system throughput. The comparison study shows that the
implementation providing the best performance is the one based on UDP
messages, providing a significant improvement in system throughput with
respect to other implementations based on TCP and supporting more than
one thousand clients at interactive rates (twice the number of supported
clients of the TCP implementation). This improvement is achieved at the
cost of loosing a very small percentage of updating messages. However, the
effects of these small quantities of dropped messages cannot expand beyond
some jitter (bounded within a short period of time) in a reduced number of
clients of the CAR application. These results validate the proposed UDP-
based implementation as the best option for large-scale CAR systems based
on mobile phones.

The rest of the paper is organized as follows: Section 2 shows some related
work about CAR applications on mobile phones. Section 3 describes the

3



characterization setup and the evaluation results provided by a CAR system
using the kinds of clients considered in [14] with a system server implemented
by means of TCP connections. Then, Section 4 describes different server
implementations considered for improving the performance results shown in
the previous section, and it presents a comparative study of the performance
obtained with each server implementation. Finally, Section 5 presents some
conclusion remarks.

2. Related Work

Augmented Reality superimposes multimedia content - 3D object, text,
sound, etc - to real world through a display or screen. In order to locate
digital contents on a specific image of the real world point, some references
within the image are needed. These references are known as markers, and
two methods are usually used for managing markers: natural feature track-
ing and fiducial marker tracking. The former method uses interest point
detectors and matching schemes to associate 2D locations on the video with
3D locations [15]. This process can be grouped in three big phases: interest
point detection, creation of descriptor vectors for these interest points, and
comparison of vectors with the database [16]. The latter method uses fidu-
cial markers to find a specific position of the real world. This process can
be divided in three phases: edge detection, rejection of quadrangles that are
too large or too small, and checking against the set of known patterns [15].

Any CAR application needs a device equipped with an on-board camera,
CPU and display. The most common devices used for CAR applications are
Tablet-PCs or mobile phones. We will focus on mobile phones, because they
are more suitable for CAR applications [10, 17].

There are few solutions based on fiducial marker tracking over mobile
phones. In 2003, ArToolKit [18], one of the most well-known software li-
braries for developing Augmented Reality (AR) application, was released for
Windows CE, and the first self-contained application was developed for mo-
bile phones [19]. This software evolved later as the ArToolKitPlus tracking
library [15]. A tracking solution for mobile phones that works with 3D color-
coded marks was developed [9], and a version of ArToolKit for Symbian OS
was developed, partially based on the ArToolKitPlus source code [10]. The
research teams behind these works have worked on fiducial marker tracking,
but not from the collaborative point of view. Also, there are many other
works that focus on natural feature tracking [15, 20, 21, 22].

4



Although real-time natural feature tracking over mobile devices has been
currently achieved [15], fiducial marker tracking is more widely used, because
it allows simultaneous computational robustness and efficiency. A large num-
ber of locations and objects can be efficiently labeled by encoding unique
identifiers on the markers. Additionally, the markers can be detected with
angles near to 90 degrees [15].

The first CAR applications improved the conference system highlights,
giving the feeling of real presence to remote collaborators [5]. The Rekimoto’s
Transvision system showed how to share virtual objects through handheld
displays [23]. Also, Schmalstieg created a software architecture to develop
CAR applications [24].

3. Server Characterization

3.1. Characterization Setup

In order to analyze the behavior of CAR systems based on mobile de-
vices, we have developed a multithreaded CAR server that supports simu-
lated clients (simulated mobile devices) with the behavior measured in our
previous work [14]. We have time-stamped all the messages generated within
this CAR system, in order to measure the performance of every device. The
system configuration will consist of one server, and a certain amount of mo-
bile devices that are scanning the visual space of their video camera looking
for a marker that will be converted into a 3D object in their display. The main
performance metrics in distributed systems are throughput and latency [25].
However, in order to avoid clock skews when measuring the system latency
in distributed systems, the same device should measure the initial and final
time. Therefore, we consider round-trip times instead of system latencies.

Since we are considering collaborative systems, after each updating of the
object location, the mobile device will send a location update message (con-
taining the new location) to each of its neighbor devices through the server
(that is, it sends the location update message to the server, and then the
server re-sends the message to the appropriate clients). We have denoted the
set of neighbor devices of a given client as the working group, and we have
defined this set based on a distance criterion (defined by the Area of Interest
(AOI) size [26]), since all the clients working in the same task should be dis-
playing the same real image, and therefore they must be separated each other
by a short distance. The working group size (WGS) determines the number
of update messages that each client device must send in each action cycle.

5



Figure 2: Stages of the action cycle in each mobile device

For characterization purposes, the destination clients return an acknowledg-
ment message (ACK) to the server, which, in turn, forwards it to the source
client. When the source client has received the ACK messages correspond-
ing to the location update from all the clients in its working group, then it
computes the average system response for that location update. Figure 2
illustrates the action cycle that takes place for each of the mobile clients in
the system.

Once the message with the location update is sent, the action cycle per-
formed by each client is composed of the following steps: first, it performs
one new image acquisition followed by a marker detection stages. Then, the
client waits until the cycle period (determined by the action frequency, a sys-
tem parameter) finishes. Next, if the acknowledgments from all the neighbors
have been received, a new message with the new marker location is sent. If
not all the acknowledgments have been received, then it waits until a maxi-
mum threshold of 20 seconds, and then a new round of messages (with the
latest marker location) are sent to the neighbors through the server. The
neighbors simply returns an ACK message to the sender device through the
server. The server simply forwards the messages to the corresponding des-

6



tination clients. It must be noticed that the mobile devices will not send a
new round of messages with a new location update until it has received the
acknowledgment message from all its neighbors, even although new marker
detection stages have been completed in the device.

This characterization setup considers that all the required static content
in the scene has been loaded. According to recent works [27], in these cases
the network bandwidth required is less than 50 kbps for performing this
information exchange. Since we are using a Gigabit Ethernet switch, we
ensure that network bandwidth does not become a system bottleneck.

The system latency provided for each location update is computed by
recording a timestamp when the first message is sent to the server. Next, a
second timestamp is recorded with the last ACK message for that location
update received from the server. The system response time is computed by
subtracting these two timestamps. The server response time is computed by
timestamping not only each message forwarded from each client, but also
the reception of the corresponding ACK message from the destination client.
Also, the percentage of CPU utilization is measured both in the server and
the mobile devices every half second.

We have implemented a multithreaded server, where each server thread
manages a working group of clients within a given AOI. Thus, for example,
with a system configuration of 500 mobile clients and an working group size
of 10 clients, we have 50 server threads, each of them supporting 10 clients.
We have considered a maximum configuration of 1000 clients, resulting in 100
server threads. For system characterization purposes, we have considered a
single server. Nevertheless, the system performance greatly depends on the
server implementation. Therefore, in order to make a robust characterization
of CAR systems, we have implemented two different versions of the server,
denoted as passive and active server. The active server forwards each loca-
tion update message to the corresponding neighbor clients, and it collects the
ACK messages received from the neighbor clients. When all the ACK mes-
sages corresponding to a location update message have been received, then a
single ACK message is sent to the corresponding source client. The passive
server simply forwards each location update message to the corresponding
neighbor clients and the ACK messages received from the neighbor clients
to the source client. In this sense, neither computations nor data structures
are needed in the server, although more messages are exchanged between the
server and the clients (the network traffic increases).

The previous work [14] showed that Google phone HTC Nexus One was

7



the fastest device, with a period cycle of 167.11 milliseconds, while the Mo-
torola Milestone was the slowest one, with a period cycle of 698.34 millisec-
onds. We have considered these values as the limits for characterization
purposes. Also, we have considered four different values for the working
group size: 5, 10, 20, and 25 neighbor clients. Finally, we have considered a
number of clients in the system ranging from 100 to 1000. It must be noticed
that usually, actual CAR applications do not contain more than a hundred
clients (for example, more than a hundred persons within the same lounge
using collaborative Augmented Reality for studying art masterpieces), due
to the size of the augmented models. Thus, reaching thousands of clients
clearly exceed the worst case for this kind of applications.

In this characterization, we have considered a TCP implementation of the
server, where the simulator starts generating a Server Process, and for every
50 clients it generates a Client Process. Figure 3 illustrates the general scheme
of the Server Process. This process starts listening connections, and for each
connection it generates a new array ofX TCP sockets, whereX is the number
of clients that will be within a given working group. When all the clients
have connected to the Server Process (the population size is a simulation
parameter) then the Server Process generates as many Server Threads as
needed. Each Server Thread is in charge of managing all the clients within
a working group. Concretely, it starts the simulation by sending a welcome
message to all the client sockets. When the simulation finishes, it collects
statistics from all the clients in its working group. But the most important
task performed by server threads is the generation of two threads for each of
the clients in the working group: the Server Receiver Thread (SRT) and the
Server Processor Thread (SPT). The SRT associated to client i receives the
location update messages from the client i. Next, it computes the correct
destination clients (the neighbor clients, that is, the clients within the same
working group) and it generates messages that will be stored in the queues of
the Server threads managing these neighbor clients. The SPT associated to
client i extracts the queued messages that the SRTs associated to other clients
may have generated for client i, and it sends them to this client. Additionally,
the server process collects and processes the statistics generated by the server
threads, and it also measures the percentage of CPU utilization.

Figure 4 illustrates the general scheme of the Client Process. This process
generates 50 client threads (we have assumed a maximum population size of
1000 client devices), and it also computes the percentage of CPU utilization,
client latencies, etc.. Each Client Thread generates two threads for each

8



Figure 3: General scheme of the server process in the TCP implementation.

client: the Client Receiver Thread (CRT) and the Client Processor Thread
(CPT), and when the welcome message from the Server Thread arrives to
the associated socket, then the Client Thread starts the simulation, which
consists of sending a given number of position update messages and receiving
the corresponding acknowledgments from the neighbor clients. The frequency
of the location update messages is a simulation parameter (since it determines
the actuation rate of clients to be simulated). In each simulation cycle (that
can be much shorter than the client actuation cycle), the Client Thread
checks if a new location update message should be sent. If so, it then checks
if all the acknowledgments of the previous message have arrived from the
neighbors clients. If not, then it waits for them until a maximum timeout
of 20 seconds. The value for this timeout has been empirically obtained.
Although it is not shown here for the sake of shortness, we have performed
experiments with the simulator, concluding that unless the system reaches
deep saturation and collapses, the maximum latency for obtaining all the
ACKs from the neighbors have been 20 seconds. After this timeout, the new
location update is sent. The CRT is continuously checking the client queue.
When a location update message arrives to this queue, it sends back an
acknowledgment to the corresponding server thread. If an acknowledgment
of a previous message arrives to this queue, this acknowledgment is computed.

9



Figure 4: General scheme of the client process in the TCP implementation.

3.2. Server Evaluation

We have measured the average system response time for all the location
updates sent by all the clients in the system. In this sense, we have consid-
ered the system response time (in milliseconds) for each update as the time
required for receiving all the acknowledgments (for each message sent by a
client device, an acknowledgment from each client in the same working group
should be received). Also, we have measured the average response time in
the server (in milliseconds) as the time required by the destination clients to
answer the server messages. Additionally, we have computed the standard
deviation for the response times, and the percentage of the CPU utilization
in the system server, since it can easily become the system bottleneck. The
computer platform hosting the system server is a Intel Core 2 Duo E8400
CPU running at 3.00 GHz with 4 Gbytes of RAM, executing an Ubuntu
Linux distribution with the 3.0.0-14-generic x86 64 operating system kernel.

Table 1 shows the performance evaluation results for the active server
implementation (denoted with the ”a-” prefix in the tables) and considering
a working group size of 10 neighbors for each client. The most-left column in
this table is labeled as ”WGS” (standing for ”Working Group Size), and it
shows the number of clients in the system and the number of neighbor clients
in the working group. The values in this column ranges from 100 to 1000
clients in the system. Next, there are two groups of three columns, which
shows the results for the fastest (HTC Nexus One, whose results are labeled as

10



Table 1: System performance for the active server implementation with an working group

size of 10 neighbors

a-One a-Miles
WGS 10 RT Dev CPU RT Dev CPU

100 70.27 23.61 10.9 72.89 28.02 7.1
200 68.85 23.14 21.8 69.35 23.92 13.0
300 73.27 18.07 36.4 73.67 18.43 17.8
400 74.81 17.48 44.0 78.13 23.07 18.8
500 79.71 21.34 57.0 75.9 19.04 26.0
600 83.58 25.59 70.0 80.35 26.04 31.7
700 83.85 27.61 82.3 81.73 26.06 31.0
800 179.75 89.37 84.2 78.69 23.82 40.8
900 222.94 102.97 84.0 76.32 20.47 43.9
1000 255.67 116.19 85.2 78.29 21.99 45.1

”One”) and the slowest client device considered (Motorola Milestone, whose
results are labeled as ”Miles”). The first two columns in each group of
columns show the average system response time (in milliseconds) and its
standard deviation. The third column shows the percentage of the CPU
utilization in the system server.

Table 1 clearly shows different behavior and performance for different
client devices. Thus, comparing the system response time (column RT) for
the a-One (i.e., active server implementation and all clients using a Nexus
One device) and a-Miles configurations, it can be seen that the RT slightly
increases as the number of clients in the system increases in the case of the a-
Miles, ranging from 72.89 milliseconds to 81.73 milliseconds. However, in the
case of the a-One, when the population reaches 800 clients there is a huge
increase in both the RT value and in its standard deviation with respect
to the values for smaller population sizes. For higher population sizes, the
increase in the RT values is also significant.

Table 2 shows the performance results for a CAR system with the same
configuration except that the server implementation is now the passive server
(denoted with a ”p-” prefix). This table shows a similar behavior of the CAR
system to the one shown in Table 1 for the active server. The only difference
is the huge increase in the RT values of the ”p-One” for a smaller population

11



Table 2: System performance for the passive server implementation with a working group

size of 10 neighbors

p-One p-Miles
WGS 10 RT Dev CPU RT Dev CPU

100 78.23 30.41 16.0 77.03 27.63 9.9
200 74.02 25.06 25.2 78.16 26.07 26.0
300 79.45 24.57 37.0 83.6 28.61 25.0
400 81.02 24.05 59.6 82.54 23.76 23.8
500 93.61 28.56 68.7 88.27 26.76 31.3
600 147.73 100.48 83.8 87.66 27.45 33.0
700 195.47 76.24 83.2 88.45 28.58 33.7
800 237.71 91.09 85.9 94.43 34.05 62.0
900 270.25 104.97 84.2 84.8 25.7 69.3
1000 300.96 132.04 84.2 87.72 27.56 46.5

size (600 clients instead of 800 clients in the ”a-One” configuration). These
results show that the system reaches saturation for a population size of 800
clients in the case of a-One, and for a population size of 600 clients in the
case of the p-One. However, in both cases the saturation starts when the per-
centage of CPU utilization in the system server reaches around 84% (83,8%
in the passive server and 84,2% in the active server implementation). The
configurations ”a-Miles” and ”p-Miles” do not reach saturation, since the
RT remains almost constant as the population size increases. The reason for
the different system behavior, when changing the devices, is the greater pe-
riod cycle of the Motorola Milestone, which imposes a lower system workload
since it generates new location updates at a much lower rate.

Regarding the acceptable limits for the RT values, some works consider
250 milliseconds as the response time limit for providing interactivity to
human users [28]. If we consider such threshold value, then we can state
that the throughput limit with the HTC Nexus One is 900 clients when
using the active server, and 800 when using the passive server. That is, the
system performance is surprisingly improved when the server reduces the
traffic exchanged with the source clients (it collects all the ACK messages
and only sends the source client a single ACK) at the cost of performing
more computations (counting the ACK received for each update message).

12



Table 3: Server Response Times

p-One
WGS 10 RT Dev CPU SRT MaxSRT

100 78,23 30,41 16 18,2 20,15
200 74,02 25,06 25,2 18,5 24,9
300 79,45 24,57 37 25,78 28,62
400 81,02 24,05 59,6 27,71 30,4
500 93,61 28,56 68,7 31,83 40,5
600 147,73 100,48 83,8 40,93 44,37
700 195,47 76,24 83,2 49,85 52,39
800 237,71 91,09 85,9 58,08 62,23
900 270,25 104,97 84,2 64,79 68,9
1000 300,96 132,04 84,2 68,77 75,48

In order to find the reason for this behavior, we have measured the server
response times for all the configurations considered. Table 3 shows the same
results for the ”p-one” configuration shown in Table 2, but now adding the
corresponding average response times in the server (the average response
time required by clients for sending back their ACK messages to the server,
measured from the server) and their maximum values.

Table 3 shows that the average response times do not reach 70 milliseconds
for the p-One device regardless of the population size, while the maximum
values for the server response times do not reach 80 milliseconds. These
values indicate that the system bottleneck (the reason for the significant av-
erage system response times shown in Tables 1 and 2) is located in the server.
Since the comparison between these two tables shows that the active server
achieves better performance than the passive server, these results suggest
that the server I/O with the source client is the system bottleneck. It is
important to notice that each source client in the passive server must not
only receive all the ACKs for each message sent, but also it must send an
ACK for every location update received from its neighbors. Although the
active server adds more computational workload to the server for the same
system workload than the passive server, it alleviates the server I/O with
each client, and therefore the performance is improved.

In order to show that the behaviors shown in Tables 1 and 2 are consistent

13



Table 4: System performance for the active server implementation with a WGS of 20

neighbors

a-One a-Miles
WGS 20 RT Dev CPU RT Dev CPU

100 77.37 23.26 23.8 78.65 20.81 12.8
200 77.13 19.95 38.0 77.69 17.25 16.0
300 79.59 17.17 56.6 84.26 17.78 35.4
400 83.07 25.81 74.2 96.71 24.51 38.0
500 195.92 63.28 82.9 81.19 21.24 40.0
600 246.46 86.01 82.8 103.62 39.43 46.0
700 297.3 101.41 82.8 97.92 26.56 47.0
800 350.88 122.83 84.2 82.63 26.52 62.4
900 394.66 142.36 86.0 93.31 30.57 56.5
1000 410.14 181.39 87.0 88.52 26.54 66.3

for other workloads, Tables 4 and 5 show the results corresponding to a
system configuration when all the clients have a working group size of 20
neighbor clients. These tables show behaviors that are very similar to the
ones shown in Tables 1 and 2, except for the fact that the RT values are in
general higher, and the system reaches saturation for lower population sizes.
The results for the Milestone device show that the system does not reach
saturation (there is not a significant jump in the RT values as the population
size increases) in any of the tables. However, the results shown in Table 4
for the a-One show a jump in the RT values for a population size of 500
clients, when the percentage of CPU utilization is 82.9%. In the case of the
p-One configuration (Table 5), the disruption occurs for a population size of
400 clients, when the percentage of CPU utilization is 84.2%. That is, again
the system saturation point is a percentage of CPU utilization in the system
server of around 84%.

In order to illustrate the behavior obtained for another workloads, we
have measured the average system response times provided by the considered
configurations for different WGSs. Concretely, Figure 5 shows the average
system response times obtained for a working group size of 5 neighbors. Each
plot in this figure correspond to a configuration of either the passive or the
active server implementation, and using the HTC Nexus One or the Motorola

14



Table 5: System performance for the passive server implementation with a WGS of 20

neighbors

p-One p-Miles
WGS 20 RT Dev CPU RT Dev CPU

100 88.22 32.16 27.6 93.88 26.9 20.2
200 94.57 29.06 45.5 94.98 25.74 21.2
300 128.16 28.88 73.3 98.01 24.79 29.7
400 195.92 63.42 84.2 129.24 30.8 37.7
500 273.58 89.08 84.0 101.96 30.91 43.0
600 326.79 106.94 86.2 121.53 39.5 50.5
700 400.45 142.76 87.0 148.84 66.52 83.9
800 447.02 155.46 87.0 110.41 39.07 65.3
900 473.99 223.98 86.0 101.4 32.33 67.3
1000 467.04 286.28 86.9 106.66 37.8 74.7

Figure 5: Average system response times for a WGS of 5 neighbors

Milestone as client devices. The X-axis shows the number of clients in the
system, while the Y-axis shows the average system response times in the
simulation.

Figure 5 shows that the only configuration that approaches saturation is
the ”p-One” (passive server with Nexus One devices as clients). Effectively,
this plot significantly increases for 1000 clients, although the average response

15



Figure 6: Average system response times for a WGS of 10 neighbors

time is far away from the threshold of 250 milliseconds.
Figure 6 shows the average system response times obtained for a working

group size of 10 neighbors, that is, it graphically shows the results shown
in the column labeled as ”RT” in Tables 1 and2. This figure shows that
in this case the two plots corresponding to the simulations performed with
Nexus One clients reaches saturation, although the plot for passive server
implementation starts to increase with fewer clients (600 instead of 800) and
reaches higher response times than the active server implementation (300
milliseconds instead of 255). For 1000 clients, both plots exceed the limit of
250 milliseconds.

Figure 7 shows the same results for the case of a WGS of 20 neigh-
bor clients. This figure shows how the system throughput decreases as the
working group size increases. Concretely, this figure shows that, again, the
plots for the Motorola Milestone have a flat slope, while plots for the HTC
Nexus One start to significantly increase for population sizes of 400 clients
(p-One) and 500 clients (a-One). In this case, the passive server implementa-
tion shows a throughput (the number of supported clients without exceeding
the threshold value of 250 millisecond for the average system response) of
400 clients, while the throughput for the active server is 600 clients. Also,
the maximum system response times obtained with this working group size
exceed 450 milliseconds for the p-One implementation.

Finally, Figure 8 shows the same results for the case of a working group
size of 25 neighbor clients. The behavior is very similar, except that the

16



Figure 7: Average system response times for a WGS size of 20 neighbors

Figure 8: Average system response times for a WGS size of 25 neighbors

plots starts to increase with smaller population sizes (300 and 400 for the
passive and active server implementations, respectively). For this working
group size, the maximum response times obtained exceed 500 milliseconds
for a population size of 1000 clients.

When comparing these figures among them, it can be seen that the con-
figurations based on the Milestone device does not reach saturation in any
figure. Also, the system throughput achieved by the p-One plots are the low-
est ones in all the figures, while the response times shown in these plots are
the longest ones. Additionally, (as it could be expected) the system through-

17



put decreases as the working group size (that is, the workload generated by
the same number of client devices) increases, supporting less devices with-
out reaching saturation. These results confirm that the server I/O becomes
the system bottleneck in this CAR configuration; although the active server
adds more computational workload to the server for the same system work-
load than the passive system server, it alleviates the workload of the server
I/O, and therefore the performance is improved.

Finally, we have studied the saturation point of the CAR configurations
considered. Although they are not shown here for the sake of shortness, we
have obtained a percentage of CPU utilization in the server around 84% as
the system saturation point for all the configurations shown in Figures 5, 6, 7
and 8. However, similar distributed systems like Distributed Virtual Envi-
ronments (DVEs) were reported to reach saturation when any of the server
reaches around 95-98% of CPU utilization [26]. The difference between 85%
and 98% of CPU utilization for reaching the saturation point can be explained
by the shared memory architecture of current multicore processors (the dual
core processor in the computer platform used as simulation server). The
synchronization of the kernel calls, together with the synchronization among
threads in the application, prevent the CAR system from fully exploiting the
computational power of all the processing cores at the same time, reaching
saturation for a lower overall percentage of CPU utilization. The performance
characterization of DVEs was performed on single core processors, and there-
fore those systems reached around 98% before reaching saturation. In order
to show that this is the reason for this behavior, we have performed the same
tests not only with the computer platform described above (dual core pro-
cessor), but also with a different multicore computer platform, consisting of
an Intel(R) Core(TM) i7 960 CPU (eight cores) running at 3.20GHz with 8
Gbytes of RAM and executing a SuSE Linux 2.6.37.6-0.5-desktop operating
system. A representative example of the results obtained in such tests is
shown in Table 6, which shows the results for the p-One configuration with
a working group size of 25 neighbor clients.

Table 6 shows that the average system response time hugely increases
when the population size is composed of 500 clients for the case of the Intel
i7 platform, passing from 98.65 milliseconds to 228.98 milliseconds, while the
standard deviation for this parameter also double its value. That is, the
system saturation point for this server platform is a population size of 500
clients, and for this saturation point the overall percentage of CPU utilization
for this execution is 42.46% (fourth most-left column in table 6). However,

18



Table 6: Performance evaluation for two different computer platforms

8 cores ( i7 ) 2 cores (Core Duo)
WGS 25 RT Dev CPU RT Dev CPU

100 90.91 26.91 24.1 96.03 25.91 60.4
300 98.65 20.63 33.6 167.58 50.19 86.1
500 228.98 42.36 43.5 357.13 126.19 92
700 357.95 75.79 45.3 480.87 156.16 85.3
900 478.95 103.34 48.3 505.89 300.11 89.0

the results obtained with an Intel Dual Core processor show that the system
reaches saturation with 300 clients, where the average system response time
jumps from 96.03 milliseconds to 167.58 milliseconds (this result is also shown
in the p-One plot in figure 8). For this system response time, the overall
percentage of CPU utilization is 86.1%. That is, as it could be expected, the
system throughput is increased when a more powerful processor is used as
the system server, but the saturation point of the CAR system is not a fixed
value for the overall percentage of the CPU utilization, and it depends on
the number of processor cores. Although they are not here for the sake of
shortness, the system reaches the saturation point when the CPU utilization
is around 43% for all the configurations tested with this platform.

4. Improving Server Performance

The characterization shown in the previous section (the one shown in [12])
considers a server using a TCP implementation. In that implementation, the
server is based on TCP sockets, one for each agent in the simulation. Thus,
one of the potential limitations of the TCP implementation is the server over-
head due to the huge number of threads, for those cases when the population
size increases. This overhead could be reduced by using the Select function
of BSD sockets [29]. Moreover, the TCP connection overhead could be fully
avoided if UDP sockets were used. In this section, we show the performance
of these two variation in the implementation of the server.

4.1. TCP-Select Implementation

In this server implementation, each Server Thread has a single SRT and
a single SPT for managing all the clients in each working group, instead of

19



one SRT and one SPT for each client. Using the Select function, the SRT
receives messages from all the clients and it processes them. We have tested
different options regarding the best number of SPTs for managing all the
clients in each working group. Although they are not shown here for the
sake of shortness, the experimental results showed that no significant im-
provements were achieved when using more than a single SPT for managing,
in terms of the obtained latencies.

4.2. UDP Implementation

We have also considered a connectionless oriented implementation for the
CAR system, in order to study the effectiveness of UDP connections in a
distributed environment like a CAR system. Although the UDP protocol
can loose messages and the effects and size of these losses should be studied,
usually connectionless oriented protocols like UDP show a better network
performance for frequent but short network traffic [25].

The UDP implementation is very similar to the TCP-Select implementa-
tion, in order to void the overhead of having as many sockets as clients in the
simulation. The only difference is that in this implementation we have used
UDP sockets. Since this implementation can drop messages, it also counts
the number of dropped or lost messages (since both the number of iterations
and the number of clients in each working group is known, each client can
compute the number of message that should arrive).

Figure 9 shows the main differences between the TCP implementation
and the TCP-Select and UDP implementations. These differences are in the
Server Threads (STs) that are executed in the server. Each server thread
in the TCP implementation generates one SRT and one SPT for each client
in the workgroup size. Each SRT establishes a new socket with the corre-
sponding client, having therefore as many connection sockets as clients in the
simulation. In both the TCP-Select and the UDP implementations, there is
a single SRT for each working group, an therefore a single socket. All the
clients within a given working group establish a connection with the same
server socket in both the TCP-Select and the UDP implementations. The
only difference between the TCP-Select and the UDP implementations is
that the latter one uses UDP sockets instead of TCP sockets.

4.3. Performance Comparison

We have performed different measurements on different simulated systems
using the considered server implementations. Again, we have performed sim-

20



Figure 9: Differences among the different server implementations.

ulations with different number of clients and we have measured the response
time provided to these clients (the round-trip delay for each updating mes-
sage sent by a given client to the clients in its working group). In this way,
we can study the maximum number of clients that the system can support
while providing a response time below the threshold value of 250 ms. [28].

We have considered the system response time (in milliseconds) for each
updating message sent by a given client to its neighbor clients as the time
required for receiving the acknowledgments from all the clients in the working
group of this given client. In order to measure the dispersion of this metric, we
have measured the standard deviation for all the updating messages sent, as
well. Additionally, we have computed the percentage of the CPU utilization
in the system server, since it can easily become the system bottleneck. The
computer platform hosting the system server is a Intel Core 2 Duo E8400
CPU running at 3.00 GHz with 4 Gbytes of RAM, executing an Ubuntu
Linux distribution with the 3.0.0-14-generic x86 64 operating system kernel.

In order to study the system behavior for different levels of workload,
we have repeated simulations with working group sizes of 10,15,20 and 25
clients. Although not all of them are shown here for the sake of shortness,

21



we show the result for the smallest (5 clients in each working group) and the
biggest sizes (25 clients in each working group).

Table 7 shows the results for a CAR system whose client devices are all
of them HTC Nexus One, and where the working group size contains five
neighbor clients. This table shows the results for the three considered im-
plementations, organized as three subtables with ten rows each, and labeled
with the name of the implementation (TCP, TCP-Select and UDP). The
most-left column in these subtables shows the number of clients in the sys-
tem, that is, the population size. The values in this column range from 100
to 1000 clients in the system. The next two columns show the average value
of the response times (in milliseconds) provided by the system to all the
clients (labeled as ”RT”), as well as the corresponding standard deviation
values (column labeled as ”Dev”). The fourth column (labeled as ”CPU”)
shows the percentage of the CPU utilization in the server. milliseconds) of
the response time in the server for all the messages exchanged during the
simulation.

TCP SELECT UDP

Size RT Dev CPU RT Dev CPU RT Dev CPU

100 62.37 22.68 9.9 65.77 21.56 8 4.80 7.06 38.4

200 63.77 22.21 15 67.12 22.71 11.2 3.76 4.95 34.7

300 66.71 22.66 22 67.52 22.6 19.8 9.57 9.74 26.0

400 68.68 22.5 32.7 67.64 22.88 28 3.60 5.18 33.7

500 71.04 23.56 45 69.12 23.23 31 4.59 6.41 41.6

600 71.5 24.18 48.6 69.14 23 39.6 7.34 13.17 47.0

700 72.37 25.01 59 69.37 23.45 47 5.28 8.24 53.0

800 72.85 26.01 68 75.75 26.63 54.5 7.10 18.52 84.1

900 75.01 28.98 79.2 70.24 24.81 59.6 5.85 11.69 66.3

1000 147.33 101.71 85 71.05 27.53 67 7.15 15.47 69.5

Table 7: Results for a working group size of 5 neighbors

Table 7 shows that none of the values in the RT column reaches the
threshold value of 250 milliseconds in any of the considered implementa-
tions, showing that the system can efficiently support up to one thousand
clients while interactively displaying the Augmented Reality content. Never-
theless, there are significant differences in this column among the considered
implementations. Thus, the TCP implementation shows a huge rise in the
response time when the system reaches one thousand clients, passing from
around 75 milliseconds to more than 147 milliseconds as an average. The

22



standard deviation of these values are also more than three times the value
shown for nine hundred clients. These values show that for that population
size the system is approaching saturation. On the contrary, the SELECT
implementation does not show an increase in neither the column RT nor the
column ”Dev” for a population of one thousand clients. Moreover, the UDP
implementation shows RT values that are one order of magnitude lower than
the ones shown by the other two implementations.

The fourth column in Table 7 shows that the CPU utilization increases as
the number of clients in the system increases. In the case of the TCP imple-
mentation, the system approaches saturation when the server reaches 85%
of CPU utilization. For lower percentages of CPU utilization the response
times do not significantly increase. It is worth mention that the UDP imple-
mentation provides RT values that are one order of magnitude lower than
the ones provided by the TCP implementations, even for CPU utilization of
around 70%. These values show that the latency provided by CAR systems
greatly depends on the connection or connectionless scheme followed by the
system to exchange information with the clients.

These results show that the best latencies when the system is far from
saturation are provided with the UDP implementation. However, UDP is a
connectionless-oriented protocol, and therefore it may drop messages when
the system approach saturation. In order to study these effects, as well as
the general behavior of the system for a high workload, Table 8 shows the
results for a working group size of 25 clients. In this table, we have added a
new column for the case of the UDP implementation, labeled as ”% dr.”, that
shows the percentage of messages dropped by the system when it approaches
saturation. It has been computed by subtracting the number of messages
received by all the clients in a simulation (measured in the simulation itself)
from the theoretical number of messages that clients should exchange for a
given population size.

Table 8 shows that for this level of workload the system enters saturation
in the two TCP-based implementations. Effectively, the RT column shows
that the TCP implementation reaches the maximum threshold value of 250
ms. with 400 clients. From that population size up, the response time pro-
vided to clients is unacceptable. The SELECT implementation reaches (and
exceeds) this threshold value for a population of 500 clients. However, the
UDP implementation does not reach even half of this value for the maximum
population size considered, one thousand clients.

The ”% dr.” column shows that for the UDP implementation the per-

23



TCP SELECT UDP

Size RT Dev CPU RT Dev CPU RT Dev CPU % dr.

100 96.0 25.9 60.4 90.8 24.7 23.2 9.9 6.8 72.5 0.83

200 103.2 38.7 83.0 89.9 21.1 47.0 21.7 14.7 82.0 1.18

300 167.6 50.2 86.1 123.9 32.4 72.0 26.0 21.9 79.6 0.69

400 250.5 77.7 85.0 209.2 35.9 87.2 39.4 30.7 81.9 0.83

500 357.1 126.2 92.0 268.2 44.4 86.0 48.7 39.7 83.8 0.74

600 496.6 218.8 94.1 331.4 50.6 87.0 62.8 45.1 83.8 0.74

700 480.9 156.2 85.3 383.9 70.6 93.1 79.70 97.8 85.1 0.76

800 531.9 210.0 86.0 454.6 125.2 90.1 87.2 200.9 84.0 1.04

900 505.9 300.1 89.0 491.6 106.2 91 93.6 66.4 83.9 0.93

1000 524.9 372.6 87.1 566.4 133.3 93.1 122.4 85.4 85.0 0.90

Table 8: Results for a working group size of 25 neighbors

centage of lost messages is not higher than 1.2%. The effects of loosing some
messages will consist of delaying the location update of the artificial artifacts
in the display of the destination clients, that is, they will produce some jitter
in the display of the clients. However, these percentage values ensure a rea-
sonable quality in the visualization of the CAR system. Therefore, we can
state that the UDP implementation provides the highest throughput and the
best latency for large scale CAR applications, at the cost of a very limited
effects on the visualization in some clients.

In order to ensure that the effects of the UDP implementation in terms
of dropped messages are consistent for all the workload levels considered,
Figure 10 shows the average number of packets dropped for each working
group size considered.

Figure 10 shows that for working group sizes of 5 and 10 neighbor clients
there are no packet losses. For a working group size of 20 neighbors, the
amount of lost packets reaches 8581 for a theoretical total number of packets
sent of 1.9 million packets. Analogously, for a working group size of 25
neighbors, the amount of lost packets reaches 21593 out of 2.4 million packets
sent. Therefore, in the worst case the number of lost packets only represent
a 1’18 % of the total amount of packets sent. This value represents only
a small image flicker on some clients, and in very limited periods of time.
Since the information is sent more than once per second (since the action
cycle of the HTC Nexus One is 167.11 ms.), this value can be considered an
insignificant flickering.

Although they are not here for the shake of shortness, we repeated the

24



Figure 10: Number of packets dropped in the UDP implementation.

same tests shown in this section here using a different client device, the Mo-
torola Milestone, and we obtained analogous results. Those results were less
interesting because of the bigger action cycle of the Milestone (698.34 ms.).
For that action frequency, the system saturation point was not reached even
in the worst case of a working group size of 25 neighbors and a population of
1000 clients. We have shown here the results for the Nexus One as the worst
case for the server implementation.

5. Conclusions and Future Work

In this paper, we have proposed the experimental characterization of CAR
systems based on mobile phones. The results show that the system saturation
point depends on the overall percentage of CPU utilization in the computer
platform acting as the system server, although it is not a fixed value and it
is inversely related to the number of processor cores. Also, the results show
that it heavily depends on the kind of client devices, and it is limited by the
server I/O in some cases. Therefore, we have also developed different server
implementations that improve the system throughput and we have performed
a comparison study. The results show that the implementation based on
UDP messages provides a significant improvement in system throughput with
respect to other implementations based on TCP, supporting more than one
thousand clients at interactive rates (twice the number of supported clients
of the TCP implementation). This improvement is achieved at the cost of
loosing a very small percentage of updating messages. However, the effects

25



of these small quantities of dropped messages cannot expand beyond some
jitter (bounded within a short period of time) in a reduced number of clients
of the CAR application. These results validate the proposed UDP-based
implementation as the most efficient approach for the design of large scale
CAR applications based on mobile phones.

As a future work to be done, we plan to repeat the whole characterization
and improvement work for the case of natural feature tracking [30, 31], since
this kind of libraries has widely extended as a common tool for developing AR
applications. Also, we plan to study the use of mobile’s Graphics Processor
Units (GPU), since it is a common hardware feature in current mobile phones.

References

[1] R. Azuma, A survey of augmented reality, Presence: Teleoperators and
Virtual Environments 6 (1997) 355–385.

[2] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, B. MacIntyre,
Recent advances in augmented reality, Computer Graphics and Appli-
cations, IEEE 21 (2001) 34 –47.

[3] S. Cawood, M. Fiala, Augmented Reality: A Practical Guide, Pragmatic
Bookshelf, 2008.

[4] M. Billinghurst, I. Poupyrev, H. Kato, R. May, Mixing realities in shared
space: an augmented reality interface for collaborative computing, in:
IEEE International Conference on Multimedia and Expo (ICME 2000),
volume 3, 2000, pp. 1641–1644. doi:10.1109/ICME.2000.871085.

[5] M. Billinghurst, H. Kato, Real world teleconferencing, in: Proc. of the
conference on Human Factors in Computing Systems (CHI 99), 1999.

[6] T. Hallerer, S. Feiner, T. Terauchi, G. Rashid, D. Hallaway, Explor-
ing mars: Developing indoor and outdoor user interfaces to a mobile
augmented reality system, Computers and Graphics 23 (1999) 779–785.

[7] W. Piekarski, B. H. Thomas, Tinmith-hand: Unified user interface tech-
nology for mobile outdoor augmented reality and indoor virtual reality,
2002.

26



[8] A. Henrysson, M. Ollila, Umar: Ubiquitous mobile augmented reality,
in: Proceedings of the 3rd international conference on Mobile and ubiq-
uitous multimedia, MUM ’04, ACM, New York, NY, USA, 2004, pp.
41–45.

[9] M. Mahring, C. Lessig, O. Bimber, Video see-through ar on consumer
cell-phones., in: ISMAR’04, 2004, pp. 252–253.

[10] A. Henrysson, M. Billinghurst, M. Ollila, Face to face collaborative ar on
mobile phones, in: Mixed and Augmented Reality, 2005. Proceedings.
Fourth IEEE and ACM International Symposium on, 2005, pp. 80 – 89.

[11] V. Fernández, J. M. Orduña, P. Morillo, How mobile phones perform
in collaborative augmented reality (car) applications?, The Journal of
Supercomputing 65 (2013) 1179–1191.

[12] V. Fernández, J. M. Orduña, P. Morillo, On the characteriza-
tion of car systems based on mobile computing, in: High Per-
formance Computing and Communication 2012 IEEE 9th Interna-
tional Conference on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, 2012, pp. 1205 –1210.
doi:10.1109/HPCC.2012.177.

[13] V. F. Bauset, J. M. Orduña, P. Morillo, On the implementation of
servers for large scale car systems based on mobile phones, in: Interna-
tional Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, GRAPP 2013, 2013.

[14] V. F. Bauset, J. M. Orduña, P. Morillo, Performance characterization
on mobile phones for collaborative augmented reality (car) applications,
in: Proceedings of the 2011 IEEE/ACM 15th DS-RT, DS-RT ’11, 2011,
pp. 52–53.

[15] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg,
Pose tracking from natural features on mobile phones, in: Proceedings of
the 7th IEEE/ACM International Symposium on Mixed and Augmented
Reality, ISMAR ’08, IEEE Computer Society, Washington, DC, USA,
2008, pp. 125–134.

[16] S. E. Lee, Y. Zhang, Z. Fang, S. Srinivasan, R. Iyer, D. Newell, Acceler-
ating mobile augmented reality on a handheld platform, in: Computer

27



Design, 2009. ICCD 2009. IEEE International Conference on, 2009, pp.
419 –426. doi:10.1109/ICCD.2009.5413123.

[17] M. H. M. B. B. Thomas, Emerging Technologies of Augmented Reality:
Interfaces and Design, IGI Global, 2007. doi:10.4018/978-1-59904-066-0.

[18] D. H. Kato, Artoolkit, 2011. Available at
http://www.hitl.washington.edu/artoolkit/.

[19] D. Wagner, D. Schmalstieg, First steps towards handheld augmented
reality, in: Proceedings of the 7th IEEE International Symposium on
Wearable Computers, ISWC ’03, IEEE Computer Society, Washington,
DC, USA, 2003, pp. 127–135.

[20] S. Srinivasan, Z. Fang, R. Iyer, S. Zhang, M. Espig, D. Newell, D. Cer-
mak, Y. Wu, I. Kozintsev, H. Haussecker, Performance characterization
and optimization of mobile augmented reality on handheld platforms,
in: Workload Characterization. IISWC 2009. IEEE International Sym-
posium on, 2009, pp. 128 –137. doi:10.1109/IISWC.2009.5306788.

[21] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmal-
stieg, Real-time detection and tracking for augmented reality on mobile
phones, Visualization and Computer Graphics, IEEE Transactions on
16 (2010) 355 –368.

[22] D. Wagner, D. Schmalstieg, H. Bischof, Multiple target detection and
tracking with guaranteed framerates on mobile phones, in: Proceedings
of ISMAR 2009, 2009, pp. 57 –64. doi:10.1109/ISMAR.2009.5336497.

[23] J. Rekimoto, Transvision: A hand-held augmented reality system for
collaborative design, in: Virtual Systems and Multi-Media (VSMM)’96,
1996.

[24] Z. Szalavri, D. Schmalstieg, A. Fuhrmann, M. Gervautz, studierstube:
An environment for collaboration in augmented reality, Virtual Reality
3 (1998) 37–48.

[25] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engi-
neering Approach, IEEE Computer Society Press, 1997.

28



[26] P. Morillo, J. M. O. na, M. Fernández, J. Duato, Improving the perfor-
mance of distributed virtual environment systems, IEEE Transactions
on Parallel and Distributed Systems 16 (2005) 637–649.

[27] T. Kantonen, Augmented Collaboration in Mixed Environments, Mas-
ter’s thesis, Helsinky University of Technology, 2009.

[28] T. Henderson, S. Bhatti, Networked games: a qos-sensitive application
for qos-insensitive users?, in: Proceedings of the ACM SIGCOMM 2003,
ACM Press / ACM SIGCOMM, 2003, pp. 141–147.

[29] M. T. Jones, BSD Sockets Programming from a Multi-Language Per-
spective, Charles River Media, Inc., Rockland, MA, USA, 2003.

[30] D. Wagner, I. Barakonyi, I. Siklossy, J. Wright, R. Ashok,
S. Diaz, B. MacIntyre, D. Schmalstieg, Building your vision
with qualcomm’s mobile augmented reality (ar) platform: Ar on
mobile devices, in: Proceedings of the 2011 10th IEEE In-
ternational Symposium on Mixed and Augmented Reality, IS-
MAR ’11, IEEE Computer Society, Washington, DC, USA, 2011,
pp. 1–. URL: http://dx.doi.org/10.1109/ISMAR.2011.6092355.
doi:10.1109/ISMAR.2011.6092355.

[31] Z. Balint, B. Kiss, B. Magyari, K. Simon, Augmented reality and image
recognition based framework for treasure hunt games, in: Intelligent
Systems and Informatics (SISY), 2012 IEEE 10th Jubilee International
Symposium on, 2012, pp. 147 –152. doi:10.1109/SISY.2012.6339504.

29


