
SUED: An Extensible Framework for the Development of Low-cost DVE
Systems

S. Casas∗1, P. Morillo1, J. Gimeno1 and M. Fernández1

Instituto de Robótica
Universidad de Valencia (Spain)
E-mail: Sergio.Casas@uv.es

ABSTRACT

The current expansion of 3D real-time applications based on collab-
orative virtual scenarios has facilitated the growth of distributed vir-
tual environment (DVE) systems, where a set of remote users share
a 3D virtual scene. Nowadays, the 3D graphics market does not ig-
nore the presence of a new generation of demanding users who are
driving the industry into a race to develop more and more complex
and realistic simulations. This competition for the launch of new
and innovative products, not only has caused the development costs
to skyrocket, but also has motivated the development of incredibly
complex platforms. In this paper, we present SUED, a new open-
source software framework that has been intentionally designed to
enable a rapid prototyping of low-cost DVE systems. Unlike other
proposals, SUED offers two important features. On the one hand,
it avoids complexity in programming and embeds some common
tasks in the development of this type of systems by means of an
easy-to-use interface based on XML files. On the other hand, it al-
lows developers to extend the basic capabilities of the framework
by defining custom modules on open-source and well-known Vir-
tual Reality software tools. In addition, this paper presents two
different DVE systems developed on SUED and the cost and time
reductions achieved in their development.

Index Terms: I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual reality—; H.5.1 [Multimedia Information Systems]: Artifi-
cial, Augmented, and Virtual Realities—

1 INTRODUCTION

Distributed Virtual Environment (DVE) systems have experienced
a spectacular growth last years. These realtime time systems allow
multiple users, connected from different computers, to interact in a
common 3D virtual world [9]. Although DVE systems have been
traditionally used for multiplayer video games, military and indus-
trial training, or collaborative engineering, these type of systems
are continuously challenged by requirements for increasing com-
plexity. This complexity used to be expressed in terms of system
throughput (maximum number of users simultaneously connected
to the system) and level of realism.

As the user requirements for a DVE system become more com-
plex and distributed, the development costs raise a very serious con-
cern about how to develop this type of systems efficiently [1]. Be-
cause of this reason, several software frameworks have been pre-
sented to minimize both time and complexity in the development
of DVE systems [5, 7, 3, 10, 11, 4]. However, although the aim of
these frameworks is to reduce the development costs and let DVE

∗Supported by the Spanish MEC under grant DPI2006-14928-C02-02
and the European Commission Network of Excellence INTUITION IST-
NMP-1-507248-2

systems be implemented much faster, this cost reduction is not ap-
plied in a global manner. On the one hand, some approaches remain
very linked to standard Virtual/Augmented Reality libraries [10, 11]
or immersive visualization devices [7, 3]. On the other hand, more
recent proposals either lack an easy configuration mechanism [5],
or do not provide an unified mechanism to control the configura-
tion and execution of the actions and events occurring during the
simulations [4].

In this paper, we propose a new software platform called SUED
that has been intentionally designed to enable a rapid prototyping
of low-cost DVE systems. SUED models an entire simulation us-
ing a finite-state machine model and provides an easy-to-use inter-
face for non technical users based on XML files. This approach
reduces not only the development time of the DVE system, but also
the complexity of the development when these systems are used
to simulate complex scenarios or situations such as validation of
emergency plans or security procedures. The modular architecture
of SUED takes advantage of open-source and well-known Virtual
Reality tools (in terms of low cost, reliability, and portability across
platforms) and allows developers to easily extend the features of the
framework.

The rest of the paper is organized as follows: Section 2 presents
some related work focusing on the development of frameworks ori-
ented to DVE systems. Then, Section 3 gives an overview and some
design considerations of the SUED framework. Next, Section 4 de-
scribes two different DVE systems that have been developed using
SUED. Finally, Section 5 outlines some concluding remarks and
Section 6 points out the future work to be done.

2 RELATED WORK

Several software frameworks for the development of Virtual Reality
(VR) or Augmented Reality (AR) applications have been proposed.
A good review of this type of existing frameworks, including the
most important references, is given in [2] and [6]. Although these
references have had an important impact on the community of VR
and AR developers, the developers of DVE systems have demanded
custom solutions to address their particular functional requirements
and research challenges.

Avocado [11] is an object-oriented system based on the Per-
former library where a number of shared-data structures are kept
consistent among remote users by some global operations such as
deletion or insertion. The system is open but remains very basic
and still requires a substantial effort to build a new application [7].
JAPE [10] is a prototyping environment, based also on the Per-
former library, which has been built to support application design
and algorithm development. Despite the fact it includes advanced
features, such as tracking control or point-based objects, it still re-
mains very linked to the blue-c project.

CAVEStudy [7] has been developed to take advantage of the rich
interface that CAVE provides. However, this system is not totally
collaborative since, when a group of remote users wish to collab-
orate during a data visualization session, they cannot interact with
the 3D model simultaneously. A control scheme based on token



passing enables a simultaneous visualization but disables the modi-
fication of the model except for one specific user. A more advanced
collaborative framework for CAVE environments is AR-CAVE [3].
AR-CAVE is a distributed multi-modal interaction platform that al-
lows tangible and natural user interactions such as gesture-based
inputs and tangible manipulations. However, it is specifically ori-
ented to immersive visualization systems and cannot be considered
as a general software framework for DVE systems.

Delta3D is a fully-functional open-source game and simulation
engine appropriate for a wide variety of modelling and simulation
applications [5]. Delta3D is close to game development and is a
very thin API layer, which connects multiple OS projects such as
OSG, ODE, CAL3D or OpenAL into a custom graphics engine.
This integration of open-source and well-known VR software tools
leads software developers to extend the framework features with
low effort. However, Delta3D lacks both a single point of configu-
ration and a variety of advanced network protocols. These deficien-
cies make the application development a longer process.

Finally, a recent component-based framework is MORGAN [4].
MORGAN is oriented to a rapid evaluation of VR and AR appli-
cations providing a distributed render engine with automatic scene
graph synchronization capabilities. However, it is a commercial
product that relies on a CORBA middleware for the network com-
munication, which cannot be extended. As the rest of frameworks,
MORGAN is not focused on the management and execution of
complex simulations. Moreover, it does not provide a unified mech-
anism to define and control the simulation processes and actions
performed in a complex 3D collaborative environment. Nowadays,
this feature is a necessary condition to implement DVE systems
much faster.

3 AN OVERVIEW OF SUED

SUED (which stands for System for the development of
Unexpensive and Extensible DVE systems) is an open-source soft-
ware platform designed to enable a rapid prototyping of low-cost
DVE systems. Our framework is oriented to develop complex sys-
tems based on procedural simulations, which are represented fol-
lowing a finite-state machine model by means of some XML files.
The software architecture of SUED is based on a modular approach
oriented to develop procedural collaborative simulations. This ap-
proach allows expressing the simulation in terms of actions, states
and transitions providing a powerful event-driven model.

One of the key features of SUED is that every single component
is designed and (in special) implemented to be extended in an easy
way. As a premise, if a software framework oriented to develop
DVE systems wants to be useful, it needs to be both flexible (to
serve for different purposes) and extendible (to be able to adapt to
new requirements).

It is important to point out that although SUED is specifically
designed to be the foundation of a procedural simulation, it is not
limited to that kind of simulations, as it may perfectly suit any other
type. In that case, some of the features included in SUED will not
be taken advantage of, but it will still serve as a valid framework as
it embeds many features any simulation needs to provide.

Needless to say, SUED will also work to build stand-alone
graphic simulations rather than DVE systems. In this case, all the
network architecture will be of no use whatsoever, but SUED will
still be useful for it will allow the developers to save some precious
time that will otherwise be wasted setting up an XML parsing in-
terface, a procedural simulation module, stereo capabilities and a
number of things that are repeatedly required when building a new
simulation.

Furthermore, as SUED is able to detect this situation, it would
disable all the network modules. This way, the system performance
will not be compromised.

3.1 Software Architecture

SUED was designed in the form of what we like to call an “event-
driven object-oriented architecture”. That means all the compo-
nents (modules) are designed following a classic object-oriented ap-
proach, but with the system working as a syncronous event-driven
architecture. This is accomplished because all the objects are de-
signed and built to evolute around the concept of ’event’. The
system is not asynchronous because even though events can occur
asynchronously, we capture them at discrete times.

Figure 1 shows how the architecture of SUED is organized as a
set of components that are arranged following a modular approach.
Each client of the DVE system runs a distinct and complete copy of
the simulation identified by the “KernelDVE” module, which also
provides a message-passing interface to communicate with the en-
tire DVE system. This module includes a “Networking” submod-
ule where the communication architecture [9] of the final devel-
oped DVE system can be configured. Although SUED incorporates
by default an information exchange model based on a master/slave
configuration, a networked-server or a P2P network protocol can be
selected and properly configured. As the rest of modules contained
within the architecture, more network protocols can be easily de-
veloped and added to SUED.

Figure 1: A modular view of the software architecture in SUED

SUED identifies each participant (client) of the simulation with
an unique ID number ranging from 1 to N, being N the number of
clients. The number of participants need not to be known at launch
time, but unfortunately it can’t (so far) change dynamically.

Events are then marked with a ‘participant id’ to identify which
client they will be affecting to (i.e. which clients will be needing
to execute them). Local events (events intended to be executed in
the same machine they were generated) are identified with ‘partici-
pant id = -1’, meanwhile ‘broadcast’ events (events intended to be
executed by all DVE clients) are identified with ‘participant id = 0’.
Multicast events are still not supported.

We think this convention is simple yet flexible enough to de-
scribe both DVE and stand-alone simulations, as well as different
approaches for the DVE network protocols.



3.2 Implementation Decisions
The object-oriented design of SUED has been implemented using
C++ as a back-end with open-source and well-known software li-
braries such as OSG, ODE, CAL3D, OpenAL and Xerces [8] as a
front-end. The use of this type of C++ software libraries has al-
lowed the development of SUED as a multiplatform framework to
be executed on different operating systems (Win32/64, Linux and
Mac OS X).

At first, some other implementation options were discussed, such
as C# or managed C++, but they were discarded for a number of rea-
sons. First of all, they lack the interoperability, and portability C++
code does have. On the contrary, the use of the C# language would
have reduced the time needed to develop SUED, as this language
comes along a wide framework that simplifies the developer’s job
(including network handling, XML parsing, etc) but it would have
hindered its flexibility and would have been harder to couple SUED
with OSG (which is a C++-based state-of-the-art graphics library).
Nevertheless, the main reason to use C++ is the need to end up with
an optimized code able to be used to build DVEs and suitable to
be extended. As C++ is both the most used language and generates
faster executables than managed languages, we think it is the right
choice.

3.3 SUED Description
The presence of several network choices offers the possibility of
implementing different synchronization strategies that meet the re-
quirements of the actual DVE being deployed. Depending on the
awareness requirements the DVE needs to satisfy, one can choose
from the most restrictive (and easier to synchronize) master/slave
which can provide frame-to-frame synchronization to the least re-
strictive (but most flexible) P2P model where an avatar could be
slightly misplaced respect to its supposedly accurate location.

From the point of view of an application developer, a collabora-
tive environment in SUED is expressed as a set of finite-state ma-
chines, running in each node, that are synchronized to each other.
The description of the initial state machines is obtained from the
XML configuration files by the “Exercise” module. The execution
of the simulation in SUED relies on an event-based approach where
each action performed on the simulated environment is introduced
as an event and stored in the ‘EventRepository’. This repository
contains actions performed by the local user (through the UserInter-
faces component which process local machine interfaces and stores
its actions in the repository) as well as the external actions received
from remote users of the DVE system. Since the repository in-
formation is time-stamped, the “DebriefingControl” module allows
users to record and reproduce the current simulation in real-time.
This feature is very useful when DVE systems are used to train pro-
fessionals on emergency plans, security procedures or even medical
procedures.

The decision to redirect all user interfaces actions to the same
repository where the state-machine events are stored (and extracted
from to be executed), rather than keeping a separate repository, was
taken to ensure that mutual interaction between the two is not only
feasible but easy to deploy.

Furthermore, SUED provides the user with a simple mechanism
that allows both the state-machine and the event repository to be
dynamically modified by the execution of some special events (that
we call meta-events because they don’t refer to the simulation but
to the description of the exercise itself) so the simulation behavior
could be “reprogrammed”. This reprogramming capabilities could
be triggered both from a user interface and from the exercise itself,
being the later much more common than the former.

This meta-programming ranges from delaying an event by an
specific amount of time, to the deletion/modification of a transition
or even a whole state. As any other integral part of SUED, more
meta-events could be easily added if they were needed.

The “StereoDisplayAndCameras” module, or SDC, groups all
the visualization and interaction capabilities into an easy-to-use in-
terface that can be controlled with the XML configuration files.
This module improves some of the capabilities included in OSG
and OpenAL in order to produce the graphical and sound experi-
ence. The SDC module includes an improved high quality off-axis
stereoscopy, 3D sound capabilities integrated into an OSG scene-
graph, an advanced camera control and, even, a multimodal inter-
face support including a low-cost optical tracking system. Figure
2 shows the parallel eye stereo projection included by default in
SUED. In this type of stereo visualization the image on either side
is lined up side-by-side, reducing, thus, the feeling of discomfort.

Figure 2: The stereo visualization method, based on a parallel eye
projection, included by default in SUED

The addition of more user interfaces (such as steering wheels,
multi-touch systems, motion capture) is not only encouraged and
extremely simple but also being tested at some of our recent
projects with very good results.

3.4 Using SUED
The following code shows a typical structure of an XML document
where a simple simulation is modeled as a finite-state machine in
SUED. This configuration file describes one of the different clients
involved in an collaborative simulator of dumpers in construction
sites. A dumper is a four-wheeled open vehicle used to move bulk
material on industrial job sites or for smaller construction and land-
scaping jobs.

<?xml version="1.0" encoding="iso-8859-1" ?>

<Simulation ParticipantId="1" ShowAxes="false"
AmbientSound="../sounds/background.wav">

<DisplayProperties ShowCursor="false" Stereo="true"
DisplayMode="Normal" ScreenWidth="1.0" ScreenHeight="1.5"
UserToScreenDistance="1.0" />

<!-- Scene definitions -->
<Scene FileName="../models/Scene.ive" X="5.0" Y="10.0" />

<!-- Multimodal interface definitions -->
<UserInterfaces>

<UserInterface Type="KeyboardNavigation" Name="Keyboard" SystemName="" />
<UserInterface Type="MouseOrientation" Name="Mouse" SystemName="" />



<UserInterface Type="Optitrack" Name="HeadTracker" SystemName="Head" />
<UserInterface Type="SteeringWheel" Name="Wheel"
SystemName="Logitech G25 Racing Wheel USB" />

</UserInterfaces>

<!-- Object definitions -->
<Include File="../cfg/Dumper.Objects.xml" />

<!-- Camera definitions -->
<CameraList>

<Camera Collidable="true" Name="FreeCamera" X="1.0" Y="0.0" Z="1.8"
EyeSeparation="0.03" FocalDistance="20.0" Near="0.05" Far="5000.0" />
<Camera Collidable="false" Name="DriverCamera" Z="1.5"
ParentObject="Chasis" EyeSeparation="0.025" FocalDistance="15.0"
Near="0.05" Far="5000.0" />

</CameraList>

<!-- Exercise definitions -->
<Exercise Name="Dumper">

<StateMachine Initial="1">
<State Id="1" Name="Init">

<IncomingEventList>
<Event Participant="0" Type="SetFlag" Name="SeatBelt" Value="0" />
<Event Participant="0" Type="SetFlag" Name="EmergencyLight" Value="0" />
<Event Participant="-1" Type="ShowText" Text="Exercise initialized" />

</IncomingEventList>

<TransitionList>
<Transition Destination="2" />

</TransitionList>

<OutgoingEventList>
<Event Participant="0" Type="ObjectControlAnimations"
Object="Chasis" Action="Play" />
<Event Participant="0" Type="ObjectControlSound"
Object="Chasis" Action="Play" />

</OutgoingEventList>
</State>

<State Id="2" Name="Waiting">
<IncomingEventList>
<Event Participant="-1" Type="Text"
Text="Waiting for your co-worker to pick the keys" />
<Event Participant="-1" Type="Timer" Timer="Timer01"
Command="Restart" />

</IncomingEventList>

<Transition Destination="4">
<ConditionList UnionMode="And">
<Condition Type="Flag" Name="EmergencyLight"
TestType="Equal" TestValue="0" />
<Condition Type="Timer" Timer="Timer01"
TestType="Greater" TestValue="2.5" />

</ConditionList>
<EventList>

<Event Participant="0" Type="ObjectControlGraphic"
Object="ErrorHighlight" Command="Unhide" TimeStampOffset="2" />

</EventList>
</Transition>

<TransitionList>
<Transition Destination="3">

<ConditionList>
<Condition Participant="2" Type="ObjectPicked" Object="Keys" />

</ConditionList>
</Transition>

</TransitionList>
</State>

<State Id="3" Name="Accessing">
<IncomingEventList>
<Event Participant="-1" Type="Text" Text="Hoop on" />

</IncomingEventList>

<TransitionList>
<Transition Destination="5">

<ConditionList>
<Condition Type="ObjectWatched"
Object="Chasis" Threshold="5.0" Far="5.0" />

</ConditionList>
</Transition>

</TransitionList>
</State>

<State Id="4" Name="Warning1">
<IncomingEventList>
<Event Participant="-1" Type="Text"
Text="Be sure to pick up the keys and switch on the emergency light" />

</IncomingEventList>
</State>

<State Id="5" Name="Procedure">
...
...

</State>

...

...

...

</StateMachine>
</Exercise>

<Current Object="" Camera="FreeCamera" Exercise="Dumper" />
</Simulation>

SUED models each simulation as a set of seven component,
which are declared within the XML configuration files. The com-

ponent “Simulation” declares the unique identifier (ParticipantId)
used to reference a given client in the DVE system. The compo-
nent “Scene” enumerates the 3D model files which describe the 3D
virtual environment where the driver can move an operate.

This scene may also have cameras integrated/defined within it.
In fact the module is designed to directly import models built with
Autodesk 3d Studio Max to speed up the designer’s integration pro-
cess. This way, the user does not need to explicitly define the hier-
archy of the objects within the XML files, as it is read from the 3D
model.

The component “UserInterfaces” declares all the definitions of
the multimodal interfaces available for this client in the DVE sys-
tem. In this example, the user has at one’s disposal a keyboard, a
mouse and a steering wheel to move the dumper within the virtual
3D construction site. Also, this user has an optional head tracking
system to sense the position and direction of the viewer’s head and
to produce the correct stereo perspective. The component ”Include
File” allows software designers to incorporate XML files inside of
some others XML files, and defines large simulations as a hierarchi-
cal structure of configuration files. The component “CameraList”
defines a set of direct real-time virtual cameras within the virtual
scene. These cameras remain identified and can be changed as the
simulation advances.

It is also possible to define a series of ”flags” that will remain
available at SUED’s user disposal to speed up the construction of
the XML files representing the exercise.

Finally, the component “Exercise” describes the simulation of a
set of procedures which, in turn, can be modeled as one or a few
finite-state machines (StateMachine). Each finite state machine is
defined by a number of states which are labeled (Name) and uni-
vocally identified (Id). The states define actions which could be
launched when the simulation access to the state, or when it leaves
to different states by means of predefined transitions. When an ac-
tion is launched by a client (show a text, move an object, change a
camera position, etc.) a new event, along with a time offset, is added
into the event repository of that client. In this sense, the action dis-
patching can be executed instantaneously or deferred by means of
programmed timers depending on the value of this offset. More-
over, and since all the operations related to the event repository are
time-stamped with the granularity of milliseconds, SUED offers a
debriefing mechanism to reproduce the simulation sometime later
after it finishes.

As well as the features included in the SDC module, SUED also
offers object positioning and new interfaces for animation control.
In order to improve the framework, all of the functionalities pro-
vided by SUED correspond to a particular C++ class that can by
extended by users using hierarchy mechanisms and through virtual
operations.

4 EXPERIMENTS AND APPLICATIONS

We have used SUED to develop two different DVE systems called
Previsor and Ensisam-II, in order to validate our software frame-
work. Previsor is a collaborative training tool to prevent from height
risks on construction sites. Although this system is not oriented to
support a high number of users connected simultaneously, it ex-
tensively exploits the multimodal paradigm and the state-machine-
based procedural module. On the other hand, Ensisam-II is a col-
laborative simulation environment designed to instruct and evaluate
evacuation procedures on marine rescue emergencies. It is a fully
immersive DVE system oriented to support hundreds of simultane-
ous clients.

In order to establish a fair comparison among the different devel-
opment alternatives, these DVE systems were developed in parallel
by three different development teams, randomly chosen for each
DVE system from trained members of our organization. Each de-
velopment team was composed by an analyst programmer, a 3D



Figure 3: Some snapshots of the Previsor (left) and Ensisam-II (right) DVE systems when they were developed on SUED

designer and three full-time experienced programmers. The first
development team followed a classic development of DVE sys-
tems using open-source and well-known VR software tools such as
OSG, CAL3D, etc. On the contrary, the second and third teams fol-
lowed a development based on frameworks for DVE systems using
Delta3D[5] and SUED, respectively.

As expected, the final visual aspect and functionality of the DVE
system developed by the different teams were very similar. From
the point of view of the system performance, measured in frames
per second (FPS), the results did not shows significant differences
related to the development framework. Figure 3 shows some snap-
shots obtained from the execution of different simulation proce-
dures in Previsor and Ensisam-II.

Table 1 shows the result of measuring some parameters related
to the development time and the number of lines of code produced
by the three different teams working on the same DVE system. This
table shows the total number of source lines of code included within
the final DVE system as well as the actual number of lines of code
written by the programmers. We have denoted these parameters as
SLOC and DLOC, respectively. Moreover, this table shows the de-
velopment time (expressed in weeks) of each implementation of the
DVE systems performed by the different teams. We have denoted
these parameters as TT, which has been divided into two different
periods corresponding to the coding stage (CT) and the debugging
stage (DT) of the software projects.

The results shown in Table 1 seem to indicate that the final sizes
of the developed DVE systems get higher when using a non-classic
approach. Nevertheless, the number of new lines of source code
the programmers really need to create (DLOC) gets lower when
using SUED or Delta3D. In addition, the total time (TT) needed
by the third development team was the shortest in both DVE sys-
tems. These results expose that the time invested deploying SUED
is amortized as it gets easier and faster to deploy a new system.

As the Table 1 shows the use of SUED reduced the time needed
for the deployment of the system and shortened the project duration
by roughly 35% in Previsor and 25% in Ensisam-II, when compared
to the first development team. The results represent a reduction
of 20% in both DVE systems, when compared to the development
based on Delta3D.

The main reason for these time differences is related to the use
of the configuration mechanism included in SUED. This module al-
lows speeding up the debugging stage of the software (reducing the
DT value) and reducing the duration of the development of a given
DVE system. The configuration mechanism, based on XML files,
allows developers to reduce the time needed to perform the tests re-
quired to validate the system since errors and changes do not need

Table 1: Parameters related to the development time and project size
of the performed implementations

Obtained Results
Dev.Team Parameter Ensisam-II Previsor

Team 1

SLOC 84650 93140
DLOC 8450 10620
CT (weeks) 27 29
TT (weeks) 12 13
TT (weeks) 39 42

Team 2

SLOC 102400 107650
DLOC 6030 7260
CT (weeks) 23 25
DT (weeks) 8 9
TT (weeks) 31 34

Team 3

SLOC 96520 101250
DLOC 5890 7325
CT (weeks) 22 20
DT (weeks) 4 4
TT (weeks) 25 24

to be recompiled. This time and cost reduction, not only achieved
in the development phase of the project, are due to the possibility of
using XML files in the evaluation and tuning of the system as well
as in the final testing and deployment of the simulation procedures.

5 CONCLUSIONS

In this paper, we have proposed SUED, a new open-source soft-
ware framework designed to enable a rapid prototyping of low-cost
DVE systems. Unlike other proposals, SUED simplifies the process
of developing complex DVE systems by means of an easy-to-use
interface based on XML files. This configuration system tries to
minimize the time needed to modify and adapt the platform source
code for the development of a given DVE system. Moreover, the
standard capabilities of SUED can be easily extended by defining
custom modules on open-source and well-known VR libraries.

In order to validate our framework, two different case studies
based on actual DVE systems were developed. The experiments
performed using SUED showed a significant reduction of the sched-
uled project time when compared to classic developments or even
to other cutting-edge development frameworks.



6 FUTURE WORK

As future work, we plan to add more features to the kernel mod-
ule including fluid simulation, motion capture and dynamic con-
trol. These features need currently to be added when deploying a
new simulation, and we intend to integrate them into SUED’s core.

Also, we intend to integrate a new network protocol based on
multicast transmission to the networking module. In addition, it is
also planned to add and test a P2P overlay-based network protocol,
in order to simplify and automatize the management of the network.

And last but not least, it will be very useful to be able to create
the exercises with a visual tool, so to build some sort of IDE would
be a good idea in order to speed up the process of building new
simulations.

REFERENCES

[1] B. Delaney. The Market for Visual Simulation/Virtual Reality Systems.
CyberEdge Information Services, seventh edition edition, 2004.

[2] C. Endres, A. Butz, and A. MacWilliams. A Survey of Software In-
frastructures and Frameworks for Ubiquitous Computing. Mobile In-
formation Systems Journal, IOSPress, 1:41–80, January 2005.

[3] S. Kim, D. Gracanin, W. Winchester, and T. Kuc. The AR-CAVE:
Distributed Collaborative Augmented Reality and immersive virtual
reality system. In Proceedings of the 3rd International Conference
on Autonomous Robots and Agents (ICARA 2006), pages 351–354,
Palmerston North, New Zealand, December 2006.

[4] J. Ohlenburg, I. Herbst, I. Lindt, T. Frhlich, and W. Broll. The MOR-
GAN Framework: Enabling Multi-User AR and VR Projects. In Pro-
ceedings of the Symposium on VR Software and Technology (VRST),
pages 166–169, Hong Kong, November 2004. ACM Press.

[5] E. J. R. Darken, P. McDowell. Projects in VR: the Delta3d open source
game engine. IEEE Computer Graphics and Applications, IEEE Com-
puter Society, 25:10–12, May-June 2005.

[6] T. Reicher, A. MacWilliams, B. Bruegge, and G. Klinker. Results of
a Study on Software Architectures for Augmented Reality Systems.
In Proceedings of the 2nd IEEE and ACM International Symposium
on Mixed and Augmented Reality (STARS), page 274, Tokio, Japan,
October 2003. IEEE Computer Society.

[7] L. Renambot, H. Bal, D. Germans, and H. Spoelder. CAVEStudy: An
Infrastructure for Computational Steering and Measuring in Virtual
Reality Environments. Cluster Computing, 4:79–87, March 2001.

[8] R. Salvatore. Using Open Source Software in Visual Simulation De-
velopment. Master’s thesis, Naval Postgraduate School Monterey CA,
Department of Computer Science, September 2005.

[9] S. Singhal and M. Zyda. Networked Virtual Environments: Design
and Implementation. Addison-Wesley, 1999.

[10] O. Staadt, M. Nf, E. Lamboray, and S. Wrmlin. Jape: A Prototyping
System for Collaborative Virtual Environments. In Proceedings of the
ACM Eurographics 2001, pages 8–16, Manchester, UK, September
2001. ACM Press.

[11] H. Tramberend. Avocado: A Distributed Virtual Environment Frame-
work. In Proceedings of the IEEE Virtual Reality Conference (VR’99),
pages 14–21, Houston, USA, March 1999. IEEE Computer Society.


