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Abstract In this paper, we propose a fast and easy-to-use projector calibration method
needing a minimum set of input data, thus reducing the calibration time. The method is
based on the Direct Linear Transformation (DLT) mathematical model, which makes it sim-
ple and fully automatic. We show the application of this method on cylindrical surfaces, as
well as some real application examples. The results show that with the minimum configu-
ration of 6 control points (CPs), the standard deviation in the projector positioning yielded
by the calibration process is less than one per cent of the position values.

Keywords Immersive visualization · Virtual reality · Calibration methods

1 Introduction

Over the last few years, a variety of geometry-based proposals have been made to calibrate
projectors, a procedure which is crucial for some applications, like multi-projector visual-
ization on large screens [1, 5, 6], videogrammetry [13], and 3D object reconstruction in
structured light scanning [11, 12, 18, 19]. The most extended calibration methods make use
of planar homographies supported by physical planar surfaces with known patterns (e.g.
checkerboards, grids of dots) [14, 15, 17, 20]. In these methods, the geometric correction
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and alignment is carried out by means of planar homography transformations between the
planar surface, the projector frame buffers and the images of one or more cameras observ-
ing the surface. To that end, some physical and projected set of points are considered, whose
2D-to-3D coordinates are previously known or computed during the calibration procedure.
The image-based recognition of the known patterns, either alone or in combination with
other planar surfaces, are used to automatically measure 2D points and then establish 2D-to-
3D correspondences. Therefore, in this kind of methods the physical surface with the known
pattern has to be moved and rotated into different spatial positions (at least 10 different
positions are recommended) to complete the calibration procedure.

Nevertheless, the use of planar surfaces is not always feasible, specially when some
space or environment restrictions arise. For instance, a case where the projector to be cali-
brated is located at 3 meters high would require a planar surface of equivalent dimensions
(of that of the projected image at the working distance) than could be moved to 10 differ-
ent positions, making impractical this kind of calibration methods. In order to avoid this
kind of restrictions, other calibration methods using cylindrical surfaces have been pro-
posed, such as the ones described in [7, 25, 26]. Nevertheless, the calibration method is
still an open issue, since the restrictions encountered in real scenarios often require ad-hoc
solutions.

In this paper, we propose a new calibration method based on the well-known Direct
Linear Transformation (DLT) equations to calibrate projectors making use of cylindrical
surfaces. For evaluation purposes, we have dealt with a real case scenario that has specific
restrictions. It consist of a typical “Visionarium”, a room for 3D environments visualization
with a cylindrical projection screen at University of Valencia premises. In these facilities,
the curved image is composed from the projections of three projectors, which are located
at a height of 5 m. The image of the central projector is completely projected onto the
screen. The image of the two side projectors is only partially projected onto the screen.
First we show the application of this method on cylindrical surfaces. The calibration results
show that with the minimum configuration of 6 control points (CPs), the standard deviation
in the projector positioning yielded by the calibration process is less than one per cent of
the position values. Also, we show the application of the proposed method to some real
application examples.

The rest of the paper is organized as follows: Section 2 presents some related work.
Section 3 introduces the proposed calibration method. Next, Section 5 describes some real
use cases of the proposed method. Finally, Section 6 shows some conclusion remarks.

2 Related work

Projectors are key elements in many different applications like scientific visualization,
virtual and augmented reality, structured light techniques and other visually intensive appli-
cations. The geometric calibration of a projector can be based on either a mechanical and
electronic alignment, or by vision-based indirect methods, involving one or more cameras
that observe a set of projected images [2]. Since the latter strategy requires no special infras-
tructure and/or resources except one or two cameras, many vision-based techniques have
been proposed in the last years for the geometrical calibration of projectors. Many of these
techniques use planar screens as physical surfaces. In these cases, the automated geometric
correction and alignment are simplified through the use of planar homographic transforma-
tions between the physical surface, the projector frame buffers, and the images of one or
more cameras focusing on the surface [3, 16, 22].
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Some other works can be found where non-planar surfaces are used to achieve calibra-
tion. One of the first works found in the literature made use of a 3D calibration pattern
with spatially-known control points (CPs) and two cameras, which were fully calibrated by
means of projective geometry [23]. Other authors incorporate structured light techniques in
the process of calibration. As an example, an approach that allows one or more projectors
to display an undistorted image on a surface of unknown geometry is presented in [27].
In this case, patterns which are commonly used in techniques based on structured light are
considered for computing the relative geometric relationships between camera and projec-
tor, thus avoiding an explicit calibration. A different method for projecting images without
distortion onto a developable surface (producing a wall-paper effect) is presented in [7]. In
this case, the correspondences between a camera and a projector are computed by project-
ing a sequence of bar code images (they use between 8 and 12 images) of increasingly fine
spatial frequency, in such a way that projector coordinates corresponding to various camera
pixels can be temporarily encoded.

It is also worth citing the approach introduced in Sajadi and Majumder [24, 25], where
some spatial geometric relationships are established to derive the exterior orientation of
a camera (the interior orientation is considered as already known) and from this one, the
interior and exterior orientation of a projector is computed.

Finally, our previous work [21] proposes a calibration method which results from the
combination of surveying, photogrammetry and image processing approaches, and has been
designed by considering the spatial restrictions of virtual reality simulators. However, that
method needs a previous laboratory work to obtain the internal calibration of the camera.
Also, the camera usually needs the re-calibration periodically, and the method requires that
the optical zoom is the same used in the internal calibration of the camera.

In the next sections, we present a projector calibration method that can greatly simplify
the calibration process and can be applied to cylindrical surfaces. The proposed method
eliminates the need for the previous laboratory work and fully exploits the advantages of the
DLT, as shown in the next section. Together with a fixed calibration bench whose points are
measured with a topographic total station, they allow the calibration of an unlimited number
of projectors.

3 Six Control Points Method (SCPM)

The aim of our research is to design a fast and easy-to-use method to provide both cam-
era and projector geometric calibration with the smallest set of input data as possible, in
order to reduce the calibration time. Our method combines the easiness of establishing 2D-
3D correspondences with checkerboards-based patterns from only two images (one with
the background and the other with a projected pattern), with the facility of its mathemat-
ical formulation. The Direct Linear Transformation has been traditionally used in camera
calibration, and our previous experience with the DLT [21] shows that it yields several
advantages: first, it defines a linear relationship between the points in the image and the
real world, which in turn implies a simple mathematical formulation. Second, the focal
length may be unknown and it can vary between different images. This feature is specially
advantageous when several projectors (with different characteristics) should be calibrated
simultaneously, like in spatial augmented reality applications. Third, the position of the sys-
tem coordinates of the image can be arbitrary. This feature implies that the system can be
calibrated even with only part of the image. In projectors, this feature means calibrating
with zoom. Thus, we propose the DLT also for projector calibration. Moreover, we propose
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the double application of the DLT, once for calibrating the camera and once for calibrat-
ing the projector. In this way, the SCPM duplicates the advantages of the DLT. In the end,
we have two optical devices calibrated almost simultaneously, without needing to know in
advance the internal calibration of neither of them (unlike other calibration methods), with
a very simple mathematical formulation and reducing the required time (since we only need
to select six points in a semi-automatic way).

The proposed method is based on projective geometry similar to the one presented in
[23], but using one instead of two cameras, and assuming that geometry of the projection
surface is a vertical cylinder, a common case in many virtual reality systems. The mathemat-
ical background makes use of the Direct Linear Transformation (DLT) model [4, 9], which
gives both simplicity and robustness to our implementation because the model is easy to
implement and the results can be refined through a least square procedure if redundancies
(more CPs than the minimum required) are available.

Our method assumes that the camera and the projector are linear devices with no radial
distortion and the projector can be considered as equivalent to a pin-hole camera. Then, the
mathematical formulation that lies on the background is the DLT that is twice applied, one
to derive camera parameters and the other one to derive projector parameters. The formu-
lation of the DLT is shown in (1) and (2), where x and y denote the observable 2D image
coordinates of a given point, the parameters X, Y,Z denote the 3D spatial coordinates of
that point, and the terms ai , bi , and ci denote the 11 DLT parameters for a particular image.
Since a single observed point yields 2 equations, a minimum of 6 points are needed to solve
the equations and find the 11 unknown DLT parameters.

x = a1X + a2Y + a3Z + a4

c1X + c2Y + c3Z + 1
(1)

y = b1X + b2Y + b3Z + b4

c1X + c2Y + c3Z + 1
(2)

In order to solve the 11 unknowns of the DLT, a matrix system can be built as shown in
(3), which can be solved by a Least Square fitting. The elements of the matrix A and the
vector k are given in (4) and (5), respectively, for the first CP; r is the vector of residuals
and x is the vector of unknowns, i.e. the 11 DLT parameters.

Ax = k + r (3)

A =
⎡
⎣

X1 Y1 Z1 1 0 0 0 0 −x1X1 −x1Y1 −x1Z1

0 0 0 0 1 X1 Y1 Z1 −y1X1 −y1Y1 −y1Z1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎤
⎦ (4)

k =
⎡
⎣

x1
y1
· · ·

⎤
⎦ (5)

Solving these equations makes the computing of the projector orientation straightfor-
ward, since the 11 DLT parameters are related to the six parameters of exterior orientation
(coordinates X0, Y0, Z0, and angles κ, ϕ, ω), and to the five elements of interior orientation
(principal point coordinates x0, y0, focal length c, relative y-scale λ and shear d) [4, 10].
Since each observed point (with 2D-3D correspondences) gives two equations and there are
11 unknowns, solving these equations for a minimum of 6 observed points leads to the com-
putation of the interior and exterior sensor (camera or projector) orientation. In case that
more points are available, the system can be solved with a minimum squares procedure.
Finally, it is worth mentioning that the DLT fails if all CPs lie in a single plane. However,
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this situation cannot occur in our case, because the projection surface is a vertical cylinder,
which is non-planar.

The input data of the SCPM calibration method are: four measured distances (a, b, c

and h in Fig. 1, from which the coordinates of the six required CPs are obtained), an image
of a checkerboard pattern, an image acquired by the camera of the projected checkerboard
pattern and an image acquired by the camera of the projection screen. It is assumed that the
screen has a cylindrical shape which is vertically aligned.

The first step in this method is to compute the 2D-3D camera correspondences of a min-
imum of six CPs. From the four measured distances, the radius r of the cylinder and the
3D coordinates of the six CPs are computed. In order to achieve this goal, the six CPs must
be located as shown in Fig. 1, being vertically aligned in pairs and horizontally aligned in
threes. In this way, the triangles formed by the three upper and the three lower points are
equal, and the relative vertical distance between pairs is a constant value, h. From the trian-
gle, the radius r of the vertical cylinder is calculated. Then, a coordinates system with the
origin at the central point of the circle defining the cylinder and at the same horizontal plane
than the three lower CPs is established, with the Y coordinate in the vertical direction. At
this point, the computation of the 3D coordinates of the CPs and the vertical distance h is
straightforward. On other hand, the CPs’ image coordinates are measured from the image
acquired by the camera. This procedure can be either automatic or manual. The implemen-
tation includes a method to automatically find round shaped CPs, but for those cases where
artificial CPs cannot be placed on the screen, the manual selection of any physical feature
that can act as a control point is allowed.

The second step consist of computing the interior and exterior orientation parameters of
the camera. In this step, the DLT (1) and (2) are applied to the 2D-3D correspondences of
CPs derived in the first step. From the 11 obtained parameters, the relationship between
them and the equations of central projection is straightforward, and therefore the interior
and exterior orientation parameters are computed.

The third step is to compute the camera image coordinates of a projected checkerboard
pattern. The image of the checkerboard pattern is projected and recovered by the camera.
The background of the recovered image is subtracted, in order to avoid the visualization
of the CPs or other artifacts, and then it is thresholded. The corners of the squares are
automatically detected with sub-pixel accuracy by an image-processing algorithm based on
the OpenCV library [8]. Figure 2 illustrates how the background image and the projected
checkerboard-like pattern showing detected points are displayed. These points constitute the

Fig. 1 Spatial arrangement of
six control points on the cylinder
and definition of object reference
system (XYZ)
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Fig. 2 Processed images during point detection: a background image and b projected checkerboard with
point detection after applying background subtraction and thresholding

array of camera image coordinates of the checkerboard which will be used in the following
step to derive their corresponding 3D coordinates.

Figure 3 illustrates the spatial positioning of devices and 3D points. In this figure, the
black dots represent the camera projection center; the cyan dot represents the projector
projection center; the red dots represent the CPs at the cylindrical surface; the green dots rep-
resent the checkerboard points atZ = 0, and finally the blue dots represent the checkerboard
points at the cylindrical surface. The fourth step consists of obtaining the 3D coordinates of
the projected checkerboard on the cylinder.

As Fig. 3 shows, the projected points belong to the spatial rays that start in the camera
projection center, intersect the checkerboard in the image plane of the camera, and intersect
the vertical cylinder (that we have previously defined in a mathematical way). Thus, the
fourth step is to obtain 3D coordinates of the projected checkerboard. Since at this point we
have computed the intrinsic calibration of the camera and the 3d coordinates of the camera,
we can trace rays going from the 3d coordinates of the camera, and passing through the
image plane of the camera. The points of intersection between these rays and the vertical

Fig. 3 Spatial positioning of devices and 3D points of the projected checkerboard
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cylinder are the 3D coordinates of the projected checkerboard on the cylinder that we are
looking for. Equations (1) and (2) can be rearranged as the equation system (6) to trace rays
from the camera origin to a certain spatial direction. This system can be solved assuming
e.g. Z = 0, and being the X and Y the unknown variables. This will produce the green dots
in Fig. 3.Then, tracing spatial rays from the camera projection center to each of them, the
rays will intersect the cylinder as the blue dots in Fig. 3.

[
a1 − xc1 a2 − xc2
b1 − yc1 b2 − yc2

] [
X

Y

]
=

[ −Za3 − a4 + xZc3 + x

−Zb3 − b4 + yZc3 + y

]
(6)

The fifth step in this method is to compute the 2D-3D projector correspondences of the
checkerboard points. In order to achieve this goal, we propose a similar approach as the
one given in the third step described above. However, in this step there is no need to apply
background extraction and thresholding. Figure 4 depicts an example of the result of this
step.

Finally, the last step consists of computing the interior and exterior parameters of the
projector. The same approach as the one followed in the second step can be used acquire the
interior and exterior parameters of the projector. In this case, the 2D-3D correspondences
are the ones derived in steps 4 and 5, with a total of 60 points (as shown in Fig. 4). It must
be noted that in this case the number of equations (60x2) is much higher than the number
of unknowns variables (11), and a least-square procedure can be applied.

4 Method validation

In order to validate the proposed method (SCPM), we have conducted some experiments to
check how stable the system is in computing the interior and exterior orientation parame-
ters of the projector for different camera positions. We have conducted two representative
experiments, one carried out in a laboratory and the other one carried out on a real Vision-
arium available at IRTIC, University of Valencia. We have denoted the latter one as the
professional setup.

The laboratory setup consists of a 1800 home-made cylindrical surface with a radius of
0.48 m and 1.0 m height, a Logitech webcam of 640×480 pixel resolution, and a 1280×800
pixel resolution Vivitek multimedia projector with integrated DLP technology. A total of
six black circular shaped control points have been attached to the surface. Distances a, b,
c and h (from which the coordinates of 6 CPs are derived, see Fig. 1) have been manually
measured with a measuring tape.

The camera was moved into 6 different positions, leading to a total of 6 different probes.
The obtained results are shown in Tables 1 and 2. These tables include the values obtained

Fig. 4 Detected image points of
the projected checkerboard
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Table 1 Results of camera calibration in the laboratory setup

Probe X Y Z κ ϕ ω x0 y0 c

1 −0.184 0.488 0.873 57.6 15.0445 −58.85 313.4 215.2 524.6

2 0.083 0.485 0.816 355.1 10.3634 39.60 318.7 220.9 524.0

3 0.222 0.494 0.598 338.1 18.4093 63.89 318.3 231.4 544.1

4 −0.246 0.321 0.845 87.8 7.0829 −80.77 315.8 216.2 537.8

5 0.123 0.324 0.830 300.0 10.5066 96.44 317.2 225.3 529.2

6 0.364 0.329 0.549 300.00 22.7529 93.77 322.6 226.4 532.3

Dev. − − − − − − 3.1 6.3 7.8

for parameters X, Y and Z, measured in meters; the values for parameters κ, ϕ, ω measured
in [gon]; and the values for parameters x0, y0, and c measured in pixels. As a measure of
variability, the standard deviation for each parameter is included in both tables. It must be
noted that the exterior orientation parameters of the camera are also given with the purpose
of showing the camera locations in the different probes.

Tables 1 and 2 show that the highest variability when moving the camera to different
positions is reached in the projector calibration, for the Z direction (14 mm), κ parameter
(0.0214 gon) and y0 parameter (9.2 pixels). Nevertheless, these values of standard deviation
represent 2.8%, 0.36%, and 0.91% of the maximum values shown in the corresponding col-
umn. Therefore, these results show that SCPM yields a low level of variability and require
a minimum effort for calibration.

The professional setup consists of a 180 sgi Silicon Graphics cylindrical surface with a
radius of 3.75 m and 3.0 m height, and a Canon©PowerShot G12 camera. The camera has
up to 10 MP resolution (2816x2112 resolution setup was used) and integrated optics with
varying focal lengths from 6.1 to 30.5 mm (the minimum value was used in order to have
a greater field of view). Although the cylindrical surface commercial system has its own
projectors, we used for the professional setup the same projector as in the laboratory setup,
in order to achieve comparable results. The surface had a 40×9 grid of small white circular
shaped control points (ca. 2.5 mm of radius) that were sensitive (and thus visible) under
black light conditions. Six of those points where taken as control points. Distances a, b, c
and h were measured in the same way as in the laboratory setup.

Like in the laboratory setup, the camera was moved into 6 different positions, leading
to a total of 6 different probes. The obtained results are shown in Tables 3 and 4. These
tables show that the results for the projector calibration obtained with the professional setup

Table 2 Results of projector calibration in the laboratory setup

Probe X Y Z κ ϕ ω x0 y0 c

1 0.021 −0.156 0.539 5.8535 0.1401 0.4402 631.0 984.0 797.7

2 0.019 −0.168 0.546 5.8709 0.1385 0.4236 631.3 995.6 803.0

3 0.020 −0.180 0.580 5.8857 0.1508 0.4034 627.0 1012.5 820.7

4 0.020 −0.165 0.553 5.8879 0.1334 0.4054 635.2 993.9 816.4

5 0.026 −0.165 0.548 5.8868 0.1399 0.4049 633.1 995.7 806.1

6 0.013 −0.163 0.556 5.9181 0.1344 0.3764 629.6 993.8 815.7

Dev. 0.004 0.008 0.014 0.0214 0.0062 0.0215 2.8 9.2 9.0



Multimed Tools Appl (2019) 78:1457–1471 1465

Table 3 Results of camera calibration in the professional setup

Probe X Y Z κ ϕ ω x0 y0 c

1 4.090 0.071 0.699 315.0 57.0161 80.01 1285.8 1032.5 2082.3

2 2.979 0.072 −0.222 327.9 47.7263 64.90 1320.8 1017.6 2077.3

3 1.342 1.522 2.400 318.7 12.3957 81.68 1377.1 1072.9 2153.8

4 −0.438 1.519 2.200 70.1 6.0726 −67.85 1406.4 1073.3 2145.7

5 −0.124 1.124 1.683 88.0 3.4133 −88.13 1464.0 1065.8 2149.1

6 −0.313 1.135 2.181 98.6 4.6643 −97.40 1437.7 1066.9 2128.3

Dev. − − − − − − 68.5 23.7 34.4

are not better than those of the laboratory setup. This is an expected result, because the
professional surface (and thus the working volume) is greater than the one considered for the
laboratory setup, although the camera of the professional setup has a greater resolution. In
the professional setup, the major variability also is achieved in the Z direction (31 mm) and
κ (0.0049 gon), whereas x0 and y0 give similar results (4.7 and 4.5 pixels, respectively). It
also draws the attention the fact that a greater variability is obtained for the IO parameters of
the camera in the professional setup. A way of reducing this variability could be to increase
the number of control points.

5 Application examples

5.1 Image warping

Once the projector orientation parameters have been obtained, it is possible to project on
the cylindrical surface (whose geometry is known) any point in a 3D known position. In
the same way, images can be mapped into any known surface. As an example, Fig. 5 shows
the implementation of three different mappings: Fig. 5a shows a wallpaper-like mapping,
Fig. 5b shows an orthogonal-like mapping, and Fig. 5c shows a perspective-like mapping.

In all cases, the original image i is first scaled to i’ in order to fit the size ratio of the
surface area where it should be mapped. Then, the mapping transformation is applied. The
name of the wallpaper-like mapping comes from the fact that it produces the same effect
as if the image was printed on a paper and attached to the cylindrical surface following its
curvature. Figure 5a shows how first the cylindrical surface is straightened to form a planar

Table 4 Results of projector calibration in the professional setup

Probe X Y Z κ ϕ ω x0 y0 c

1 −0.286 0.360 1.098 0.1628 0.4250 −0.1451 629.9 1037.6 834.1

2 −0.278 0.367 1.061 0.1627 0.4209 −0.1425 630.4 1030.4 832.1

3 −0.227 0.361 1.068 0.1559 0.4244 −0.1417 638.4 1031.8 828.1

4 −0.248 0.371 1.037 0.1613 0.4237 −0.1468 633.4 1028.6 825.6

5 −0.216 0.362 1.071 0.1509 0.4262 −0.1411 639.1 1035.0 832.1

6 −0.275 0.378 1.009 0.1553 0.4222 −0.1422 627.7 1025.0 824.6

Dev. 0.029 0.007 0.031 0.0049 0.0019 0.0022 4.7 4.5 3.9
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Fig. 5 Schematics of a wallpaper-like mapping; b orthogonal-like mapping; c perspective-like mapping

surface, and the image is orthogonally mapped. Next, the surface with the attached image
is again bended. In our implementation, the user can choose the height of the projection on
the cylindrical surface and the horizontal angle (w) that has to be covered.

The orthogonal-like mapping represented in Fig. 5b produces the same effect as if the
projection surface was planar when viewed at a certain distance to the surface. This kind
of projection can be used to project planar images to non-regular surfaces by producing
the effect that they are not distorted because of the surface geometry. The user can choose
the height and width that the projection has to cover on the cylindrical surface. Finally, the
perspective-like mapping shown in Fig. 5c tries to reproduce the human viewing, and it is
commonly used in virtual reality simulations. In this case, the user has to specify the coordi-
nates of the projection center, the distance to a virtual projection plane, and the dimensions
of that plane. In Fig. 5c two different projection planes that are at different distances from
the projection center (d and d’). In this way, this Figure shows how different the projections
on the cylindrical surface can be, depending on this parameter.

Next, we have used the laboratory setup described in Section 3 to compute the distor-
tions to be applied to an image in order to be projected on the cylindrical surface. As an
example, Fig. 6 shows the warped images and their projections on a cylindrical surface of
a checkerboard image. The images on the left side of this Figure show photographs of the
laboratory setup. In the case of wallpaper-like mapping, the projection covers a vertical dis-
tance of 0.3 m., and it is 120 horizontally opened. In the case of orthogonal-like mapping,
the projection is 0.3 m. high and 0.4 m. width. Finally, in the perspective-like mapping, the
projection center is located at coordinates (0.0, 0.3, 2.0), the projection plane is located at a
distance of 1.5 m. from the projection center and it is 0.3 m. high by 0.4 m. wide.

5.2 3-D object reconstruction

Once the camera and the projector have been calibrated, the projector-camera pair can act
as a stereoscopic system. That means that for any point projected onto any surface and
recovered by the camera, its 3D coordinates can be computed.

Equation (7) can be used in turn to derive the 3D object coordinates of each image point.
These equations are derived from (1) and (2) assuming that two rays intersect at XYZ,
where XYZ are the unknown object coordinates of a point, a1c . . . c3c are the 11 DLT calcu-
lated parameters for the camera, a1p . . . c3p are the 11 DLT parameters for the projector, xc,
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Fig. 6 Warped (left) and projected (right) images, where: a and b wallpaper-like mapping; c and d
orthogonal-like mapping; e and f perspective-like mapping

yc are the image coordinates of the principal point of the camera and xp, yp are the image
coordinates of the principal point of the projector.

⎡
⎢⎢⎣

a1c − xcC1c a2c − xcC2c a3c − xcC3c
b1c − ycC1c b2c − ycC2c b3c − ycC3c
a1p − xcC1p a2p − xpC2p a3p − xpC3p
b1p − ycC1p b2p − ypC2p b3p − ypC3p

⎤
⎥⎥⎦

⎡
⎣

X

Y

Z

⎤
⎦ =

⎡
⎢⎢⎣

−a4c + xc

−b4c + yc

−a4p + xp

−b4p + yp

⎤
⎥⎥⎦ (7)

Therefore, the proposed calibration method can be applied to recover the 3D shape of any
object by projecting a grid of points, and then using an automatic approach that identifies
correspondences between each projected point and the imaged point by the camera. Never-
theless, this can be tricky if the 3D surface is complex, as the grid recovered by the camera
may be quite different from the projected grid (regular or not), and thus some correspon-
dences may be erroneously established. However, correspondences can be unequivocally
assigned if the projector is used to sequentially illuminate point after point and the cam-
era is synchronized to recover those points. While the first strategy is fast because only one
image is needed, the second one is much slower as it needs to recover as many images as
projected points. Therefore, the first strategy can be used in real-time applications where
usually the object and/or the camera-projector system are moving and the accuracy is not
critical. The second strategy can be used to reconstruct static objects with greater accuracy.
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Fig. 7 3D object reconstruction: a registration procedure with a single projected point; b triangulated cloud
of points; c mesh with shadows

Apart from these techniques, other structured light techniques can be applied, which are out
of the scope of this paper.

As an example, Fig. 7 shows the 3D reconstruction of a mannequin body by using the
technique of illuminating point after point and using the laboratory setup as described in
Section 3. A total of 5,000 points were recovered, which were afterwards triangulated (as
shown in Fig. 7b) and meshed for visualization purposes (as shown in Fig. 7c).

6 Conclusions

In this paper, we have proposed a fast and easy-to-use projector calibration method need-
ing a minimum set of input data, which reduces the required calibration time. The method
is based on the Direct Linear Transformation (DLT) mathematical model, which makes it
simple and fully automatic. We have shown the application of this method on cylindrical
surfaces. The results show that with the minimum configuration of 6 control points (CPs),
the standard deviation in the projector positioning yielded by the calibration process is less
than one per cent of the position values. Also, we have used the proposed method in some
real application examples, validating it as an efficient method for real cases.
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