
On the Characterization of CAR Systems Based on
Mobile Computing

Vı́ctor Fernández, Juan M. Orduña, Pedro Morillo
Departamento de Informática - ETSE - Universidad de Valencia
Avda. Universidad, s/n. 46100 - Burjassot (Valencia) - SPAIN

Victor.Fernandez-Bauset@uv.es,Juan.Orduna@uv.es, Pedro.Morillo@uv.es

Abstract—Collaborative Augmented Reality (CAR) systems
allow multiple users to share a real world environment including
computer-generated images in real time. Currently, the hardware
features of most mobile phones provide excellent multimedia ser-
vices, and it also includes wireless network capabilities that offer
a natural platform for CAR systems. However, the performance
of the mobile CAR applications under different conditions, like
the number and type of devices in the system, has not been
studied yet.

This paper presents the experimental characterization of CAR
systems based on mobile phones, providing quantitative results
about well-known performance metrics in distributed systems
like system throughput and system response times. The charac-
terization results show that the system saturation point depends
on the overall percentage of CPU utilization in the computer
platform acting as the system server, although it is not a fixed
value and it is inversely related to the number of processor cores.
Also, the results show that throughput of CAR systems heavily
depends on the kind of client devices, but CAR systems can
efficiently support some hundreds of clients in any case. Another
important result is that the CAR system throughput is limited
by the server I/O in some cases. Therefore, any improvement
in CAR systems should be addressed to alleviate the server I/O,
even though it may add computational overhead to the server.

Index Terms—Collaborative Augmented Reality; Mobile
Phones; Performance Evaluation;

I. INTRODUCTION

Augmented Reality (AR) systems have been widely used in
numerous applications such as medical procedures, scientific
visualization, manufacturing automation, cultural heritage and
military applications [?]. The term Augmented Reality (AR)
defines computer graphic procedures or applications where
the real-world view is superimposed by computer-generated
objects in real-time [?], [?]. From the beginning of AR
systems, the potential of collaborative AR (CAR) systems
was exploited for different activities such as Collaborative
Computing [?] or Teleconferencing [?]. Wearable devices were
used to provide CAR systems, where a wearable AR user could
collaborate with a remote user at a desktop computer [?], [?].

On other hand, lot of devices comprising a computing em-
bedded system pervade our daily life, and they have been used
for CAR systems. One of these devices are mobile phones [?],
[?]. Effectively, current mobile phones have full color displays,
integrated cameras, fast processors and even dedicated 3D
graphics chips, and they have become an ideal platform for
CAR systems [?]. However, the wide variety of current mobile
phones, with different graphic and processing capabilites, and

different operating systems, can have significant effects on
the performance of the CAR application, in terms of system
latency, frames per second or number of supported clients
with certain latency levels. Taking into account that CAR
applications should be interactive, the design of an efficient
CAR application must take into account these effects in order
to fulfill the required specifications. Therefore, in order to
design efficient CAR systems based on mobile devices, it
is necessary to characterize the behavior of these systems in
terms of average response times under different conditions, as
well as system throughput. In turn, this characterization should
be performed on both the client devices (mobile phones) and
the system server(s).

In a previous work, we performed a performance characteri-
zation of different mobile phones for Collaborative Augmented
Reality applications, [?]. In order to achieve this goal, we
implemented a simple CAR application on a real system
and measured the performance achieved with different mobile
phones. The results showed that the most time consuming
stage in a CAR application is the marker detection stage,
followed by the image acquisition stage, the rendering stage
and finally, the transmission stage. In this paper, we present a
performance characterization from the server side, measuring
the system response time and system throughput when varying
different systems parameters like the number of clients in
the system, the Area of Interest (AOI) [?] of clients (i.e.,
the number of neighbors to which messages should be sent),
and the cycle time of clients. For characterization purposes,
we have developed a multithreaded CAR server that supports
simulated clients (simulated mobile devices) with the behavior
measured in our previous work [?]. We have time-stamped
every message generated within this CAR system, in order to
measure the performance of every device. The characterization
results show that the system saturation point depends on the
overall percentage of CPU utilization in the computer platform
acting as the system server. Although the CPU threshold is
not a fixed value, it is inversely related to the number of
processor cores. Moreover, the results show that the CAR
systems throughput heavily depends on the kind of client
devices, but for certain kind of devices, the system bottleneck
is the server I/O. These results suggest that any improvement
in CAR systems should be addressed to alleviate the server
I/O, even though it may add computational overhead to the
server.

The rest of the paper is organized as follows: Section II
shows some related work about CAR applications on mobile
phones. Section III describes the characterization setup, and
Section IV shows the characterization results. Finally, Sec-
tion V presents some conclusion remarks and the future work
to be done.

II. RELATED WORK

Augmented Reality superimposes multimedia content - 3D
object, text, sound, etc - to real world through a display
or screen. In order to locate digital contents on a specific
image of the real world point, some references within the
image is needed. These references are known as markers, and
two methods are usually used: natural feature tracking and
fiducial marker tracking. The former method uses interest point
detectors and matching schemes to associate 2D locations
on the video with 3D locations [?]. This process can be
grouped in three big phases: interest point detection, creation
of descriptor vectors for these interest points, and comparison
of vectors with the database [?]. The latter method uses fiducial
markers to find a specific position of real world. This process
can be divided in three phases: edge detection, rejection of
quadrangles that are too large or too small, and checking
against the set of known patterns [?].

Any CAR application needs a device equipped with an on-
board camera, CPU and display. The most common devices
used for CAR applications are Tablet-PCs or mobile phones.
We will focus on mobile phones, because they are more
suitable for CAR applications [?], [?].

There are few solutions based on fiducial marker tracking
over mobile phones. In 2003, ArToolKit [?], one of the
most well-known software libraries for developing Augmented
Reality (AR) application, was released for Windows CE, and
the first self-contained application was developed for mobile
phones [?]. This software evolved later as the ArToolKitPlus
tracking library [?]. A tracking solution for mobile phones
that works with 3D color-coded marks was developed [?],
and a version of ArToolKit for Symbian OS was developed,
partially based on the ArToolKitPlus source code [?]. The
research teams behind these works have worked on fiducial
marker tracking, but not from the collaborative point of view.
Also, there are many other works that focus on natural feature
tracking [?], [?], [?], [?].

Although real-time natural feature tracking over mobile
devices has been currently achieved [?], fiducial marker track-
ing is more widely used, because it allows simultaneous
computational robustness and efficiency. A large number of
locations and objects can be efficiently labeled by encoding
unique identifiers on the markers. Additionally, the markers
can be detected with angles near to 90 degrees [?].

The first CAR applications improved the conference system
highlights, giving the feeling of real presence to remote
collaborators [?]. The Rekimoto’s Transvision system showed
how to share virtual objects through handheld displays [?].
Also, Schmalstieg created a software architecture to develop
CAR applications [?].

Fig. 1. Stages of the action cycle in each mobile device

III. CHARACTERIZATION SETUP

In order to analyze the behavior of CAR systems based
on mobile devices, we have developed a multithreaded CAR
server that supports simulated clients (simulated mobile de-
vices) with the behavior measured in our previous work [?].
We have time-stamped every message generated within this
CAR system, in order to measure the performance of every
device. The system configuration will consist of one server,
and a certain amount of mobile devices that are scanning the
visual space of their video camera looking for a marker that
will be converted into a 3D object in their display. The main
performance metrics in distributed systems are throughput and
latency [?]. However, in order to avoid clock skews when
measuring the system latency in distributed systems, the same
device should measure the initial and final time. Therefore, we
consider round-trip times instead of system latencies.

Since we are considering collaborative systems, after each
updating of the object location, the mobile device will send
a location update message (containing the new location) to
each of its neighbor devices (defined by the AOI size) through
the server (that is, it sends the location update message
to the server, and then the server re-sends the message to
the appropriate clients). For characterization purposes, the
destination clients return an acknowledgment message (ACK)
to the server, which, in turn, forwards it to the source client.
When the source client has received the ACK messages
corresponding to the location update from all the clients in
it s AOI, then it computes the average system response for
that location update. Figure 1 illustrates the action cycle that
takes place for each of the mobile clients in the system.

Once the message with the location update is sent, the action
cycle performed by each client is composed of the following
steps: first, it performs one new image acquisition followed
by a marker detection stages. Then, the client waits until the
cycle period (determined by the action frequency, a system
parameter) finishes. Next, if the acknowledgments from all
the neighbors have been received, a new message with the
new marker location is sent. If not all the acknowledgments

have been received, then it waits until a maximum threshold
of 20 seconds, and then a new round of messages (with the
latest marker location) are sent to the neighbors through the
server. The neighbors simply returns an ACK message to the
sender device through the server. The server simply forwards
the messages to the corresponding destination clients. It must
be noticed that the mobile devices will not send a new round
of messages with a new location update until it has received
the acknowledgment message from all its neighbors, even
although new marker detection stages have been completed
in the device.

This characterization setup considers that all the required
static content in the scene has been loaded. According to recent
works [?], in these cases the network bandwidth required is
less than 50 kbps for performing this information exchange.
Since we are using a Gigabit Ethernet, we ensure that network
bandwidth does not become a system bottleneck.

The system latency provided for each location update is
computed by recording a timestamp when the first message
is sent to the server. Next, a second timestamp is recorded
with the last ACK message for that location update received
from the server. The system response time is computed by
subtracting these two timestamps. The server response time
is computed by timestamping both each message forwarded
from each client and the reception of the corresponding ACK
message from the destination client. Also, the percentage of
CPU utilization is measured both in the server and the mobile
devices every half second.

We have implemented a multithreaded server, where each
server thread manages a group of clients within a given
AOI. Thus, for example, with a system configuration of 500
mobile clients and an AOI size of 10 clients, we have 50
server threads, each thread supporting 10 clients. We have
considered a maximum configuration of 2500 clients, resulting
in 2500 server threads. For system characterization purposes,
we have considered a single server. Nevertheless, the system
performance greatly depends on the server implementation
(see the results in Section IV). Therefore, in order to make a
robust characterization of CAR systems, we have implemented
two different versions of the server, denoted as passive and
active server. The active server forwards each location update
message to the corresponding neighbor clients, and it collects
the ACK messages received from the neighbor clients. When
all the ACK messages corresponding to a location update
message have been received, then a single ACK message is
sent to the corresponding source client. The passive server
simply forwards each location update message to the corre-
sponding neighbor clients and the ACK messages received
from the neighbor clients to the source client. In this sense, no
computations neither data structures are needed in the server,
although more messages are exchanged between the server and
the clients (the network traffic increases).

On other hand, each client process simulates 50 mobile
devices, using one thread per simulated device. We have uni-
formly distributed the number of the required client processes
for each system configuration. Since we have 10 desktop

computers available for hosting the clients, the configuration
for 2500 clients consists of 10 computers hosting 5 client
processes each (250 threads per computer hosting clients).

The previous work showed that Google phone HTC Nexus
One was the fastest device, with a period cycle of 167.11
milliseconds, while the Motorola Milestone was the slowest
one, with a period cycle of 698.34 milliseconds. We have
considered these values as the limits for characterization
purposes. Also, we have considered four different values for
the AOI size: 5, 10, 20, and 25 neighbor clients. Finally, we
have considered a number of clients in the system ranging
from 500 to 2500. It must be noticed that usually, actual
CAR applications do not contain more than a hundred clients
(for example, more than a hundred persons within the same
lounge using collaborative Augmented Reality for studying art
masterpieces), due to the size of the augmented models. Thus,
reaching thousands of clients clearly exceed the worst case for
this kind of applications.

IV. PERFORMANCE EVALUATION

We have computed the average system response for all the
location updates send by all the clients in the system. In
this sense, we have considered the system response time (in
milliseconds) for each location update as the time required
for receiving all the acknowledgments from the neighbor
clients in the AOI for each update sent by a client. Also, we
have computed the average response time in the server (in
milliseconds) as the time required by the destination clients to
answer the server messages. We have additional computed the
standard deviation for the response times, and the percentage
of the CPU utilization in the system server, since it can easily
become the system bottleneck. The computer platform hosting
the system server is a Intel Core 2 Duo E8400 CPU running
at 3.00 GHz with 4 Gbytes of RAM, executing an Ubuntu
Linux distribution with the 3.0.0-14-generic x86 64 operating
system kernel.

Table I shows the performance evaluation results for the
active server implementation (denoted with the ”a-” prefix
in the tables) and considering an AOI size of 10 neighbors
for each client. The most-left column in this table shows the
number of clients in the system (and the number of neighbor
clients in the AOI). The values in this columns range from
100 to 1000 clients in the system. Next, there are two groups
of three columns each that shows the results for the fastest
(HTC Nexus One, whose results are labeled as ”One”) and the
slowest client device considered (Motorola Milestone, whose
results are labeled as ”Miles”). The first two columns in each
group of columns show the average system response time (in
milliseconds) and its standard deviation. The third column
shows the percentage of the CPU utilization in the system
server.

Table I shows clearly different behavior and performance for
different client devices. Thus, comparing the system response
time (column RT) for the a-One (i.e., active server implemen-
tation and all clients using a Nexus One device) and a-Miles
configurations, it can be seen that the RT slightly increases (or

TABLE I
SYSTEM PERFORMANCE FOR THE ACTIVE SERVER IMPLEMENTATION

WITH AN AOI OF 10 NEIGHBORS

a-One a-Miles
AOI 10 RT Dev CPU RT Dev CPU

100 70.27 23.61 10.9 72.89 28.02 7.1
200 68.85 23.14 21.8 69.35 23.92 13.0
300 73.27 18.07 36.4 73.67 18.43 17.8
400 74.81 17.48 44.0 78.13 23.07 18.8
500 79.71 21.34 57.0 75.9 19.04 26.0
600 83.58 25.59 70.0 80.35 26.04 31.7
700 83.85 27.61 82.3 81.73 26.06 31.0
800 179.75 89.37 84.2 78.69 23.82 40.8
900 222.94 102.97 84.0 76.32 20.47 43.9
1000 255.67 116.19 85.2 78.29 21.99 45.1

TABLE II
SYSTEM PERFORMANCE FOR THE PASSIVE SERVER IMPLEMENTATION

WITH AN AOI OF 10 NEIGHBORS

p-One p-Miles
AOI 10 RT Dev CPU RT Dev CPU

100 78.23 30.41 16.0 77.03 27.63 9.9
200 74.02 25.06 25.2 78.16 26.07 26.0
300 79.45 24.57 37.0 83.6 28.61 25.0
400 81.02 24.05 59.6 82.54 23.76 23.8
500 93.61 28.56 68.7 88.27 26.76 31.3
600 147.73 100.48 83.8 87.66 27.45 33.0
700 195.47 76.24 83.2 88.45 28.58 33.7
800 237.71 91.09 85.9 94.43 34.05 62.0
900 270.25 104.97 84.2 84.8 25.7 69.3
1000 300.96 132.04 84.2 87.72 27.56 46.5

decreases) as the number of clients in the system increases in
the case of the a-Miles, ranging from 72.89 milliseconds to
81.73 milliseconds. However, in the case of the a-One, when
the population reaches 800 clients there is a huge increase in
both the RT value and in its standard deviation with respect to
the values for smaller population sizes. For higher population
sizes, the increase in the RT values is also significant.

Table II shows the performance results for a CAR system
with the same configuration except that the server implemen-
tation is now the passive server (denoted with a ”p-” prefix).
This table shows a similar behavior of the CAR system to the
one shown in Table I for the active server. The only difference
is the huge increase in the RT values of the ”p-One” for a
smaller population size (600 clients instead of 800 clients in
the ”a-One” configuration). These results show that the system
reaches saturation for a population size of 800 clients in the
case of a-One, and for a population size of 600 clients in the
case of the p-One. However, in both cases the saturation starts
when the percentage of CPU utilization in the system server
reaches around 84% (83,8% in the passive server and 84,2%
in the active server implementation). The configurations ”a-
Miles” and ”p-Miles” do not reach saturation, since the RT
remains almost constant as the population size increases. The
reason for the different system behavior, when changing the
devices, is the greater period cycle of the Motorola Milestone,
which imposes a lower system workload since it generates new
location updates at a much lower rate.

Regarding the acceptable limits for the RT values, some

TABLE III
SERVER RESPONSE TIMES

p-One
AOI 10 RT Dev CPU SRT SRTDev

100 78,23 30,41 16 18,2 20,15
200 74,02 25,06 25,2 18,5 24,9
300 79,45 24,57 37 25,78 28,62
400 81,02 24,05 59,6 27,71 30,4
500 93,61 28,56 68,7 31,83 40,5
600 147,73 100,48 83,8 40,93 44,37
700 195,47 76,24 83,2 49,85 52,39
800 237,71 91,09 85,9 58,08 62,23
900 270,25 104,97 84,2 64,79 68,9
1000 300,96 132,04 84,2 68,77 75,48

works consider 250 milliseconds as the response time limit for
providing interactivity to human users [?]. If we consider such
threshold value, then we can state that the throughput limit
with the HTC Nexus One is 900 clients when using the active
server, and 800 when using the passive server. That is, the
system performance is surprisingly improved when the server
reduces the traffic exchanged with the source clients (it collects
all the ACK messages and only sends the source client a single
ACK) at the cost of performing more computations (counting
the ACK received for each update message). In order to find
the reason for this behavior, we have measured the server
response times for all the configurations considered. Table III
shows the same results for the ”p-one” configuration shown in
table II, but now adding the corresponding average response
times in the server (the average response time required by
clients for sending back their ACK messages to the server,
measured from the server) and their standard deviation.

Table III shows that the average response times do not
reach 70 milliseconds for the p-One device regardless of the
population size, showing that the system bottleneck (the reason
for the significant average system response times shown in
Tables II and I) is located in the server. Since the comparison
between these two tables shows that the active server achieves
better performance than the passive server, these results sug-
gest that the server I/O with the source client is the system
bottleneck. It is important to notice that each source client
in the passive server must not only receive all the ACKs
for each message sent, but also it must send an ACK for
every location update received from its neighbors. Although
the active server adds more computational workload to the
server for the same system workload than the passive server,
it alleviates the server I/O with each client, and therefore the
performance is improved.

In order to show that the behaviors shown in Tables I and II
are consistent for other workloads, Tables IV and V show
the results corresponding to a system configuration when all
the clients have an AOI size of 20 neighbor clients. These
tables show behaviors that are very similar to the ones shown
in Tables I and II, except for the fact that the RT values
are in general higher, and the system reaches saturation for
lower population sizes. The results for the Milestone device
show that the system does not reach saturation (there is not

TABLE IV
SYSTEM PERFORMANCE FOR THE ACTIVE SERVER IMPLEMENTATION

WITH AN AOI OF 20 NEIGHBORS

a-One a-Miles
AOI 20 RT Dev CPU RT Dev CPU

100 77.37 23.26 23.8 78.65 20.81 12.8
200 77.13 19.95 38.0 77.69 17.25 16.0
300 79.59 17.17 56.6 84.26 17.78 35.4
400 83.07 25.81 74.2 96.71 24.51 38.0
500 195.92 63.28 82.9 81.19 21.24 40.0
600 246.46 86.01 82.8 103.62 39.43 46.0
700 297.3 101.41 82.8 97.92 26.56 47.0
800 350.88 122.83 84.2 82.63 26.52 62.4
900 394.66 142.36 86.0 93.31 30.57 56.5
1000 410.14 181.39 87.0 88.52 26.54 66.3

TABLE V
SYSTEM PERFORMANCE FOR THE PASSIVE SERVER IMPLEMENTATION

WITH AN AOI OF 20 NEIGHBORS

p-One p-Miles
AOI 20 RT Dev CPU RT Dev CPU

100 88.22 32.16 27.6 93.88 26.9 20.2
200 94.57 29.06 45.5 94.98 25.74 21.2
300 128.16 28.88 73.3 98.01 24.79 29.7
400 195.92 63.42 84.2 129.24 30.8 37.7
500 273.58 89.08 84.0 101.96 30.91 43.0
600 326.79 106.94 86.2 121.53 39.5 50.5
700 400.45 142.76 87.0 148.84 66.52 83.9
800 447.02 155.46 87.0 110.41 39.07 65.3
900 473.99 223.98 86.0 101.4 32.33 67.3
1000 467.04 286.28 86.9 106.66 37.8 74.7

a significant jump in the RT values as the population size
increases) in any of the tables. However, the results shown in
Table IV for the a-One show a jump in the RT values for a
population size of 500 clients, when the percentage of CPU
utilization is 82.9%. In the case of the p-One configuration
(Table V), the disruption occurs for a population size of 400
clients, when the percentage of CPU utilization is 84.2%. That
is, again the system saturation point is a percentage of CPU
utilization in the system server of around 84%.

In order to illustrate the behavior obtained for another
workloads, we have measured the average system response
times provided by the considered configurations for different
AOIs. Concretely, Figure 2 shows the average system response
times obtained for an AOI size of 5 neighbors. Each plot in
this figure correspond to a configuration of either the passive
or the active server implementation, and using the HTC Nexus
One or the Motorola Milestone as client devices. The X-axis
shows the number of clients in the system, while the Y-axis
shows the average system response times in the simulation.

Figure 2 shows that the only configuration that approaches
saturation is the ”p-One” (passive server with Nexus One
devices as clients). Effectively, this plot significantly increases
for 1000 clients, although the average response time is far
away from the threshold of 250 milliseconds.

Figure 3 shows the average system response times obtained
for an AOI size of 10 neighbors, that is, it graphically
shows the results shown in the column labeled as ”RT” in
Tables II and I. This figure shows that in this case the two

Fig. 2. Average system response times for an AOI size of 5 neighbors

Fig. 3. Average system response times for an AOI size of 10 neighbors

plots corresponding to the simulations performed with Nexus
one clients reaches saturation, although the plot for passive
server implementation starts to increase with fewer clients
(600 instead of 800) and reaches higher response times than
the active server implementation (300 milliseconds instead of
255). For 1000 clients, both plots exceed the limit of 250
milliseconds.

Figure 4 shows the same results for the case of an AOI
of 20 neighbor clients. This figure shows how the system
throughput decreases as the AOI increases. Concretely, this
figure shows that, again, the plots for the Motorola Milestone
have a flat slope, while plots for the HTC Nexus One start
to significantly increase for population sizes of 400 clients

Fig. 4. Average system response times for an AOI size of 20 neighbors

(p-One) and 500 clients (a-One). In this case, the passive
server implementation shows a throughput (the number of
supported clients without exceeding the threshold value of 250
millisecond for the average system response) of 400 clients,
while the throughput for the active server is 600 clients. Also,
the maximum system response times obtained with this AOI
exceed 450 milliseconds for the p-One implementation.

Finally, Figure 5 shows the same results for the case of
an AOI of 25 neighbor clients. The behavior is very similar,
except that the plots starts to increase with smaller population
sizes (300 and 400 for the passive and active server implemen-
tations, respectively. For this AOI, size the maximum response
times obtained exceed 500 milliseconds for a population size
of 1000 clients.

When comparing these figures among them, it can be seen
that the configurations based on the Milestone device does not
reach saturation in any figure. Also, the system throughput
achieved by the p-One plots are the lowest ones in all the
figures, while the response times shown in these plots are
the longest ones. Finally, as it could be expected, the system
throughput decreases as the AOI size (the workload generated
by the same number of client devices) increases, supporting
less devices without reaching saturation. These results confirm
that the server I/O becomes the system bottleneck in this
CAR configurations; although the active server adds more
computational workload to the server for the same system
workload than the passive system server, it alleviates the
workload of the server I/O, and therefore the performance is
improved.

Finally, we have studied the saturation point of the CAR
configurations considered. Although they are not shown here
for the sake of shortness, we have obtained a percentage of
CPU utilization in the server around 84% as the system satu-
ration point for all the configurations shown in Figures 2, 3, 4

Fig. 5. Average system response times for an AOI size of 25 neighbors

and 5. However, similar distributed systems like Distributed
Virtual Environments (DVEs) were reported to reach saturation
when any of the server reaches around 95-98% of CPU
utilization [?]. The difference between 85% and 98% of CPU
utilization for reaching the saturation point can be explained
by the shared memory architecture of current multicore pro-
cessors (the dual core processor in the computer platform
used as simulation server). The synchronization of the kernel
calls, together with the synchronization among threads in the
application, prevent the CAR system from fully exploiting the
computational power of all the processing cores at the same
time, reaching saturation for a lower overall percentage of
CPU utilization. The performance characterization of DVEs
was performed on single core processors, and therefore those
systems reached around 98% before reaching saturation. In
order to show that this is the reason for this behavior, we
have performed the same tests not only with the computer
platform described above (dual core processor), but also with
a different multicore computer platform, consisting of an In-
tel(R) Core(TM) i7 960 CPU (eight cores) running at 3.20GHz
with 8 Gbytes of RAM and executing a SuSE Linux 2.6.37.6-
0.5-desktop operating system. A representative example of the
results obtained in such tests is shown in Table VI, that shows
the results for the p-One configuration with an AOI size of 25
neighbor clients.

Table VI shows that the average system response time
hugely increases when the population size is composed of
500 clients for the case of the Intel i7 platform, passing
from 98.65 milliseconds to 228.98 milliseconds, while the
standard deviation for this parameter also double its value.
That is, the system saturation point for this server platform is
a population size of 500 clients, and for this saturation point
the overall percentage of CPU utilization for this execution
is 42.46% (fourth most-left column in table VI). However,

TABLE VI
PERFORMANCE EVALUATION FOR TWO DIFFERENT COMPUTER

PLATFORMS

8 cores (i7) 2 cores (Core Duo)
AOI 25 RT Dev CPU RT Dev CPU

100 90.91 26.91 24.1 96.03 25.91 60.4
300 98.65 20.63 33.6 167.58 50.19 86.1
500 228.98 42.36 43.5 357.13 126.19 92
700 357.95 75.79 45.3 480.87 156.16 85.3
900 478.95 103.34 48.3 505.89 300.11 89.0

the results obtained with an Intel Dual Core processor show
that the system reaches saturation with 300 clients, where the
average system response time jumps from 96.03 milliseconds
to 167.58 milliseconds (this result is also shown in the p-
One plot in figure 5). For this system response time, the
overall percentage of CPU utilization is 86.1%. That is, as
it could be expected, the system throughput is increased when
a more powerful processor is used as the system server, but
the saturation point of the CAR system is not a fixed value for
the overall percentage of the CPU utilization, and it depends
on the number of processor cores. Although they are not here
due to space limitations, the system saturation point around
43% of CPU utilization arose for all the configurations tested
with this platform.

V. CONCLUSIONS AND FUTURE WORK

This paper has proposed the experimental characteriza-
tion of CAR systems based on mobile phones, providing
quantitative results about well-known performance metrics
in distributed systems like system throughput and system
response times. The results show that the system saturation
point depends on the overall percentage of CPU utilization in
the computer platform acting as the system server, although it
is not a fixed value and it is inversely related to the number
of processor cores. Also, the results show that throughput of
CAR systems heavily depends on the kind of client devices,
but CAR systems can efficiently support some hundreds of
clients in any case. Another important result is that the CAR
system throughput is limited by the server I/O. Therefore, any
improvement in CAR systems should be addressed to alleviate
the server I/O, even though it may add computational overhead
to the server.

As a future work to be done, we plan to evaluate different
CAR systems implementations oriented to minimize the server
I/O workload.

ACKNOWLEDGMENT

This work has been jointly supported by the Spanish
MICINN and the European Commission FEDER funds, un-
der grants Consolider-Ingenio 2010 CSD2006-00046 and
TIN2009-14475-C04.

