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Abstract

Fast Internet connections and the widespread use of high performance graphic cards
are making Distributed Virtual Environment (DVE) systems very common nowa-
days. However, there are several key issues in these systems that should still be
improved in order to design a scalable and cost-effective system. One of these key
issues is the partitioning problem. This problem consists of efficiently assigning
clients (3-D avatars) to the servers in the system. In this paper, we present a com-
parison study of different modern heuristics for solving the partitioning problem in
DVE systems, as an alternative to the ad-hoc heuristic proposed in the literature.
Performance evaluation results show that some of the heuristic methods can greatly
improve the performance of the partitioning method, particularly for large DVE
systems. In this way, efficiency and scalability of DVE systems can be significantly
improved.
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1 Introduction

The widespread use of both fast Internet connections and also high perfor-
mance graphic cards have made possible the current growth of Distributed
Virtual Environment (DVE) systems. These systems allow multiple users,
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working on different computers that are interconnected through different net-
works (and even through Internet) to interact in a shared virtual world. This
is achieved by rendering images of the environment as the user would perceive
them if he was located at that point of the virtual environment. Each user
is represented in the shared virtual environment by an entity called avatar,
whose state is controlled by the user. Since DVE systems support visual inter-
actions between multiple avatars, every change in each avatar must be notified
to the neighboring avatars in the shared virtual environment. DVE systems
are currently used in different applications [32], such as collaborative design
[31], civil and military distributed training [25], e-learning [4] or multi-player
games [20,32,1,15].

Designning an efficient DVE system is a complex task, since these system
show an inherent heterogeneusness. Such heterogeneusness appears in several
elements:

Hardware. Each client computer controlling an avatar may have installed
differenthardware: A very different range of resources like processor speed,
memory size, and graphic card technology can be specified for different client
computesr.

Connection. Different connections can be found in a single system. From
shared medium topologies like Ethernet or Fast-Ethernet to other network
connections like ISDN, fiber-optic or ATM can be simultaneously found in
some DVE’s.

Communication rate of avatars. Depending on the application, different
communication rates of avatars can be found. For example, the communi-
cation rate of avatars in a collaborative 3D environment may greatly differ
from the comunication rate of avatars in a 3D virtual military battle.

Additionally, other factors help to increase the complexity of designing an

efficient DVE system. Each of them have become nowadays an open research
field:

Data Model. This concept describes some conceivable ways of distributing
persistent or semi-persistent data in a DVE [24]. Data can be managed in
a replicated, in a shared or in a distributed methodology.

Communication Model. Network bandwidth determines the size and per-
formance of a DVE. The system behavior is related to the way that all
the scene clients are connected. Broadcast, peer-to-peer or unicast schemes
define different network latency values for exchanging information between
avatars.

View Consistency. This problem has been already defined in other com-
puter science fields such as database management [3]. In DVE systems, this
problem consists of ensuring that all avatars sharing a virtual space with
common objects have the same local vision of them.



Message Traffic Reduction. Keeping a low amount of messages allows DVE
systems to efficiently scale with the number of avatars in the system. Tradi-
tionally, techniques like dead-reckoning described in [32] offered some level of
independence to the avatars. With network support, broadcast or multicast
solutions [10,19] decrease the number of messages used to keep a consistent
state of the system.

Most of the issues described above are related to the partitioning problem
or p-problem. This problem consists of efficiently distributing the workload
(avatars) among different servers in the system [21]. The partitioning prob-
lem may seriously affect the overall performance of the DVE system, since it
determines not only the workload that each server must suport, but also the
inter-server communication requirements (and therefore the network traffic).

Some methods for solving the partitioning problems have been already pro-
posed [23,7,33]. These methods provide efficient solutions even for large DVE
systems. However, there are still some features in the proposed methods that
can still be improved. For example, different heuristic search methods can
be used for finding the best assignment of clients to servers, instead of us-
ing ad-hoc heuristics. In this paper, we present a comparison study of several
heuristics for solving the partitioning problem in DVE systems. We have im-
plemented five different heuristics, ranging over most of the current taxonomy
of heuristics: Genetic Algorithms (GA) [13], two different implementations of
Simulated Annealing [17], Ant Colony Systems (ACS) [7], and Greedy Ran-
domized Adaptive Search (GRASP) [6]. Performance evaluation results show
that the execution cost of the partitioning algorithm (in terms of execution
times) can be dramatically reduced, while providing similar or even better
solutions than the ones provided by the ad-hoc heuristic proposed in [23].

The rest of the paper is organized as follows: Section 2 describes the partition-
ing problem and the existing proposals for solving it. Section 3 describes the
proposed implementations of the heuristics considered for this study. Next,
Section 4 presents the performance evaluation of the proposed heuristics. Fi-
nally, Section 5 presents some concluding remarks.

2 The Partitioning Problem in DVE Systems

2.1 Architectures for DVE Systems

Several architectures have been traditionally used for simulating a large set of
avatars sharing the same virtual world. Internet multi-player games as Quake
[1] and Kali [15] or educational systems as VES [4] are examples of client-server



systems (fig. 1b). In these applications, each client computer has a single con-
nection to the only existing server in the system. This server maintains the
global state of the simulation, but it becomes a single point of failure in the
system. Instead of sending messages to a central server, in peer-to-peer ar-
chitectures(fig. 1a) avatars exchange messages directly . Several systems have
been developed with this architecture, such as NPSNET [10]. Although these
systems obtain low latenccies, they do not properly scale. When the number of
avatars greatly increases, clients are not able to handle the amount of messages
from other avatars and simultaneously offering an interactive 3D virtual world
to the user. In order to improve scalability, peer-server and server-network ar-
chitectures group sets of avatars. Following a peer-server scheme (fig. 1d),
systems like ATLAS [19] reduces the volume of information using multicast
messaging. However, this architecture will be useful only when multicast pro-
tocols are fully available in Internet [?].
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Fig. 1. Architectures: (a) peer-to-peer, (b) server-network, (c) client-server and d)

peer-to-server

Architectures based on networked servers are becoming a de-facto standard for
DVE systems [32,21,33]. In these architectures, the control of the simulation
relies on several interconnected servers. Figure 1c¢) depicts how multi-platform
client computers are attached to only one of the servers of the simulation.

In this architecture, when a client modifies an avatar, it also sends an up-
dating message to its server, that in turn must propagate this message to
other servers and clients. Servers must render different 3D models, perform
positional updates of avatars and transfer control information among different
clients. Thus, each new avatar represents an increasing in both the compu-
tational requirements of the application and also in the amount of network
traffic. When the number of connected clients increases, the number of updat-
ing messages must be limited in order to avoid avoid a message outburst. In
this sense, concepts like areas of influence (AOI) [32], locales [2] or auras [12]
have been proposed for limiting the number of neighboring avatars that a given
avatar must communicate with. All these concepts define a neighborhood area
for avatars, in such a way that a given avatar must notify his movements (by
sending an updating message) only to those avatars located in that neighbor-



hood. Depending on their origin and destination avatars, messages in a DVE
system can be intra-server or inter-server messages (see figure 2). Inter-server
messages are those messages involving two or more servers. On the contrary,
intra-server messages are those messages exchanged between avatars whose
client computers are attached to the same server. In order to design a scal-
able DVE systems, the number of intra-server messages must be maximized.
Effectively, when clients send intra-server messages they only concern a single
server. Therefore, they are minimizing the computing, storage and communi-
cation requirements for maintaining a consistent state of the avatars in a DVE
system.

e
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Fig. 2. A multi-server architecture for a basic DVE

The partitioning problem consist of efficiently distributing the workload (as-
signing avatars) among the different servers in the system. Lui and Chan have
shown the key role of finding a good assignment of avatars to servers in order
to ensure both a good frame rate and a minimum network traffic in DVE sys-
tems [21,23]. They propose a quality function, denoted as C,, for evaluating
each partition (assignment of avatars to servers). This quality function takes
into account two parameters. One of them consists of the computing workload
generated by clients in the DVE system, and it is denoted as CZ‘,’V . In order to
minimize this parameter, the computing workload should be proportionally
shared among all the servers in the DVE system, according to the computing
resources of each server. The other parameter of the quality function consists
of the overall number of inter-server messages, and it is denoted as C’pL. In
order to minimize this parameter, avatars sharing the same AOI should be
assigned to the same server. Thus, quality function C), is defined as

Cp=W,CV + W, CF (1)

where W, + Wy = 1. W, and W, are two coefficients that weight the relative
importance of the computational and communication workload, respectively.
These coefficients should be tuned according to the specific features of each
DVE system. Using this quality function (and assuming W; = W5 = 0.5) Lui
and Chan propose a partitioning algorithm that re-assigns clients to servers



[23]. The partitioning algorithm should be periodically executed for adapting
the partition to the current state of the DVE system as it evolves (avatars can
join or leave the DVE system at any moment, and they can also move every-
where within the simulated virtual world). Lui and Chan also have proposed
a testing platform for the performance evaluation of DVE systems, as well as
a parallelization of the partitioning algorithm [23].

The partitioning method proposed by Lui and Chan, known as LOT or linear
optimization technique, currently provides the best results for DVE systems.
However, it uses an ad-hoc heuristic. We propose a comparative study of
several heuristics, ranging over most of the current taxonomy of heuristics,
in order to determine which one provides the best performance when applied
to the partitioning problem in DVE systems. In this study, we propose the
same approach of Lui-Chan: using the same quality function, we will obtain
an initial partition (assignment) of avatars to servers, and then we will test
the implementation of each heuristic to provide a near optimal assignment.

2.2 Linear Optimization Technique (LOT)

Linear Optimization Technique (LOT) was initially published by Lui and Chan
in [21] and revisited in [23] from theirs ideas published in [22] about graph
theory.

This ad-hoc approach models the 3-D virtual scene as a graph. Each avatar
is modelled by a node and two avatars are linked by an edge if their areas of
interest (AOI) collide. Using C,, as the evaluation function, LOT provides an
efficient partition of this graph following three steps. The first step is named
the recursive bisection procedure (RBP), and it consists of using a divide-
and-conquer procedure that provides an initial partition. Then, the layering
partitioning procedure (LP) and the communication refinement partitioning
(CRP) are applied on that initial partition of the graph. Each of these proce-
dures performs workload balancing and minimizes the number of inter-server
messages, respectively.

Figure 3 shows the partitions that this method would provide when applied
to a small DVE system. In this example, a DVE composed by 10 avatars is
simulated with three identical servers. Nodes and edges obtained from the
associated graph has been labelled. The label of a node (avatar) represents a
estimation of the workload generated by this avatar to the server where it is
going to be assigned. Ranging from 1 to 10, the label of each edge represents
the nearness of these two avatars. Figure 3 a) represents the result obtained
by a RBP phase. Although the number of avatars assigned to each server
seems to be balanced, the workload that those avatars generate must be also



uniform in order to achieve actual workload balancing. By adding the labels
of all the nodes assigned to the same server, we obtain that the workload
assigned to each server is 16, 7 and 12 units of workload, respectively. Then,
CRP balances (figure 3 b)) the existing workload in sets of 12, 11 and 12 units.
At that point, the number of inter-server messages generated by these sets of
avatars is reduced by LP, as shown in figure 3 c). Since strategies of CRP and
LP techniques could be opposed, this couple of steps is repeated three times.
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Fig. 3. Partition of a DVE performed by LOT method: (a) RBP (B) CRP and c)
LP

2.8 Other Approaches to the Partitioning Problem

In addition to LOT technique, two other relevant approaches have been also
proposed for solving the partitioning problem. One of them divides the whole
virtual scene into hexagonal cells, and each cell is mapped to a multicast
group [?]. With this division, all avatars located in the same cell share the
same multicast address. Since the size of AOI is bigger than the area of the
cells, avatars can listen different multicast addresses but they can only send
information to the cell where they are located.

Figure 4 shows an example of this technique. In this figure, the represented
avatar is assigned to group A and also listen multicast information from groups
B, C, E, F and G. In order to ensure and efficient management, this algorithm
generate a group leader for each cell. The oldest avatar is selected as the
group leader, using a timestamp mechanism. This leader controls how avatars
join and leave the multicast group, and he also implements a flow control
mechanism for the messages.

In spite of its apparent scalability, this approach presents several problems.
First, it does not obtain good performance when avatars are located following
a non-uniform distribution. Second, system performance is very low when
avatars can fastly cross the virtual scene. This is due to the associated cost of
leaving and joining different multicast groups. Finally, multicast is not fully
implemented within the Internet.

Another different approach was proposed by Tam in [33]. In this method,



dynamic concepts associated to avatars like AOI, aura or locale are rejected.
This partitioning method divides the scene in square cells. The side length of
the cells S is related to the radius of the AOI of avatars, following the next
relation:

g <AOILS (2)
A graph representation of the virtual scene is obtained from the volume of
avatars contained in each cell, as also shown in Figure fig. 4. Next, this graph
is divided in partitions and each partition is assigned to a server of the DVE.
In order to accomplish this division an exhaustive and a greedy algorithms are
compared. Using a quality different from C,,, these algorithms take also into ac-
count the number of inter-server messages and workload balancing among the
servers. Although this approach provides a fast way of solving the partitioning
problem, the performance of the static partitioning is quite low when avatars
show a clustered distribution. In this case, the servers controlling the crowded
areas are overloaded, increasing the overall cost of the quality function.

DVE World

Cell division of the virtual scene H R R Graph Representation

Fig. 4. Other approaches: cell division and grpah representation

3 Metaheuristic Procedures

Evolutive computing has become a important paradigm in the development of
high-quality solution for NP-Complete problems. This paradigm, which mod-
els computational problems as natural processes, is used to provide solutions
for complex problems that in most cases could not be solved by using deter-
ministic computing techniques. Problems such as multi-objective optimization
have been successfully adapted using these strategies [5]. In this section, we
present five implementations of different heuristics for solving the partitioning
problem in DVE systems. Following the approach presented by Lui and Chan
(and using the same quality function C,), the idea is dynamically applying a
heuristic search method that provides a good assignment of clients to servers
as the state of the DVE system changes. All the presented solutions has been
adapted in the same way. That is, a initial partition obtains good assignments
only for several avatars, while the evolutive algorithm itself performs succes-
sive refinements of the initial partition that lead to a near optimal partition of
the DVE system. Also, the evolutive method is used periodically for updating
the obtained partition to the current state of the DVE system (avatars change



their locations, new avatars can join the system and some avatars can leave
the system at any time).

In this section, we describe the implementation of each heuristic search method
and the tuning of its parameters for solving the partitioning problem. Con-
cretely, this tuning has been performed on the DVE evaluation test described
by Lui and Chan in [23]. This test defines two kinds of DVE system: a SMALL
virtual world, composed of 13 avatars and 3 servers and also a LARGE world,
composed of 2500 avatars and 8 servers. However, for the sake of shortness we
only present here the results obtained for large worlds. Effectively, the purpose
of solving the partitioning problem is to provide scalable DVE systems. There-
fore, the partitioning method must efficiently work in LARGE virtual worlds.
On other hand, since the performance of the method may heavily depend
on the location of avatars, this evaluation test also considers three different
distributions of avatars: uniform, skewed, and clustered distribution.

3.1 Obtaining the Initial Population

All of the implemented heuristics start from an initial partition (assignment)
of the n avatars in the DVE system. We tested several clustering algorithms
for obtaining this initial partition. Although they are not shown here due to
space limitations, we obtained the best results for a density-based algorithm
(DBA) [9].

This algorithm divides the virtual 3-D scene in square sections. Each section is
labelled with the number of avatars that it contains (na), and all the sections
are sorted (using Quick-sort algorithm) by their na value. The first S sections
in the sorted list are then selected and assigned to a given server, where S is
the number of servers in the DVE system. That is, all the avatars in a selected
region are assigned to a single server. The next step consists of computing the
mass-center (mc) of the avatars assigned to each server. Using a round-robin
scheme, the algorithm then chooses the closest free avatar to the mc of each
server, assigning that avatar to that server, until all avatars are assigned.

The proposed implementation of the DBA method consists of the following
steps (expressed as pseudo-code statements):

program Initial_Partition (avatar, Int n, Int S)

const
n_sections = 2bx25

type Cell
sum,idx: Int



var
assigned,represent:Int[]
pivot,elect,ncentr:Int
min_dis,dist_tmp :Real
na :Cell[n_sections]

begin
DivideSceneInSquareSections(n_sections)
for i:=0 to n_sections do
nali] .sum:=CountAvatarsInSection(i)

nal[i] .idx:=1i
end_for
QuickSort (na)
for i=0 to S do
representant [i]= ObtainMC (nal[i].idx)
end_for;
pivot := 0, elect := -1, ncentr:=0
for i:=0 to n do
elect:=-1,min_dis :
for j:=0 to n do
if (assigned[j] = NOT_ASSIGNED)
dist_tmp:= EuclideanDistance(avatar[j],represent([ncentr])
if (dist_tmp < min_dis)

100000

pivot =3
min_dis := dist_tmp
endif
endif
end_for
avatar[pivot] .assignment := assigned[pivot] := ncentr

ncentr : (ncentr + 1) mod S
end_for
end

Since the assignment of avatars follows a round-robin scheme, this algorithm
provides a good balancing of the computing workload (the number of avatars
assigned to each server does not differ in more than one). On other hand,
avatars that are grouped in a small region and close to the mass-center of a
server will be assigned to that server by the density-based algorithm. Addi-
tionally, since these avatars are located so closely, they will probably will share
the same AOI. Therefore, the density-based algorithm also provides an initial
partition with low inter-server communication requirements for those avatars.

However, the assignment of avatars equidistant (or located far away) from the
mass-center of the servers is critical for obtaining a partition with minimum
inter-server communication requirements (minimum values of the quality func-
tion C,), particularly for large virtual worlds with only a few servers. Density-

10



based algorithm inherently provides good assignments for clustered avatars,
but it does not properly focus on the assignment of these critical avatars. Each
of the following evolutive methods should be used at this point to search a
near optimal assignment that properly re-assigns these avatars.

3.2 Genetic Algorithms (GA)

This heuristic consists of a search method based on the concept of evolution by
natural selection [13]. GA starts of an initial population (the initial partition)
and then it evolves a certain number of generations (iterations), providing an
evolved population (final solution). The proposed implementation for solving
the partitioning problem, proposed initially in [29], starts with a population
composed of a set of elements called genomes or chromosomes. The number
of chromosomes is the number of partial solutions that each iteration must
maintain. Each chromosome is defined by a descriptor vector containing a
given assignment of avatars to servers. The length of this vector is equal to
the number of border avatars (BA) within the DVE system. BA is an avatar
that although it lies within the AOI of another avatar, it is not assigned to
the same server. These kinds of avatars offers a higher probability of giving a
successful permutation, since they minimize inter-server communication.

Starting from the initial population, this approach applies an auto-fertilization
mechanism for generating new chromosomes [16]. This mechanism is based on
a single-point random crossover, where each generation is found by exchang-
ing some elements of the restricted population in such a way that in each
of the N chromosomes two border avatars assigned to different servers are
randomly chosen and exchanged. Thus, an iteration performed on a popula-
tion of N chromosomes will produce a new population of 2N. From these 2NV
chromosomes, the N elements with the lower value of C, will be chosen.

GA is also capable of escaping from local minima due to the mutation pro-
cess. Once the child-vector has been obtained, mutation involves changing at
random the server assigned to one of the elements of the population. Some
other mutations such as the modification of several elements or the crossover
between the characteristics of pairs of chromosomes have also been tested.
But after several tests it has been found that the mutation of just one ”bit” is
the one offering the best results. It is important to mention that the mutation
is a random process controlled by a parameter. This parameter needs to be
carefully chosen for each specific experiment in order to achieve solutions with
low C, System Cost.

Next code describes the behavior of the proposed approach based on GA. It
has been expressed as pseudo-code statements:
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program GA (Int chromo, Int iterations, Real mut_rate)

var
B,temp_cost,Cp_GA :Real
av_i,av_j,av_k :Integer
begin

Initial_Partition (DBA)
B := ObtainBorderAvatars()
Cp_GA := Compute_Cp()
For i:=0 to iterations do
For j:=0 to chromo do
SelectAndCopyChromosome (j)
Choose2DifRamdomAvatars(B,av_i,av_j)
ExchangeServerAssignment (av_i,av_j)
temp_cost := Compute_Cp()
if (HaveItoMutate (mut_rate))
ChoselRandomAvatar (av_i)
ForceServerAssigment (av_i)
endif
AddChromosomeToPopulation(this)
end_for
CWPSortPopulationByCp(2*chromo)
Cp_GA := SelectBestIndividuals(chromo)
end_for
end

Figure 5 shows a example of generation of new avatars in a small DVE system
where 6 BA have been obtained from the full set of avatars. These avatars
define a chromosome, and they can be assigned to any of the 3 servers in the
DVE system. This figure represents a possible crossover and mutation on this

chromosome.
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Fig. 5. Generation of new individuals in GA approach

The main parameters to be tuned in GA method are the population size P,
the number of iterations N and the mutation rate M. Figure 6 depicts the
values of que quality function C, (denoted as system cost) as the number
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of generations and individuals grows. In both cases C,, decreases significantly
while the algorithm does not reach a threshold value. From this threshold value
(close to 300 for the number of generations and 15 for the population size) the
quality of the obtained solutions remains constant, showing the impossibility
of finding better solutions in this search domain. Therefore it has no sense
spending more time in searching new partitioning solutions.
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Fig. 6. Values of the quality function C) for different number of generations and
population sizes

Figure 7 shows the tuning of the mutation rate in a given DVE system. The
behavior of the algorithm is different for this parameter. In this case, the
algorithm is able to provide a high-quality solution when mutation rate is

close to 1%.
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Fig. 7. Values of the quality function C, for different mutation coefficients

If GA approach uses values much lower than 1% for this parameter, the system
can be trapped in a local minimum. In the opposite case, when GA selects
rates higher than this threshold value, then the search method spends too
much CPU time testing useless solutions.

As a conclusion of this tuning phase, we can state that for this particular
apllication GA method provides good results for a population of 15 individuals,
a mutation probability of 1% and 100 iterations as stop criterion.
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3.3 Ant Colony System (ACS)

Ant Colony Systems (ACS) search method is based on the behavior shown
by ant colonies when searching possible paths to their food [7]. The use a
hormone called pheromone to communicate among them. The path that a
given ant follows when searching food depends on the amount of pheromone
each possible path contains. Additionally, when a given ant chooses a path to
the food, she adds pheromone on that path, thus increasing the probability
for the ants behind her to choose the same path. This system makes the food
search to be initially random. Nevertheless, since the ants that choose the
shortest path will add pheromone more often, the probability for choosing
the shortest path increases with time (positive feedback). On the other hand,
pheromone evaporates at a given rate. Therefore, the associated pheromone
for each path decreases if that path is not used during certain period of time
(negative feedback). Evaporation rate determine the ability of the system for
escaping from local minima.

ACS search method has been implemented in different ways as it has been used
for solving several discrete optimization problems [8]. Concretely, we propose
a new implementation of the ACS search method, to be used for solving the
partitioning problem in DVE systems. This implementation was originally pro-
posed in [27]. As the rest of evolutive approaches, this implementation follows
two steps. First, the DBA initial partition (described in section 3.1), obtains
good assignments only for several avatars. At that point ACS algorithm per-
forms successive refinements of the initial partition that lead to a near optimal
partition.

The first step in the ACS method is to select the subset of border avatars
from the set of all the avatars in the system. A given avatar is selected as a
border avatar if it is assigned to a certain server S in the initial partition and
any of the avatars in its AOI is assigned to a server different from S. For each
of the border avatars, a list of candidate servers is constructed, and a level of
pheromone is associated to each element of the list. This list contains all of the
different servers that the avatars in the same AQOI are assigned to (including
the server that the avatar is currently assigned). Initially, all the elements in
the list of candidate servers have associated the same pheromone level.

ACS method consists of a population of ants. Each ant consists of performing
a search through the solution space, providing a given assignment of the B
border avatars to servers. The number of ants N is a key parameter of the
ACS method that should be tuned for a good performance of the algorithm.
Each iteration of the ACS method consists of computing N different ants
(assignments of the B border avatars). When each ant is completed, if the
resulting assignment of the B border avatars produces a lower value of the
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quality function C), then this assignment is considered as a partial solution,
and a certain amount of pheromone is added to the servers that the border
avatars are assigned to in this assignment (just the same way that each ant
adds pheromone to the search path that she follows). Otherwise, the ant (as-
signment) is discarded. When each iteration finishes (the N ants have been
computed), the pheromone level is then equally decreased in all the candidate
servers of all of the border avatars, according to the evaporation rate (the
pheromone evaporates at a given rate). ACS method finishes when all the
iterations have been performed.

In the process described above, each ant must assign each border avatar to one
of the candidate servers for that avatar. Thus, a selection value is computed
for each of the candidate servers. The selection value S, is defined as

Sy = a x pheromone + (3 x C, (3)

where pheromone is the current pheromone level associated to that server,
Cp is the resulting value of the quality function when the border avatar is
assigned to that server instead of the current server, and o and (3 are weighting
coefficients that must be also tuned. The server with the highest selection value
will be chosen by that ant for that border avatar.

On other hand, when a partial solution is found then the pheromone level
must be increased in those servers where the border avatars are assigned to in
that solution. The pheromone level is increased using the following formula:

1
pheromone = pheromone + @ X o (4)
P

Following this description, the proposed implementation of the ACS search
method consists of the following steps:

program ACS (Int Ants, Int iterations, Real evap_rate)

const
alpha = 1.0
beta = 7.0
Q = 1000
var
temp_sol :Real[Number_of_Avatars]
L :Integer[]

B,Cp_ACS,temp_cost :Real

begin
Initial_Partition (DBA)
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B := ObtainBorderAvatars()
Cp_ACS := Compute_Cp()
For i:=0 to iterations do
For j:=0 to N do
For k:=0 to B do
L:=ChooseServer (alpha,beta,Q)
end_for
temp_sol := Compose_Solution(B)
temp_cost:= Obtain_Cp(temp_sol)
if (temp_cost < Cp_ACS)
Cp_ACS := temp_cost
IncreasePheromone (B,Q)
endif
end_for
DecreasePheromone (evap_rate)
end_for
end

Like in GA approach, there are some parameters in ACS search method that
must be properly tuned. In particular, the values for the number of ants NV, the
pheromone evaporation rate and the number of iterations that ACS method
must perform should be tuned.

Figure 8 shows the values of the quality function C, (denoted as system cost)
reached by the ACS method when different number of ants and iterations
are considered. It shows that C, decreases when the number of iterations
increases, until value of 25 iterations is reached. The same behavior manifests
when the number of ants is grown. In this case is 100 the top value. From
that point, system cost C, slightly increases or remain constant, depending on
the considered distribution of avatars. The reason for this behavior is that the
existing pheromone level keeps the search method from finding better search
paths even when more iterations are performed. Thus, the number of iterations
and ants selected for ACS method has been 25 and 100 respectively.
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Fig. 8. Values of the quality function C), for different number of iterations.

Finally, figure 9 shows the values of C), reached by the ACS method when dif-
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ferent pheromone evaporation rates are considered. This figure shows on the
x-axis the percentage decreasing in pheromone level that all candidate servers
suffer after each iteration. It shows that for all the considered distributions C),
decreases when the evaporation rate increases, until a value of 1% is reached.
The reason for this behavior is that for evaporation rates lower than 1% the
pheromone level keeps the search method from escaping from local minima,
thus decreasing performance. From that point, system cost C, also increases,
since pheromone evaporation is too high and the search method cannot prop-
erly explore good search paths. Thus a coefficient of 1% has been selected as
the optimal value of evaporation rate.

Additionally, we have performed empirical studies in order to obtain the best
values for «, 8 and @ coefficients. Although the results are not shown here for
the sake of shortness, we it has obtained the best behavior of the ACS method
for a = 1.0, 8 = 7.0 and Q = 1000. These are the values that the pseudo-code
shown above uses for ACS algorithm.
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Fig. 9. Values of the quality function C, for different evaporation rates.

3.4 Simulated Annealing (SA)

SA was initially proposed for solving complex optimization problems [17].
Although some authors do not consider SA as an evolutive technique, it can
be modeled as a simplified version of GA approach. SA has shown to be
effective in the solution of a large set of applications such as staff scheduling
problems, timetabling problems and locomotive allocation problem in railway
networks [18].

This heuristic search method is based on a thermodynamic theory establish-
ing that the minimum energy state in a system can be found if the temper-
ature decreasing is performed slowly enough. Simulated Annealing (SA) is a
heuristic search method that always accepts better solutions than the current
solutions, and also accepts worse solutions according to a probability system
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based on the system temperature. SA starts with a high temperature (a high
probability of accepting a worsening movement), and in each iteration sys-
tem temperature is decreased. Thus, SA can leave local minima by accepting
worsening movements at intermediate stages. The search method ends when
system temperature is so low that worsening movements are practically im-
possible. Since the method cannot leave local minima, it cannot find better
solutions neither (the algorithm ends when certain amount of iterations N are
performed without finding better solutions).

The proposed partitioning method based on SA was previously presented in
[28]. As the rest of evolutive procedures, this approach starts from an initial
population. This initial population has been obtained with DBA algorithm.
In SA method each iteration consists of randomly selecting two different bor-
der avatars assigned to different servers. Then, the servers where this two
border avatars are assigned to are exchanged. If the resulting value of the
quality function C), is higher than the previous one plus a threshold 7', that
change is rejected. Otherwise, it is accepted (the search method must de-
crease the value of the quality function C, associated with each assignment).
The threshold value 7" used in each iteration 7 of the search depends on the
rate of temperature decreasing R, and it is defined in this implementation as

P - (5 0

where N determines the finishing condition of the search. When N iterations
are performed without finding a partition that decreases the value of quality
function C,, then the search finishes.

The next code shows the described implementation based on SA:

program SA (Int iterations, Real dec_t_rate)

var
B,temp_cost,Cp_SA :Real
delta_sup :Real
av_i,av_j, :Integer
begin

Initial_Partition (DBA)

B := ObtainBorderAvatars()

Cp_SA := Compute_Cp()

For i:=0 to iteratiomns do
Choose2DifRamdomAvatars(B,av_i,av_j)
ExchangeServerAssignment (av_i,av_j)
temp_cost := Compute_Cp()
delta_sup := dec_t_rate - (dec_t_ratexi/interations)
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if (temp_cost - delta_sup < Cp_SA)

Cp_SA := temp_cost

else

ExchangeServerAssignment(av_i,av_j)

end_for
end

In order to improve the performance of SA method, we measured the impact

of exchanging groups of avatars, instead of exchanging one avatar in each iter-

ation. Table 1 compares the results (in terms of both the value for the quality
function C, and also in terms of execution times) of exchanging groups of
2, 3 and 4 avatars. We tested each option under three different distributions

of avatars in the virtual world (uniform, skewed and clustered). These dis-

tributions are detailed in section 4. On ther hand, these results have been
obtained for a LARGE world composed by 2500 avatars and 8 servers. This
table shows that the best option for SA method is to exchange the lowest
number of avatars as possible in each permutation. Therefore, we exchanged

a single avatar in all the simulations performed in our study.

2 avatars 3 avatars 4 avatars
Cyp Time (s.) Cp Time (s.) Cy Time (s.)
Uniform | 1707,62 6,35 1808,38 6,51 1817,90 7,02
Skewed | 2628,46 13,79 2826,44 14,32 2992,30 15,82
Clustered | 4697,61 29,62 5046,27 30,25 5283,705 33,98
Table 1

Different types of exchanges performed on SA approach

On other hand, the two key issues for properly tuning this heuristic search
method are the number of iterations N and the temperature decreasing rate

R [18]. Figure 10 shows the performance (in terms of C, values) obtained with
SA algorithm for a LARGE world when the number of iterations increases.
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From figure 10 we can conclude that performing more iterations results in
providing better values of C),. However, the slope of this plot decreases from a
certain number of iteration. We have considered the value of 3000 iterations
as that point, and we have tested GA method with this number of iterations.

System temperature shows a different behavior in terms of C,. Figure 11 shows
the values of C), obtianed when the temperature decreasing rate is modified
in a LARGE world. It clearly shows that the quality of the obtained solutions
do no follow a lineal progression. Effectively, since the temperature decreas-
ing rate allows SA approach to escape from local minima, a threshold value
appears when this parameter is modified. As this rate comes closer to 1.15
algorithm abandons local minima much more fast, and therefore the quality
of the obtained solution increases. Beyond this value the risk of accepting in-
efficient exchange of avatars is too much high and thus the algorithm is unable
to find right paths.
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3.5 Greedy Randomized Adaptive Search (GRASP)

Greedy Randomized Adaptive Search (GRASP) is a constructive technique
designed as a multi-start heuristic for combinatorial problems [11]. Although
GRASP is not an evolutive technique, it has been elected as a metaheuristic
method to be compared with LOT and the set of evolutive approaches. Several
problems as circuit partitioning, set covering or graph planarization have been
successfully addressed by GRASP algorithms [30]. GRASP implementations
are very robust and it is unusual to find examples where this method performs
badly.

GRASP implementation starts with a initial partition of the DVE. Unlike the
evolutive techniques described above, the initial partition used by GRASP
does not provide any assignment for the border avatars. In this case, GRASP
exploits an important property of the DBA method presented in section 3.1.1In
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DBA algorithm the assignment of avatars to servers is calculated iteratively.
The avatar with the lowest distance to a given server of the DVE (follow-
ing a round-robin scheme) is assigned in each iteration. In order to measure
these distances, servers are represented by mass-centers (see DBA algorithm).
Therefore, as avatars are assigned they are clustered around DVE servers.

Because of DBA obtains a perfect balancing of avatars (C}), system cost
(Cp) depends only (see equation refCp) on the evaluation of inter-server com-
munications (C%). Thus, the best partitioning solutions are obtained when
neighboring avatars are assigned to the same server. This property makes
avatars which are located far away or equidistant of different mass-centers to
be critical. These avatars are denoted as critical avatars, In order to properly
assign critical avatars it is necessary to spend more resources. In order to avoid
suchspending, a different version of DBA algorithm is used. This version, de-
noted as DBA-R, does not assign critical avatars. These avatars are the inputs
to GRASP algorithm.

Figure 12 shows an example of a DBA execution. In this example 66 avatars are
simulated with 3 servers in a DVE system. Each server received a balanced
group of 18 elements each located in a rounded pattern. The remaining 12
avatars have been intentionally non-assigned.

Non—é\ss igned

\\y o
. | AI_/° | 2 Baryar A

Fig. 12. Result from a initial solution obtained by DBA-R algorithm

The GRASP-based method for solving the partitioning problem in DVE sys-
tems consists of several iterations [26]. Each iteration assigns a critical avatar
and consists of two steps: construction and local search. The construction
phase builds a feasible solution choosing one border avatar by iteration, and
the local search also provides a server assignment of that border avatar in the
same iteration, following the next procedure: First, the resulting cost C, of
adding each non-assigned critical avatar to the current (initial) partition is
computed. Since each border avatar can be assigned to different servers, the
cost for assigning each border avatar to each server is computed, forming the
list of candidates (LC) (each element in this list has the form (non-assigned
border avatar, server, resulting cost). This list is sorted (using Quick-sort al-
gorithm) by the resulting cost C, in descendent order, and then is reduced to
its top quartile. One element of this reduced list of candidates (RLC) is then
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randomly chosen (construction phase). Next, an extensive search is performed
in the AOI of that selected avatar. That is, all the possible assignments of the
avatars in the AOI of the selected avatars are computed, and the assignment
with the lowest C), is kept.

Next code describes how the GRASP approach works when n avatars are
assigned to S servers in a DVE system:

program GRASP (Int threshold)

type New_sol
idx_av,idx_ser: Int
new_cost : Real
avatar,server : Int

var
tmp_cost,Cp_GRASP :Real
Non_assig :Integer
list :New_sol[]

begin
Initial_Partition (DBA-R,threshold)
non_assig := n - threshold

For i:=0 to non_assig do
for j:=0 to n do
for k:=0 to S do
tmp_cost=TestSolution(j,k)
AddToList (list,tmp_cost,j,k)
end_for
end_for
QuickSort (1list)
ReduceToFirsQuartile(list)
ChooseRandomElement (1ist,avatar,server)
Cp_GRASP = tmp_cost = 10000
for j:=0 To AvatarsInAOI(avatar) do
for k:=0 to S do
tmp_cost=TestSolution(j,k)
AddToList (1list,tmp_cost, j,k)
if (tmp_cost < Cp_GRASP)
Cp_GRASP := tmp_cost

savej := j
savek := k
end_for
end_for
end_for
AssingSolutionServer(savej,savek)
end_for
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end

The quality of the solutions provided by GRASP search method depends on
the quality of the elements in the RLC, and the range of solutions depends
on the length of the RLC. Thus, the main parameter to be tuned in this case
is the number of non-assigned N or critical avatars that the initial partition
must leave.

Figure 13 shows the results in this tuning phase in order to compose an inter-
mediate solution. In this example a LARGE world composed by 2500 avatars
are assigned to 8 servers. The avatars are located following a uniform distribu-
tion. This figure represents the variations of two performance measures as the
number of critical avatars (iterations) is increased. The quality of the obtained
solutions C), and the execution time for GRASP algorithm have been elected
as performance measures.
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Fig. 13. Variation of the performance measures for different threshold values

Figure 13 shows that as the number of critical avatars increases the quality of
the provided solutions also increases (C, values decreases), but the execution
time for GRASP algorithm (labelled as computations) also increases. We chose
in this case a compromise solution of 250 iterations. It is worth mention that
a larger number of iterations result in higher execution times and do not reach
significant solutions.

4 Performance Evaluation

In this section, we present the performance evaluation of the heuristics de-
scribed in the previous section when they are used for solving the partitioning
problem in DVE systems. Following the evaluation methodology shown in [23],
we have empirically tested these heuristics in two examples of a DVE system:
a small world, composed by 13 avatars and 3 servers, and a large world, com-
posed by 2500 avatars and 8 servers. We have considered two parameters:
the value of the quality function C), for the partition provided by the search
method and also the computational cost, in terms of execution time, required
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by the search method in order to provide that partition. For comparison pur-
poses, we have also implemented the linear optimization technique (LOT) [23].
This method currently provides the best results for the partitioning problem
in DVE systems. In the case of small worlds we have also performed an ex-
haustive search through the solution space, obtaining the best partition as
possible. The hardware platform used for the evaluation has been a 1.7 GHz
Pentium IV with 256 Mbytes of RAM.

Since the performance of the heuristic search methods may heavily depend on
the location of avatars in the virtual world, we have considered three different
distributions of avatars: uniform, skewed, and clustered distribution. Figure 14
shows an example of how avatars would be located in a 2-D world when
following each one of these distributions.

a) b) c)
Fig. 14. Distributions of avatars: (a) uniform, (b) skewed, and (c) clustered

Table 2 shows the C,, values corresponding to the final partitions provided by
each heuristic search method for a small virtual world, as well as the execution
times required for each method in order to obtain that final partition. It can
be seen that all of the heuristics provide better (lower) C, values than the
LOT search method for a uniform distribution of avatars. For the skewed
and clustered distributions, most of the heuristics also provides better C,
values than the LOT search method, and some of them (GA and SA methods)
even provide the minimum value. However, the execution times required by
most of the heuristics are longer than the ones required by the LOT method.
Only GRASP method provides worse C), values than the LOT method, but it
requires much shorter execution times. Although these results does not clearly
show which heuristic provides the best performance, they validate any of the
proposed heuristics as an alternative to the LOT search method.

However, in order to design a scalable DVE system the partitioning method
must provide good performance when the number of avatars in the system
increases. That is, it must provide a good performance specially for LARGE
virtual worlds. Table 3 shows the required execution times and the C), values
obtained by each heuristic search method for a large virtual world. In this
case, all of the heuristics provides similar values of C, than the one provided
by LOT method for the uniform distribution, while requiring much shorter ex-
ecution times. When non-uniform distributions of avatars are considered, then
all of the heuristics provide much better C, values than the LOT method and
they also require much shorter execution times than the LOT method. In
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Uniform dist. | Skewed dist. | Clustered dist.
Time (s.) Cp | Time (s.) Cp, | Time (s.) C,
Exhaustive 3.411 6.54 3.843 7.04 4.783 7.91

LOT 0.0009 6.56 0.001 8.41 0.0011 8.89
SA 0.004 6.82 0.005 7.46 0.005 7.91
ACS 0.0007 6.59 0.003 7.61 0.0024 8.76
GA 0.002 6.54 0.003 7.04 0.005 7.91

GRASP 0.0002 7.42 | 0.0002 | 8.63 | 0.0003 11.88

Table 2
Results for a small DVE system

particular, ACS method provides the best C, values for non-uniform distri-
butions, requiring also the shortest execution time in the case of a clustered
distribution.

Uniform dist. Skewed dist. Clustered dist.
Time (s.) Cy Time (s.) Cyp Time (s.) Cp
LOT 30.939 1637.04 32.176 3460.52 43.314 5903.80
SA 6.35 1707.62 13.789 2628.46 29.62 4697.61
ACS 5.484 1674.08 14.05 2286.16 23.213 3736.69
GA 6.598 1832.21 14.593 2825.64 29.198 4905.93
GRASP 6.622 1879.76 13.535 2883.84 26.704 5306.24
Table 3

Results for a large DVE system

These results show that the performance of the partitioning algorithm can be
significantly improved by simply using any of the proposed heuristics instead of
the LOT method, thus increasing the scalability of DVE systems. In particular,
ACS method provides the best performance as a partitioning algorithm for
LARGE worlds.

5 Conclusions

In this work, we have proposed a comparison study of modern heuristics for
solving the partitioning problem in DVE systems. This problem is the key issue
that allows to design scalable and efficient DVE systems. We have evaluated
the implementation of different heuristics, ranging over most of the current
taxonomy of modern heuristics. We have tested the proposed heuristics when
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applied for both small and large DVE systems, with different distributions of
the existing avatars in the system. We have compared these results with the
ones provided by the Linear Optimization Technique (LOT), the partitioning
method that currently provides the best solutions for DVE systems. For small
virtual worlds, we can conclude that in general terms any of the implemented
heuristics provides a partition with similar values of the quality function C),
but the execution times required by the implemented heuristics are longer
than the time required by the LOT search method. Although SA and GA
methods provide the minimum value of the quality function, only GRASP
method provides execution times shorter than the ones required by the LOT
method for all the tested distributions of avatars. These results validate any
of the proposed heuristics as an alternative to the LOT search method when
considering small DVE systems. However, for large virtual worlds any of the
proposed heuristics provides better C, values and requires shorter execution
times than the LOT method for non-uniform distributions of avatars. In par-
ticular, ACS method provides the best results. Since a scalable DVE system
must be able to manage large amounts of avatars, we can conclude that these
results validates ACS search method as the best heuristic method for solving
the partitioning problem in DVE systems.
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