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Abstract Collaborative Augmented Reality (CAR) systems based on mobile phones
have experienced a huge expansion last years, since the hardware features of most
mobile phones provide excellent multimedia services and wireless network capabil-
ities. In previous works, we improved the performance of large-scale CAR systems
based on mobile phones that use fiducial marker tracking. However, CAR systems
based on natural feature tracking have just emerged, changing the way in which Aug-
mented Reality applications work. In this paper, we propose the performance evalua-
tion of CAR systems based on feature tracking when using mobile phones, and their
comparison with CAR systems based on fiducial marker tracking. The evaluation of the
whole CAR system includes the rendering of the virtual environment with Unity3D.
The purpose is to provide the reader with a reference about the performance that can be
achieved with each kind of CAR system. The evaluation results of client devices show
that they work faster with natural feature (commonly denoted as markerless) tracking
than with fiducial marker tracking, regardless of the phone model and the operating
system considered. The evaluation results of the whole CAR system show that natural
feature tracking provides similar performance than fiducial marker tracking when the
system reaches saturation. However, the use of natural feature tracking allows better
performance for low workloads or when the system approaches saturation, since, it
provides similar response times at the cost of increasing the percentage of CPU utiliza-
tion in the server, instead of dropping messages. These results validate natural feature
tracking as the best option for CAR systems based on mobile phones.
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1 Introduction

Current mobile phones include full color displays, integrated cameras, fast processors
and even dedicated 3D graphics chips. Due to their comprehensive hardware, these
wearable devices have become an ideal platform for Collaborative Augmented Reality
(CAR) systems [10,11,14].

Collaborative Augmented Reality systems are Augmented Reality systems where a
user with a wearable device can collaborate with a remote user at a desktop computer
[17]. Augmented Reality (AR) superimposes multimedia content—3D object, text,
sound, etc—on real world through a display or screen. To locate digital contents on a
specific image of the real world point, some references within the image are needed.
These references are known as markers. Thus, any CAR application continuously
performs a four-stage cycle. The first stage is denoted as image acquisition stage, and
it consists of obtaining an image from the camera’s flow. In the second stage, one or
more markers within the obtained image should be detected. Using the position of
these markers, the third stage consists of drawing a 3D object on the image. Finally,
in the fourth phase, some information [for example, the position(s) of the marker(s)]
is sent to the other application nodes through some kind of broadcast communication.

Two methods are usually used in CAR applications for the marker detection stage:
natural feature tracking and fiducial marker tracking. The former method uses interest
point detectors and matching schemes to associate 2D locations on the video with
3D locations [24]. This process can be grouped into three big phases: interest point
detection, creation of descriptor vectors for these interest points, and comparison of
vectors with the database [13]. The latter method uses fiducial markers to find a specific
position in the image of the real world. This process can be divided into three phases:
edge detection, rejection of quadrangles that are too large or too small, and checking
against the set of known patterns [24].

On other hand, there is a wide variety of current mobile phones, with different
graphic and processing capabilites, and different operating systems. The most extended
OSs for mobile phones are Nokia Symbian, Google Android OS (commonly referred
as Android), RIM/Blackberry, Apple iOS, Microsoft Windows Mobile/Phone 7 and
Samsung Bada [1]. In this work, we are focusing on two of them, Android and iOS,
because they share the vast majority of the current market [8]. The wide variety of
mobile phone platforms can have significant effects on the performance of the CAR
application, in terms of system latency, frames per second or number of supported
clients with certain latency levels, etc. For that reason, in previous works, we char-
acterized the behavior of different mobile phones for AR marker tracking, and we
also proposed some improvements for CAR systems based on fiducial markers and
mobile phones as client devices [2,6]. However, the advent of Vuforia [18], released
by the ARM-processor company Qualcomm at the end of the 2011, has allowed the
widespread use of markerless-based CAR applications worldwide. The reason for its
popularity is that, unlike another approaches such as NyARToolkit [15] or MetaiO
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[23], the VuforiaSDK supports for more than 400 different smartphones and tablet
models, and it tracks real objects on the current frame with a impressive fluidity
and reliability. To test the performance of the Vuforia SDK, we made a preliminary
study [5].

In this paper, we propose a comparison study of CAR systems based on mobile
phones and feature tracking, including a complete application with a graphical envi-
ronment, with the same application developed using fiducial marker tracking. The
goal of this work is to provide the reader with a reference about the performance
that can be achieved with each kind of CAR systems. To achieve this goal, we have
developed some example application cases and graphical interfaces using Unity 3D
[7,27]. The evaluation results of client devices show that they work faster with fea-
ture tracking than with fiducial marker tracking, regardless of the phone model and
operating system considered. These results leave no space to improvements. Also,
we have simulated CAR systems with client devices showing the behavior of the
considered phone models. We have simulated different application examples, includ-
ing the rendering of the virtual environment with Unity 3D, with up to 1,000 client
devices. The characterization results of the whole CAR system show that natural
feature tracking provides similar performance than fiducial marker tracking when
the system reaches saturation. However, the use of natural feature tracking allows
better performance for low workloads or when the system approaches saturation,
since it provides similar response times at the cost of increasing the percentage
of CPU utilization in the server, instead of dropping messages. These results vali-
date natural feature tracking as the best option for CAR systems based on mobile
phones.

The rest of the paper is organized as follows: Sect. 2 shows a brief description of
some related work about AR applications on mobile phones. Section 3 shows some
of application examples developed for the proposed characterization. Section 4 shows
the characterization of some models of some popular types of client devices. Next,
Sect. 5 shows the characterization of the whole system from the server point of view.
Finally, Sect. 6 presents some concluding remarks.

2 Related work

Smartphones, tablets, UMPC or even lightweight backpack PCs have been widely
employed as hardware platforms for the development of mobile Augmented Reality
systems [16]. These systems allow users to move freely in real environments and
have their hands free for input and interaction [20]. As in conventional Augmented
Reality systems, the 2D/3D object tracking is a key aspect when developing mobile
AR systems. In this sense, fiducial markers and predefined natural features [24,25]
have been used for camera pose estimation. There are few solutions based on fiducial
marker tracking over mobile phones. In 2003, ArToolKit [12], one of the most well-
known software libraries for developing AR application, was released for Windows
CE, and the first self-contained application was developed for mobile phones [26].
This software evolved later as the ArToolKitPlus tracking library [24]. A tracking
solution for mobile phones that works with 3D color-coded marks was developed
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[14], and a version of ArToolKit for Symbian OS was developed, partially based on
the ArToolKitPlus source code [10].On other hand, the new software and hardware
advances for mobile technologies allowed the development of markerless tracking
techniques, which overcome the limitations of fiducial markers [24]. In this sense,
computational complex approaches based on natural features (typically edges, cor-
ners or textures) use real object as targets (instead of invasive and artificial markers)
for tracking purposes. Thus, as the computational power of recent mobile devices
has increased, multi-target detection techniques and texture planar targets [25] have
been included in the most important software frameworks for the development of AR
mobile applications, such as Metaio [23], String AR [22] or Vuforia [18]. Although
the performance characterization and optimization of mobile AR using this type of
tracking have been analyzed on handheld platforms [21], to the best of our knowledge
there are still no comparative studies that help the user to select which type of tracking
is the most appropriate one when collaborative AR systems with many clients should
be deployed.

3 Application examples

For characterization purposes, we have implemented two different application exam-
ples with the Vuforia SDK. We have developed full graphical interfaces using Unity 3D
[7,27] for these applications. The first example is a 3D engine, where the CAR appli-
cation consists of different user workgroups simultaneously visualizing and changing
different parts of the engine. From a collaborative point of view, it is crucial that each
time that a client changes something in the engine, the rest of the clients within the
same workgroup properly update and display the current state of the engine. Since
the view of the engine should be shared among all the users in the workgroup, but
there should be different views of the engine for different workgroups, for evalua-
tion purposes we have used this example with non-realistic engine sizes, to allow the
same number of clients than in the other application example. The second example
consists of a 3D warehouse, where clients simultaneously move the existing pieces
of the stock. In this case, the workgroups are formed by those clients displaying the
same shelves, and the warehouse can have different number of shelves, depending
on the total number of clients. In this case, the relative size of the warehouse allows
even hundreds of client devices displaying the same shelf. The users handle boxes,
and they can move them from one shelf to another or to/from the lorry in the dock.
The server displays each of these actions in an application developed with Unity 3D.
Also, each time that a client performs an action with a box, the rest of the clients
displaying the shelf should update their view. In both application examples, we have
considered from 100 to 1,000 clients. For illustrative purposes, Fig. 1 shows a snap-
shot of the second application example (due to space limitations, we only include
a snapshot of one of the application examples). The feature tracked is each labeled
box (in the warehouse example) or the spare part to be replaced (in the case of the
engine), and the percentage of success in the tracking was supposed to be 100 % ,
since it is the assumption that generates the highest workload to the server (the worst
case).
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Fig. 1 A snapshot of an application example consisting of a warehouse

Table 1 Hardware features of
the considered mobile phones

OS Android iOS

Model Milest. Desire iPh 3GS iPh 4

CPU (MHz) 550 998 412 800

RAM (MB) 256 512 128 512

Camera (MP) 5.02 4.92 1.92 4.92

4 Clients characterization

The first step in improving the performance of CAR systems based on markerless
tracking is the characterization of client mobile phones, in terms of both the time
required by the system to complete each CAR stage, and the time required by each
smartphone to complete a CAR cycle. Since we already performed a characteriza-
tion with an implementation using fiducial markers [3,6], a performance comparison
is made. For characterization purposes, the application performs the sending of the
positions of the tracked markers.

We have tested two different mobile phones using Android and another two mobile
devices using iOS operating system. We have selected the same phone models for
comparison purposes with our previous studies for CAR systems based on fiducial
markers. Table 1 shows the main features of these mobile phones. For the Android
operative system, we have considered the Motorola Milestone, with 550 MHz of CPU
frequency, and HTC Desire, with almost double CPU frequency (998 MHz) and RAM
memory (512 MB). For the iOS operating system, we have considered the iPhone
3GS, with 412 MHz of CPU frequency, and iPhone 4, with double CPU frequency
(800 MHz). All of them include a 5 megapixels (5 MP) resolution camera, except
iPhone 3GS, which equips a 2 megapixels (2MP) resolution camera.

We have used as testbed implementations the developer examples included in the
Qualcomm site for both the Android and iOS [19] operating systems. These imple-
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Table 2 Execution time (ms)
per stage for each considered
mobile phone for both systems

NyARToolKit and ARToolKit Plus

Phases (ms) Camera Detection Render Sending Total

Milestone 248.64 288.53 30.42 14.14 698.34

Desire 40.25 78.08 13.23 5.54 167.11

iPhone 3GS 33.29 58.07 28.26 15.42 398.21

iPhone 4 17.66 182.17 23.34 7.06 523.26

Qualcomm

Phases (ms) Camera Detection Render Sending Total

Milestone 19.58 3.95 2.38 15.06 86.41

Desire 9.97 18.03 1.76 8.48 56.68

iPhone 3GS 11.06 8.23 14.29 17.38 145.53

iPhone 4 8.15 6.21 17.85 9.68 105.91

mentations are very similar, in fact Qualcomm first implemented the Objective-C
version, and then they used JNI to get the Android version. We added the sending step
described above to these implementations, converting the AR application into a CAR
application. This step involves a simple socket used to send to the server the position
obtained each cycle from the real world.

To show the execution time for both CAR applications, Table 2 shows the same
results when using fiducial markers (the upper part of the table, labeled with the name
of the libraries used, NyARToolKit and ARToolKit Plus) and the results obtained with
the markerless implementation (labeled with the name of the library used, Qualcomm).

Each row in Table 2 presents the results for a different mobile phone. The first
two rows show mobile phones using Android OS (representative examples high-end
and middle-end devices), and the last two rows show mobile phones executing iOS
(idem). The same devices are used for markerless tracking, in the lower part of the
table. The first four columns represent each phase of the CAR applications, and the last
one represents the total time needed to complete a cycle. All values are represented in
milliseconds (ms), and they correspond to average values. As it can be seen, the system
based on markerless tracking is much faster than the system based on fiducial markers
in each CAR stage, except that in sending stage, where both systems show similar
times. This is due to the fact that the sending step exclusively depends on the network
parameters and status. In this sense, the same network with the same configuration
were used for both characterizations.

Table 2 shows that the time required for the image acquisition stage in the markerless
tracking system is, at least, the half time required by the fiducial marker system (the
case of iPhone 4), while for the case of iPhone 3GS it works here three times faster,
from 33′29 to 11′06 ms. However, the best improvement is achieved for the Milestone,
passing from the 248′64 ms required by the fiducial marker tracking to only 19′58ms
required by the markerless tracking.

Regarding the second stage, the performance differences are even larger. The time
required for completing this stage by the markerless implementation is at least one
quarter of the time required by the fiducial markers implementation. The reason for this
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Table 3 Throughput (in FPS)
and RTT for each smartphone in
both systems

NyARToolKit Qualcomm

FPS RTT (ms) FPS RTT (ms)

Milestone 1.43 14.14 11.57 15.06

Desire 5.98 5.54 17.64 8.48

iPhone 3G 2.51 15.42 6.87 17.38

iPhone 4 1.91 7.06 9.44 9.68

behavior is difficult to find, since Qualcomm does not provide the source code of the
implementation, but the compiled library. It is also worth mention that each considered
device provides different image resolutions, and the size of these resolutions is very
different from Android devices to iOS devices. As shown in our previous works [3],
it is not the same to analyze a image of 320 × 480 pixels searching a marker that
performing the same task for an image of 1280 × 720 pixels, because the last one
needs too much time to be analyzed. Regarding the third stage, Table 2 shows that the
markerless implementation does not improve this stage for all the considered devices,
as it is the case for the iPhone 4, which requires a similar time in both implementations.

Finally, the last column represents the time (in ms) required by each device to com-
plete a CAR cycle when using a given implementation. Comparing the two implemen-
tations, we can conclude that all devices work at least three times faster when using the
markerless implementation. Therefore, the markerless implementation provides better
performance not only for high-end devices but also for low or middle-end devices. One
reason that can contribute to these results is that the fiducial marker tracking imple-
mentations were not designed explicitly for the current mobile phones. However, the
main reason is the efficient markerless implementation, although we cannot deeply
analyze its performance because it is not an open source code.

To show the practical effects of the performance achieved by both implementations,
Table 3 shows the same values shown in Table 2, but expressed in performance para-
meters like Frames Per Second (FPS), that is, the amount of CAR cycles done in one
second, and the Round Trip Time (RTT). As described before, each row represents
the devices that we are using. The FPS are shown in the first column. The RTT values
are represented in the second column (in ms), and they correspond to the values in the
fourth stage showed in Table 2.

Table 3 shows that the slower device when using the Qualcomm implementation is
the iPhone 3GS, working almost over 7 FPS. This “slowest” FPS on Qualcomm is faster
than any of the performance results obtained with NyARToolKit or ARToolKit Plus,
whose fastest device was the HTC Desire, with a FPS of almost 6. These results show
that natural feature tracking provides better results for CAR applications executed on
mobile phones than fiducial marker tracking, leaving no space for improvements.

5 CAR system performance

In the CAR server side, we have developed a multithreaded CAR server that sup-
ports simulated clients (simulated mobile devices) with the behavior measured in
the characterization part, as we did for marker-based CAR systems [3,6]. We have
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Table 4 System performance for the Apple iPhone 3GS smartphone

iPhone 3GS

WG 5 25

RT Dev CPU RT_S % L RT Dev CPU RT_S % L

100 6.43 3.53 19.20 3.10 0 9.25 6.42 71.63 3.82 0.82

300 9.44 7.31 29.10 4.29 0 28.53 37.83 80.53 13.03 0.94

500 8.96 12.66 42.63 4.26 0 53.52 35.90 83.90 25.16 0.92

700 12.10 20.22 59.63 5.14 0 77.87 55.10 84.57 37.50 0.98

900 8.14 20.92 72.83 3.41 0 102.51 72.44 84.73 49.56 1.03

1000 7.03 16.51 74.83 2.71 0 124.03 83.96 84.73 59.93 0.99

time-stamped every message generated within this CAR system, to measure the per-
formance of every device. The system configuration consists of one server, and a
certain number of mobile devices that are scanning the visual space of their video
camera, looking for a marker that will be converted into a 3D object in their display.
The action cycle performed by each client is composed of the following steps: first,
it performs one new image acquisition followed by a marker detection stage. Then,
the client waits until the cycle period (determined by the action frequency, a system
parameter) finishes. Next, if the acknowledgments from all the neighbors have been
received, then a new message with the new marker location is sent. If all the acknowl-
edgments have not been received, then it waits for a maximum waiting threshold of 20
seconds, and then a new round of messages (with the latest marker location) are sent
to the neighbors through the server. The neighbors simply return an ACK message
to the sender device through the server. The server simply forwards the messages to
the corresponding destination clients. We have simulated a CAR system containing
client devices with that behavior. Like in the case of fiducial marker tracking [4],
we have used a server based on UDP sockets. We have performed tests on the CAR
system with different numbers of client devices (from 100 to 1,000), and different
numbers of neighbors inside the workgroup (5, 10, 20 and 25). Due to space limi-
tations, we will only show here the results for CAR systems using two intermediate
client devices, the Apple iPhone 3GS and the HTC Desire, as representative example
of mid-range mobile devices. For each device, we show the results for workgroup sizes
of 5 and 25 neighbors, since they represent the lowest and highest system workload,
respectively.

Table 4 shows the CAR system performance when all the client devices are iPhone
3GS smartphones (with and action cycle of 145,53 ms, according to Table 2). This
table comprises two subtables, for the cases of 5 and 25 devices per working group. A
working group is the subset of neighbor client devices that are collaborative working on
the same task (displaying the same scene), and therefore they are the subset of neighbor
devices to which the marker location should be sent in each cycle. The greater working
group size, the higher number of messages should be sent and acknowledged per each
cycle. To obtain comparable results with the case of fiducial marker tracking [4], the
messages containing the marker location are sent through the server (that is, it sends
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the location update message to the server, and then the server re-sends the message to
the appropriate clients). For performance evaluation purposes, the destination clients
return an acknowledgment message (ACK) to the server, which, in turn, forwards it
to the source client.

The first (most left) column in each subtable of Table 4 shows the number of
simulated devices in the CAR system. The next five columns, from left to right, show
the average system response time for all the clients (measured in ms), labeled as “RT”,
and its standard deviation (labeled as “Dev”). This response time is measured as the
time elapsed since the origin client device sends a new position to the server until the
instant when the origin device receives all ACKs from its neighbors in the workgroup.
The third column shows the percentage of CPU utilization in the system server during
the simulation. The fourth column represents the server’s response time, measured as
the time elapsed since the server sends a message to a client until the instant when
the server receives the answer to that message. Finally, the last column represents the
percentage of lost packets (this server works with UDP sockets) in regard to the total
number of messages exchanged.

Table 4 shows that for a working group size of 5 devices the latency remains almost
constant, around 10 ms. The standard deviation increases slightly as the population
increase, from 3′53 to almost 21 ms. The CPU consumption also increases but does not
reach 75 %. The response time in the server also remains constant, and packets are not
dropped. That is, when all the clients in the CAR system are iPhone 3GS terminals and
the working group size is 5, then the system works under a low workload, even when
supporting one thousand clients. The results obtained for a working group size of 25
devices show both longer response times and higher percentages of CPU utilization.
However, the longest response time (obtained for the highest number of clients in the
system, as it could be expected) is around half of the interactivity threshold value (250
ms) [9]. Nevertheless, the column labeled as “CPU” shows that the system reaches
saturation, since with 600 clients the percentage of CPU utilization is very close to
85 %. Also, the column labeled as “RT_S” shows that a significant part of the total
response time is due to the server response time. The reason for this behavior is that
in spite of entering saturation, the system provides interactive average response times,
because some messages (a very low percentage of messages) are dropped.

Table 5 shows the results for the same CAR system when all the client devices are
HTC Desire mobile phones. The actuation cycle of this device is 56′68 ms. Since it
is three times faster than the Apple iPhone3 GS, it represents a higher workload for
the server. As a result, Table 5 shows a similar behavior to the one shown in Table 4,
except that the response times are higher.

Finally, for comparison purposes, Table 6 shows the results obtained for a marker-
based CAR system (ArtToolkit Plus libraries) when using as client devices HTC Nexus
One mobile phones [4]. This model of mobile phone has an action cycle of 167.11
ms, similar to the one of the iPhone 3GS when using the Vuforia SDK. The hardware
features of this mobile phone are similar to the ones of the HTC Desire.

The comparison of the left half of Table 6 (marker-based server) with the left half
of Table 4 (markerless server) shows that there are similar response times for small
workgroup sizes (5 clients). Also, the rest of the columns in both subtables show
similar values. However, the comparison of the right half of both tables shows that
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Table 5 System performance for the HTC Desire smartphone

HTC Desire

WG 5 25

RT Dev CPU RT_S % L RT Dev CPU RT_S % L

100 5.96 3.27 24.77 2.70 0 11.77 6.58 70.33 4.30 0.48

300 3.62 3.34 64.93 1.68 0 29.96 21.11 79.83 13.29 0.82

500 59.71 43.59 84.33 28.59 0 59.76 55.61 84.30 26.81 0.99

700 87.02 29.87 83.77 37.39 0 85.62 45.93 83.50 36.31 0.97

900 94.89 56.81 86.10 33.73 0 129.14 108.77 83.67 24.31 0.69

1000 97.84 56.15 82.37 33.82 0 205.43 179.12 80.50 33.01 0.52

Table 6 Results for a marker-based CAR system with HTC Nexus One client devices

HTC Nexus One

WG 5 25

RT Dev CPU RT_S % L RT Dev CPU RT_S % L

100 4.80 7.06 38.40 1.95 0 9.86 6.78 72.50 4.06 0.83

300 9.57 9.74 26.00 4.44 0 26.01 21.91 79.60 11.61 0.69

500 4.59 6.41 41.60 1.81 0 48.68 39.68 83.80 22.84 0.74

700 5.28 8.24 53.00 2.11 0 79.70 97.87 85.10 37.26 0.76

900 5.85 11.69 66.30 2.61 0 93.64 66.36 83.90 40.71 0.93

1,000 7.15 15.47 69.50 2.87 0 122.37 85.35 85.00 44.98 0.90

for large workgroup sizes (25) which generate a higher workload, both systems reach
saturation (percentages of CPU utilization around 85 %), they provide similar response
times within the same range (half of the interactivity threshold value), and they drop
similar percentages of messages.

These results show that natural feature tracking provides similar performance than
fiducial marker tracking, with no significant differences between these two marker
detection methods. Therefore, we can conclude that from the system point of view,
natural feature tracking provides similar performance to CAR applications than fidu-
cial marker tracking.

6 Conclusions

In this paper, we have proposed the performance evaluation of CAR systems based
on natural feature tracking when using mobile phones, and its comparison with CAR
systems based on fiducial marker tracking. The evaluation of client devices show that
they work faster with markerless tracking than with fiducial marker tracking, regardless
of the phone model and operating system considered. The evaluation results of the
whole CAR system show that natural feature tracking provides similar performance
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than fiducial marker tracking. These results show that to take advantage of the ever-
increasing computational power of current mobile phones, natural feature tracking is
the best option for CAR systems based on mobile phones.
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