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Abstract Animated virtual crowds have been used last years for analyzing human
factors in scenarios where masses of people gather, such as sporting events, trans-
portation centers, and concerts. A typical example is building evacuation in case of
fire. Scalability still remains as an open issue for these multi-agent systems applica-
tions. In this paper, we use a scalable architecture to simulate a large-scale version
of a virtual crowd in a building evacuation. From the social point of view, the results
provided by the large-scale version of the crowd add new and crucial information
about the agents behavior, emphasizing the need for a small amount of trained lead-
ers in order to save lives. From the system point of view, the results show that the
trend of avatars towards crowding in some areas highly increases the computation
time for the agents hosted in some client computers. Therefore, this trend should be
taken into account when designing large-scale evacuation simulations.

1 Introduction

The simulation of virtual crowds have been used last years for analyzing human
factors in scenarios where masses of people gather, such as sporting events, trans-
portation centers, buildings and concerts[13, 17, 4, 1, 10]. Usually, the motion of
crowds and other flock-like groups is modeled as interactingparticles that display
different behaviors in 2D/3D virtual scenes [16, 3]. Beyondphysically based simula-
tions, agent-based crowd models aim to capture the nature ofa crowd as a collection
of individuals, each of which can have their own goals, knowledge and behaviors
[14]. When virtual crowds are used for analyzing human factors in certain scenarios,
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local motion driven by Helbing’s model [5] should be used. The requirements due
to 3D graphics, motion and behavioral models add a huge workload to the computer
supporting the crowd simulation.

In order to decrease the computational workload of simulations, crowds have
been divided in different levels. For example, the ViCrowd system [12] divides the
simulation at the level of crowds, groups, and individuals.Modern variants of these
simulations use continuum dynamics to reach interactive simulation speeds for thou-
sands of characters [17]. Although these approaches can display very populated and
interactive scenes, their usability for analyzing human factors is questionable, since
the higher-level behaviors are not based on individual behavior.

Also, there have been efforts to provide efficient and autonomous behaviors to
crowd simulations [15, 9, 7, 11]. However, they are based on acentralized system ar-
chitecture, and they can only control tens of autonomous agents with different skills
(pedestrians with navigation and/or social behaviors for urban/evacuation contexts).
The scalability of the provided results still remains as an open issue, due to the
complexity of the relationships among different agents.

In this paper, we propose the use of a previously proposed system architecture [8]
for simulating a large-scale version of the virtual crowd that analyzes human factors
in building evacuation [11]. The purpose is on the one hand totest if the results are
similar when the crowd size increases. In this sense, the results show a small prob-
ability of survival of those agents not achieving to evacuate the building in a short
term, emphasizing the need for a small amount of trained leaders. On the other hand,
the purpose is to analyze the performance of the underlying computer system, in or-
der to determine the system requirements for large-scale simulations. In this sense,
the results show that the trend of avatars towards crowding in some areas highly
increases the computation time for the agents hosted in someclient computers. As
a result, the synchronous scheme followed in the simulationof building evacuation
[11] is not suitable for large-scale simulations.

The rest of the paper is organized as follows: Section 2 briefly describes the
proposed simulation architecture and the implementation of the crowd simulation.
Section 3 shows the the crowd behavior shown in the building evacuation, and also
the performance evaluation of the simulation system. Finally, Section 4 shows some
conclusions and future work to be done.

2 Architecture and Implementation of Building Evacuation

In order to implement a large-scale version of the behavioral model for building
evacuations [11], different modifications have been made tothe distributed archi-
tecture for crowd simulations [8]. This architecture controls how the existing agents
can share information about the 3D virtual scene. We briefly describe this archi-
tecture here, in order to make this paper self-contained. Itconsists of a distributed
computer system for supporting the software architecture shown in Figure 1. This
software architecture is composed by two elements: the action server (AS) and the
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client processes (CP). The AS is devoted to execute the crowdactions, and it is
hosted on a single computer, while each CP handles a subset ofthe existing agents
and it is hosted on a single computer. Agents are implementedas threads of the CP
for reducing the communication cost. Each thread manages the perception of the
environment and the reasoning about the next action. Since reasoning formalisms
can involve a high computational cost, each client process is hosted on a differ-
ent computer, in such a way that the system can have a different number of client
processes, depending on the number of agents in the system. In this way, this organi-
zation takes advantage of the underlying distributed hardware. This scheme allows
the correct simulation of tens of thousands of autonomous agents at interactive rates.

The first modification consists of decoupling the different system functionalities
in different layers. Concretely, we have implemented the low-level communication
protocols, the mechanisms of inter-agent communications,and the functionality of
generating new behaviors as different and independent software layers. The first
layer, consisting of the low-level communication protocols, is based on the same
model (based on BSD sockets) shown in the previous architecture for crowd simu-
lations [8]. However, we have added a new kind of agents with new communication
mechanisms, in order to extend the functionality of generating new behaviors.

In the previous architecture, the computing of the agent movements was based
on a grid obtained from the logical division of the virtual scene in a regular grid.
For each grid cell, anA∗ algorithm was computed in order to provide that cell with
a pointer indicating which adjacent cell was the closest one(the most logical one)
to the system exit (the virtual scene was a building and the purpose of the simula-
tion was the building evacuation). In the modified architecture, the cells exclusively
contain information about which room they belong to, and agents only use the grid
for knowing in which room they are currently located. With this information, they
compute their own path to the exit. In this way, the system candynamically react
to both the creation and removal of exits during the evacuation. Additionally, each

Fig. 1 Software architecture for large-scale building evacuation
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agent has a small memory that allows it to save which rooms have been already
visited. These changes allow agents to make movements that obey a pre-defined be-
havior, depending on the kind of agents (trained leaders, non-trained leaders, normal
agents, etc.). Once the path to be followed is computed, a force system based on the
Helbing’s model is used for moving.

Another modification of the previous architecture consistsof the kind of infor-
mation exchanged. In the previous architecture, each agent(a thread of a CP hosted
in a given computer) exclusively sent to the server the new location (the point of
the virtual world where it wanted to move). In the modified architecture, each agent
not only sends its new desired location, but it also sends messages to other agents.
These messages can be either destined to another agents (asking them to perform
some actions) or messages describing the visited rooms.

Additionally, in order to provide this system with the same working scheme used
for building evacuations [11], normal agents should send their requests to the server,
completing the following cycle in each iteration: first, theagent should compute
the path to follow, the Helbing forces, and the graphic updates for the graphical
interface. If these computations are performed in less than250 milliseconds (the
agent cycle), then the agent (the thread) should sleep untilthis time has expired.
At that moment, it wakes up and sends a request to the server for checking the
computed movement. The server computes the answer in real-time, and it sends back
this answer to the agent as soon as it is ready. When the answer arrives to the agent,
then the cycle starts again. It should be noticed that, unlike the previous architecture
for crowd simulations [8], there is no a server cycle (it computes the answer to each
request as soon as it arrives), but an agent cycle. The reasonfor establishing an agent
cycle is to provide all the agents with the same speed of movement. The reason for
choosing 250 milliseconds as the cycle period is that it is the longer response time
that human users perceive as interactive in DVE systems [6].This period is the
same used for building evacuations [11]. For illustration purposes, Figure 2 shows
the flow diagram for the cycle period of a normal agent.

As figure 2 shows, the first action to be performed by the agent is to check if
it has arrived to its destination (the exit). If not, then thenext step is to check if it
follows the correct path. Each agent knows the path to the exit where it entered the

Fig. 2 Cycle period for nor-
mal agents
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building. If that path is not blocked (valid path), then agents simply follow that path.
In case the path is not valid, the agent checks if there is a leader nearby, in order to
follow him. If there is not a leader, then the agents in that area vote for a leader
(after all, in real world someone ends acting as a leader in these situations). When
the leader has been elected, the agent that becomes the leader searches the path using
its own mental map. Concretely, a deep-first search algorithm is computed, and the
new rooms visited are added to its mental map. Additionally,it sends messages to
the other agents around with its next location, for guiding purposes. Finally, all the
agents use the Helbing’s model to compute the local motion.

The cycle followed by the non-trained leaders is illustrated by Figure 3, and it
consists of the following steps: first the agent checks if it has arrived to its destina-
tion (the exit). If not, then (perception) each agent sends messages to all the agents
surrounding him, indicating the visited rooms. Additionally, if there are no other
leaders, he will send messages to other leaders indicating them to follow him. After
that, the agent will receive all the messages from the surrounding agents and will
update his map. The rest of the steps are the same than the onesin the normal agent.

The goal for of all the agents is to leave the virtual scene. Regarding the agent
functionality, we have implemented the same kind of agents shown in the behavioral
model: normal agents, untrained leaders and trained leaders [11]. When the normal
agents and untrained leaders see a hazard, they explore the maze (following a depth-
first scheme in order to avoid cycles). The trained leaders know the correct path to
the exits. Finally, the untrained leaders can exchange information with other agents
about the state of the maze. Whenever two or more agents meet ina room, they
share two pieces of information: locations of some of the hazards that are blocking
paths, and parts of the building that have been fully explored by other agents and
found to have no accessible exit (passed along by previous communications). The
communication is local to a room, so agents exchange only relevant information
about neighboring rooms, as for example, do not go through that door (there is fire),
do not go in that direction (there is no exit), or follow me.

Fig. 3 Cycle period for non-
trained leaders
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3 Performance Evaluation

In this section, we evaluate a large-scale version of the behavioral model for build-
ing evacuation [11]. Instead of a population ranging from 20to 200 agents, we use a
minimum of 400 agents and a maximum of 800 agents. However, due to space limi-
tations we only show some representative results, corresponding to a population size
of 400 agents. The results for other sizes were very similar.The computer system
used for evaluation purposes consists of eight interconnected personal computers.
All of them were composed of a Dual-Core Intel Core 2 Duo processor at 2666
MHz with 1024 MB of DDR2 RAM, NVIDIA GeForce 8500 GT (512 MB) graphic
card, and Microsoft Windows XP Professional operating system (with service pack
2).

The building evacuation consists of a structured square virtual world (a kind of
maze) with a uniform initial distributions of the avatars (agents). That is, the ratio
number of agents/room is constant. We have considered threedifferent scenarios
(maps). The first map contains two exits (in two opposite sides of the square) and
two hazards that are quite close to the existing exits. The second map contains a
random distribution of hazards within the maze. Finally, the third map is identical to
the first map, but changing the exits to the opposite sides of the square with respect
to the first map. Also, the two hazards are located close to theexits.

The first part of the performance evaluation has been the behavioral model. Fig-
ure 4 shows the performance (in terms of number of evacuated agents) of the differ-
ent options for communication strategies and for a population of 400 agents. This
figure shows that when communication among agents exists, then the performance
is improved. Thus, when ninety simulations steps have been performed, around
360 agents (90% of the population) have been already evacuated if communica-
tion among agents exists, and only 270 agents (67.5% of the population) have been
evacuated if no communications are exchanged. However, therest of the population
takes a similar number of steps to be completely evacuated, regardless of both the
communication strategy and the size of the remaining population.

These results differ from the ones shown for 200 agents [11],where the simula-
tion with communication finished (the population evacuatedthe world) in about half
of the time that it took the non-communication case to finish.Similar results were
obtained for greater populations and different maps. Theseresults indicate that for

Fig. 4 Performance for differ-
ent communication strategies
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large-scale evacuations, the communication strategy determines the portion of the
population that can be evacuated on a short-term period, butit has not a noticeable
effect on the long term performance. The reason is that the remaining population
after the first simulation steps cannot exploit the knowledge provided by the com-
munications. That is, the remaining agents are normal agents that do not communi-
cate each other. The leaders manage to evacuate the buildingin the first steps of the
simulation, due to their ability to share information.

Figure 5 shows the performance (in terms of the number of simulation steps in
order to evacuate the building) for different simulations with different percentages
of trained leaders. This figure shows that the only simulation where the population
is fully evacuated in 120 simulation steps is the one with a 100% of trained leaders.
The rest of simulations do not finish the evacuation after 510simulation steps. In
this sense, the performance is similar to the one shown in theprevious figure. The
performance provided by the different options considered greatly differs in the short
term, but they tend to converge in the long term. Thus, for 120simulation steps the
biggest differences are shown between 0% and 25 % of trained leaders, with 270
and 350 agents evacuated, respectively.

If we compare these results with the ones provided by the behavioral model for
building evacuation [11], we can see that they are proportional. However, the large-
scale results (Figure 5) show that those agents that could not evacuate the building
in a short term require a long time to reach their goal, with a low probability of
survival. These results emphasize the need for a small percentage of trained leaders
in building evacuations in order to save lives.

Additionally, we have analyzed the system performance, in order to characterize
the system requirements for large-scale simulations. Since the underlying platform
is a distributed computer system, the most important performance measures are la-
tency and throughput [2]. Figures 6 a) and b) show the system performance (in terms
of average system responses and computation times, respectively) measured in the
simulation of building evacuation for 400 agents. This figures contain three plots
for the different maps considered. They show on the X-axis the simulation step, and
they show on the Y-axis the average system response time or average computation
time, respectively. The former one includes from the starting of the agent cycle to
the instant when the server response arrives. The latter onemeasures the average

Fig. 5 Evacuation time for
different numbers of trained
leaders
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computation time that agents require to complete the first part of the agent cycle
(computing the path to follow, the Helbing forces, and the graphic updates for the
graphical interface). Both Figures show the average valuesfor one of the computers
hosting either normal agents or non-trained leaders.

Figure 6 a) shows that the plots for the three maps show similar shapes and
values. They range from 252 milliseconds to 260 milliseconds, and they alternate
periods of peak values with periods of low latencies. The reason for these behaviors
is the simultaneous waking-up of the agents (threads) in thesame computer when
the agent cycle finishes. Figure 6 a) also shows different simulation length for the
different maps considered. While the simulation steps required for map 1 and map
2 are similar (both of them require around 350 simulation steps), map 3 requires
around 650 simulation steps. It is due to the fact that there is a longer distance to the
exits in map 3.

On other hand, figure 6 b) shows that, regardless of the considered map, the av-
erage computation time required for the first part of the agent cycle has a parabolic
shape, continuously increasing from the start to the end of the simulation. Thus, the
average computation time reaches the highest values for themap whose simulation
lasts more time (map 3). The reason for this behavior is that the hazards are located
close to the two existing exits in all the maps. Thus, agents tend to crowd in the
rooms near the exits along time. As a result, the time required for computing the
Helbing’s model (where the forces produced by the surrounding agents should be
taken into account) increases as so does the agent density. Although the computa-
tion times shown in Figure 6 a) are still far from the agent cycle, if the simulation
lasts more time then computation times could reach the agentcycle, providing an
unacceptable system performance.

Additionally, we have measured the same performance metrics in the computers
hosting trained leaders, in order to analyze the system behavior for all the kinds of
agents. Trained leaders are different from the rest of the agents, since they should
guide them to the exits. Therefore, their mental map containall the exits, and they
should also broadcast messages to all the agents in the same room in order to guide
them to the next room. Figure 7 shows the average computationtime for all for the
trained leaders hosted on the same computer. This figure shows a completely differ-

Fig. 6 a) average latencies and b) computation times for normal agents
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ent behavior for all the considered maps with respect to the ones shown in Figure 6
b). In this case, for all the considered maps the computationtime linearly decreases
as the simulation proceeds. The maximum values reached in this case slightly ex-
ceeds 5 milliseconds, far away from the 40 milliseconds shown in Figure 6 b). These
results show that the computers hosting trained leaders do not tend to saturation in
large scale simulations.

4 Conclusions

In this paper, we have used a previously proposed system architecture to simulate
a large-scale version of a virtual crowd that analyzes humanfactors in building
evacuation. From the social pont of view, the results show that those agents that
cannot be evacuated in a short term need a very long time to be evacuated (thus
with a low probability of survival), regardless of the percentage of trained leaders.
These results emphasize the need for a small amount of trained leaders for managing
building evacuation.

Additionally, we have analyzed the system performance, in order to establish
the system requirements for large-scale simulations. The results show that due to
the trend of avatars to crowd in some areas, the computing time highly increases for
some client computers as so does the population size. Since this trend is not bounded
and the cycle period is constant, the computation times can exceed the cycle period
for large-scale population sizes. The reason for this behavior is the saturation of the
client computers. This trend should be taken into account when designing larger-
scale evacuation simulations, and less normal agents or non-trained leaders should
be hosted in each computer, in order to avoid system saturation and performance
degradation.
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Fig. 7 Average computation
times for trained leaders.
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