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Abstract Animated virtual crowds have been used last years for amegyrmuman
factors in scenarios where masses of people gather, suglodmg events, trans-
portation centers, and concerts. A typical example is lglévacuation in case of
fire. Scalability still remains as an open issue for thesdiragent systems applica-
tions. In this paper, we use a scalable architecture to si@al large-scale version
of a virtual crowd in a building evacuation. From the sociaifp of view, the results
provided by the large-scale version of the crowd add new ancia information
about the agents behavior, emphasizing the need for a smallrat of trained lead-
ers in order to save lives. From the system point of view, #silts show that the
trend of avatars towards crowding in some areas highly asae the computation
time for the agents hosted in some client computers. Thergtfais trend should be
taken into account when designing large-scale evacuatiouations.

1 Introduction

The simulation of virtual crowds have been used last yearafialyzing human
factors in scenarios where masses of people gather, suglodmg events, trans-
portation centers, buildings and concerts[13, 17, 4, 1, W8jally, the motion of
crowds and other flock-like groups is modeled as interaqgtiagicles that display
different behaviors in 2D/3D virtual scenes [16, 3]. Bey@hgsically based simula-
tions, agent-based crowd models aim to capture the natarerofvd as a collection
of individuals, each of which can have their own goals, kremgle and behaviors
[14]. When virtual crowds are used for analyzing human fadtocertain scenarios,
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local motion driven by Helbing’s model [5] should be usedeTkquirements due
to 3D graphics, motion and behavioral models add a huge wadkio the computer
supporting the crowd simulation.

In order to decrease the computational workload of simuati crowds have
been divided in different levels. For example, the ViCrowdtem [12] divides the
simulation at the level of crowds, groups, and individubedern variants of these
simulations use continuum dynamics to reach interactivelkition speeds for thou-
sands of characters [17]. Although these approaches cplaygigery populated and
interactive scenes, their usability for analyzing humantdes is questionable, since
the higher-level behaviors are not based on individual ieha

Also, there have been efforts to provide efficient and automes behaviors to
crowd simulations [15, 9, 7, 11]. However, they are based@n#&ralized system ar-
chitecture, and they can only control tens of autonomoustageith different skills
(pedestrians with navigation and/or social behaviors fban/evacuation contexts).
The scalability of the provided results still remains as aeroissue, due to the
complexity of the relationships among different agents.

In this paper, we propose the use of a previously proposedmyarchitecture [8]
for simulating a large-scale version of the virtual crowdttanalyzes human factors
in building evacuation [11]. The purpose is on the one hardgbif the results are
similar when the crowd size increases. In this sense, thidtseshow a small prob-
ability of survival of those agents not achieving to evaeuat building in a short
term, emphasizing the need for a small amount of trainectlsa®n the other hand,
the purpose is to analyze the performance of the underlyntpater system, in or-
der to determine the system requirements for large-scalelaiions. In this sense,
the results show that the trend of avatars towards crowdirgpme areas highly
increases the computation time for the agents hosted in sbemt computers. As
a result, the synchronous scheme followed in the simulatfdiuilding evacuation
[11] is not suitable for large-scale simulations.

The rest of the paper is organized as follows: Section 2 brigdilscribes the
proposed simulation architecture and the implementatfdheocrowd simulation.
Section 3 shows the the crowd behavior shown in the builduagw@ation, and also
the performance evaluation of the simulation system. Fing@éction 4 shows some
conclusions and future work to be done.

2 Architecture and I mplementation of Building Evacuation

In order to implement a large-scale version of the behavim@del for building

evacuations [11], different modifications have been madbeadistributed archi-
tecture for crowd simulations [8]. This architecture cofghow the existing agents
can share information about the 3D virtual scene. We brieflgcdbe this archi-
tecture here, in order to make this paper self-containezbrisists of a distributed
computer system for supporting the software architectbosva in Figure 1. This

software architecture is composed by two elements: therasgrver (AS) and the
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client processes (CP). The AS is devoted to execute the cemtidns, and it is

hosted on a single computer, while each CP handles a subset existing agents
and it is hosted on a single computer. Agents are implemeagedreads of the CP
for reducing the communication cost. Each thread managepdhception of the
environment and the reasoning about the next action. Seesoning formalisms
can involve a high computational cost, each client procedsosted on a differ-
ent computer, in such a way that the system can have a diffetenber of client

processes, depending on the number of agents in the systéms Way, this organi-

zation takes advantage of the underlying distributed hardwThis scheme allows
the correct simulation of tens of thousands of autonomoestagt interactive rates.

The first modification consists of decoupling the differeygtem functionalities
in different layers. Concretely, we have implemented thellevel communication
protocols, the mechanisms of inter-agent communicatiand,the functionality of
generating new behaviors as different and independenvaitlayers. The first
layer, consisting of the low-level communication prot@;as based on the same
model (based on BSD sockets) shown in the previous architeédr crowd simu-
lations [8]. However, we have added a new kind of agents wathh communication
mechanisms, in order to extend the functionality of gemegatew behaviors.

In the previous architecture, the computing of the agentenmnts was based
on a grid obtained from the logical division of the virtuakse in a regular grid.
For each grid cell, aA* algorithm was computed in order to provide that cell with
a pointer indicating which adjacent cell was the closest (©me most logical one)
to the system exit (the virtual scene was a building and thipgae of the simula-
tion was the building evacuation). In the modified architeet the cells exclusively
contain information about which room they belong to, andnégenly use the grid
for knowing in which room they are currently located. Witlistimformation, they
compute their own path to the exit. In this way, the systemayaramically react
to both the creation and removal of exits during the evaonathdditionally, each
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Fig. 1 Software architecture for large-scale building evacuation
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agent has a small memory that allows it to save which rooms baen already

visited. These changes allow agents to make movementstibgieopre-defined be-

havior, depending on the kind of agents (trained leaderstreoned leaders, normal
agents, etc.). Once the path to be followed is computed ca &ystem based on the
Helbing’s model is used for moving.

Another modification of the previous architecture considtthe kind of infor-
mation exchanged. In the previous architecture, each #gehtead of a CP hosted
in a given computer) exclusively sent to the server the naatlon (the point of
the virtual world where it wanted to move). In the modifiedratecture, each agent
not only sends its new desired location, but it also sendsages to other agents.
These messages can be either destined to another ageritg (#shn to perform
some actions) or messages describing the visited rooms.

Additionally, in order to provide this system with the samerking scheme used
for building evacuations [11], normal agents should seeit tequests to the server,
completing the following cycle in each iteration: first, thgent should compute
the path to follow, the Helbing forces, and the graphic uesldor the graphical
interface. If these computations are performed in less ghmilliseconds (the
agent cycle), then the agent (the thread) should sleep thigitime has expired.
At that moment, it wakes up and sends a request to the servehéxking the
computed movement. The server computes the answer inmes/land it sends back
this answer to the agent as soon as it is ready. When the answesdo the agent,
then the cycle starts again. It should be noticed that, artlik previous architecture
for crowd simulations [8], there is no a server cycle (it cutgs the answer to each
request as soon as it arrives), but an agent cycle. The réasestablishing an agent
cycle is to provide all the agents with the same speed of mewérthe reason for
choosing 250 milliseconds as the cycle period is that itésltéimger response time
that human users perceive as interactive in DVE systemsT[dk period is the
same used for building evacuations [11]. For illustratiompomses, Figure 2 shows
the flow diagram for the cycle period of a normal agent.

As figure 2 shows, the first action to be performed by the agetd check if
it has arrived to its destination (the exit). If not, then tiext step is to check if it
follows the correct path. Each agent knows the path to thienhére it entered the

alid path 7

Fig. 2 Cycle period for nor-
mal agents
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building. If that path is not blocked (valid path), then agesimply follow that path.
In case the path is not valid, the agent checks if there isdele@earby, in order to
follow him. If there is not a leader, then the agents in thakavote for a leader
(after all, in real world someone ends acting as a leaderasetlsituations). When
the leader has been elected, the agent that becomes thedeadshes the path using
its own mental map. Concretely, a deep-first search algorishcomputed, and the
new rooms visited are added to its mental map. Additionéllsends messages to
the other agents around with its next location, for guidinggpses. Finally, all the
agents use the Helbing’s model to compute the local motion.

The cycle followed by the non-trained leaders is illustiaby Figure 3, and it
consists of the following steps: first the agent checks ifg hrrived to its destina-
tion (the exit). If not, then (perception) each agent sendssages to all the agents
surrounding him, indicating the visited rooms. Additidgalf there are no other
leaders, he will send messages to other leaders indicéiamy to follow him. After
that, the agent will receive all the messages from the sadiog agents and will
update his map. The rest of the steps are the same than thimdhesormal agent.

The goal for of all the agents is to leave the virtual scengaRding the agent
functionality, we have implemented the same kind of agemg/a in the behavioral
model: normal agents, untrained leaders and trained legtl€y. When the normal
agents and untrained leaders see a hazard, they explora#es(following a depth-
first scheme in order to avoid cycles). The trained leadeosvithe correct path to
the exits. Finally, the untrained leaders can exchangerirdton with other agents
about the state of the maze. Whenever two or more agents maetoom, they
share two pieces of information: locations of some of theahdz that are blocking
paths, and parts of the building that have been fully expldrg other agents and
found to have no accessible exit (passed along by previomsnemications). The
communication is local to a room, so agents exchange ondyaat information
about neighboring rooms, as for example, do not go througihdbor (there is fire),
do not go in that direction (there is no exit), or follow me.
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Fig. 3 Cycle period for non-
trained leaders
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3 Performance Evaluation

In this section, we evaluate a large-scale version of thedetal model for build-
ing evacuation [11]. Instead of a population ranging fromi@®R00 agents, we use a
minimum of 400 agents and a maximum of 800 agents. Howeveriaspace limi-
tations we only show some representative results, cornelipg to a population size
of 400 agents. The results for other sizes were very sinilag. computer system
used for evaluation purposes consists of eight intercdedguersonal computers.
All of them were composed of a Dual-Core Intel Core 2 Duo pssoe at 2666
MHz with 1024 MB of DDR2 RAM, NVIDIA GeForce 8500 GT (512 MB) gphic
card, and Microsoft Windows XP Professional operatingeysfwith service pack
2).
The building evacuation consists of a structured squataaliworld (a kind of
maze) with a uniform initial distributions of the avatargéats). That is, the ratio
number of agents/room is constant. We have considered tliffeeent scenarios
(maps). The first map contains two exits (in two opposite siafethe square) and
two hazards that are quite close to the existing exits. Therskmap contains a
random distribution of hazards within the maze. Finallg tthird map is identical to
the first map, but changing the exits to the opposite sidese$tuare with respect
to the first map. Also, the two hazards are located close texlts.

The first part of the performance evaluation has been thevimmhdmodel. Fig-
ure 4 shows the performance (in terms of number of evacuatents) of the differ-
ent options for communication strategies and for a poputadf 400 agents. This
figure shows that when communication among agents exigts,tiie performance
is improved. Thus, when ninety simulations steps have besfored, around
360 agents (90% of the population) have been already ewetifatommunica-
tion among agents exists, and only 270 agents (67.5% of thelaion) have been
evacuated if no communications are exchanged. Howeveresthef the population
takes a similar number of steps to be completely evacuaggdrdless of both the
communication strategy and the size of the remaining pdopula

These results differ from the ones shown for 200 agents {#liére the simula-
tion with communication finished (the population evacudbedworld) in about half
of the time that it took the non-communication case to fin&imilar results were
obtained for greater populations and different maps. Theselts indicate that for
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large-scale evacuations, the communication strategyrdates the portion of the
population that can be evacuated on a short-term periodt bas not a noticeable
effect on the long term performance. The reason is that timaireng population
after the first simulation steps cannot exploit the knowtedgpvided by the com-
munications. That is, the remaining agents are normal agkat do not communi-
cate each other. The leaders manage to evacuate the bundhgfirst steps of the
simulation, due to their ability to share information.

Figure 5 shows the performance (in terms of the number ofIsition steps in
order to evacuate the building) for different simulationighwdifferent percentages
of trained leaders. This figure shows that the only simutetiere the population
is fully evacuated in 120 simulation steps is the one with @4 ®f trained leaders.
The rest of simulations do not finish the evacuation after &tfulation steps. In
this sense, the performance is similar to the one shown ipr#&gous figure. The
performance provided by the different options consideredtly differs in the short
term, but they tend to converge in the long term. Thus, fordigtulation steps the
biggest differences are shown between 0% and 25 % of trageatkets, with 270
and 350 agents evacuated, respectively.

If we compare these results with the ones provided by thevietsd model for
building evacuation [11], we can see that they are propoatidcHowever, the large-
scale results (Figure 5) show that those agents that cotllevaguate the building
in a short term require a long time to reach their goal, witlowa probability of
survival. These results emphasize the need for a small paxge of trained leaders
in building evacuations in order to save lives.

Additionally, we have analyzed the system performancerdeioto characterize
the system requirements for large-scale simulations.eSime underlying platform
is a distributed computer system, the most important perdoice measures are la-
tency and throughput [2]. Figures 6 a) and b) show the sys&formance (in terms
of average system responses and computation times, reshganeasured in the
simulation of building evacuation for 400 agents. This fegicontain three plots
for the different maps considered. They show on the X-ax@stimulation step, and
they show on the Y-axis the average system response timesoaigey computation
time, respectively. The former one includes from the sigrtf the agent cycle to
the instant when the server response arrives. The lattemeesures the average

e
350 e
3 . /% /‘/./-/"r
[
3 250
[
d>) 200
2
9 150
g 100
5
. . . 50
Fig. 5 Evacuation time for = \ j TrainedLeaders (%) | =0 <25 =30 =75 _ =100

different numbers of trained 0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510
leaders Simulation time steps



8 Carlos Gar@a-Cabrera and Pedro Morillo and Juan M. Gtdu

computation time that agents require to complete the firgt gfathe agent cycle
(computing the path to follow, the Helbing forces, and thapinic updates for the
graphical interface). Both Figures show the average vdtraemne of the computers
hosting either normal agents or non-trained leaders.

Figure 6 a) shows that the plots for the three maps show sirsilapes and
values. They range from 252 milliseconds to 260 millisesprashd they alternate
periods of peak values with periods of low latencies. Thesedor these behaviors
is the simultaneous waking-up of the agents (threads) irséinee computer when
the agent cycle finishes. Figure 6 a) also shows differentiisition length for the
different maps considered. While the simulation steps reguior map 1 and map
2 are similar (both of them require around 350 simulatiopstemap 3 requires
around 650 simulation steps. Itis due to the fact that theeadonger distance to the
exits in map 3.

On other hand, figure 6 b) shows that, regardless of the cerezidnap, the av-
erage computation time required for the first part of the aggcie has a parabolic
shape, continuously increasing from the start to the endeo$tmulation. Thus, the
average computation time reaches the highest values fondéipavhose simulation
lasts more time (map 3). The reason for this behavior is tteahtzards are located
close to the two existing exits in all the maps. Thus, agesrs to crowd in the
rooms near the exits along time. As a result, the time reduive computing the
Helbing’s model (where the forces produced by the surrcugndigents should be
taken into account) increases as so does the agent dengitgugh the computa-
tion times shown in Figure 6 a) are still far from the agentleyif the simulation
lasts more time then computation times could reach the axyaf, providing an
unacceptable system performance.

Additionally, we have measured the same performance rséirithe computers
hosting trained leaders, in order to analyze the systemvimatfar all the kinds of
agents. Trained leaders are different from the rest of tlemtag since they should
guide them to the exits. Therefore, their mental map cordhitne exits, and they
should also broadcast messages to all the agents in the samerr order to guide
them to the next room. Figure 7 shows the average computatienfor all for the
trained leaders hosted on the same computer. This figuresshoampletely differ-
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ent behavior for all the considered maps with respect to ties shown in Figure 6
b). In this case, for all the considered maps the computéitioa linearly decreases
as the simulation proceeds. The maximum values reachedsitdbe slightly ex-

ceeds 5 milliseconds, far away from the 40 milliseconds shiovFigure 6 b). These
results show that the computers hosting trained leaderstiend to saturation in
large scale simulations.

4 Conclusions

In this paper, we have used a previously proposed systenterithie to simulate
a large-scale version of a virtual crowd that analyzes hufaators in building
evacuation. From the social pont of view, the results shaat those agents that
cannot be evacuated in a short term need a very long time todmiated (thus
with a low probability of survival), regardless of the pemtage of trained leaders.
These results emphasize the need for a small amount ofdrisiaders for managing
building evacuation.

Additionally, we have analyzed the system performance,rdeoto establish
the system requirements for large-scale simulations. €helts show that due to
the trend of avatars to crowd in some areas, the computirghighly increases for
some client computers as so does the population size. $iisdednd is not bounded
and the cycle period is constant, the computation times xe@eel the cycle period
for large-scale population sizes. The reason for this beh&vthe saturation of the
client computers. This trend should be taken into accourgnadresigning larger-
scale evacuation simulations, and less normal agents etraimed leaders should
be hosted in each computer, in order to avoid system saiaratid performance
degradation.
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