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Abstract This paper presents the experimental analysis of mobile phones for Aug-
mented Reality marker tracking, a core task that any CAR application must include.
The results show that the most time consuming stage is the marker detection stage,
followed by the image acquisition stage. Moreover, the rendering stage is decoupled
on some devices, depending on the operative system used. This decoupling process
allows avoiding low refresh rates, facilitating the collaborative work. However, the
use of multicore devices does not significantly improve the performance provided by
CAR applications. Finally, the results show that unless a poor network bandwidth
makes the network to become the system bottleneck, the performance of CAR appli-
cations based on mobile phones will be limited by the detection stage. These results
can be used as the basis for an efficient design of CAR systems and applications based
on mobile phones.

Keywords Collaborative augmented reality · Marker tracking · Mobile phones

1 Introduction

Since the beginning of Augmented Reality (AR) systems, the potential of collab-
orative AR (CAR) systems was exploited for different activities like Collaborative
Computing [5] or Teleconferencing [4]. Wearable devices were used to provide CAR
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systems where a wearable AR user could collaborate with a remote user at a desktop
computer [9, 18].

On other hand, the continue improvement in silicon technology, together with
the evolution of design methodologies, allowed to integrate complex computing
Systems-on-Chip (SoCs). As a result, a lot of devices comprising a computing em-
bedded system pervade our daily life, and they have been used for CAR systems. One
of these devices are mobile phones [11, 15].

An essential process that takes place in any CAR application is the process of the
AR marker tracking. Augmented Reality superimposes multimedia content—3D ob-
ject, text, sound, etc.—on real world through a display or screen. In order to locate
digital contents on a specific image of the real world point, some references within
the image are needed. These references are known as markers, and two methods are
usually used to track them: natural feature tracking and fiducial marker tracking. The
former method uses interest point detectors and matching schemes to associate 2D
locations on the video with 3D locations [22]. This process can be grouped in three
large phases: interest point detection, creation of descriptor vectors for these inter-
est points, and comparison of vectors with the database [12]. The latter method uses
fiducial markers to find a specific position of real world. Taking into account that
CAR applications should be interactive, the design of an efficient marker tracking
process must take into account these effects in order to fulfill the required specifica-
tions. However, the wide variety of current mobile phones, with different graphic and
processing capabilites, and different operating systems, can have significant effects
on the AR marker tracking process, in terms of system latency, frames per second or
number of supported clients with certain latency levels.

In this paper, we propose an in-depth performance characterization of different
mobile phones for Augmented Reality marker tracking, starting from some prelimi-
nary results [3]. We have implemented a simple Augmented Reality marker tracking
application on a real system, and we have measured the performance achieved with
different mobile phones. In order to ensure a representative study of the mobile phone
market, we have considered different mobile phones based on two different operating
systems (OS): Android OS [7], and iOS [2].

The results show that the most time consuming stage is the marker detection stage,
followed by the image acquisition stage. Therefore, any improvement of the CAR ap-
plications (categorized as CPU-intensive but not memory-intensive [19]) should be
addressed to improve these stages. Moreover, the rendering stage is decoupled on
some devices, depending on the operative system used. This decoupling process al-
lows avoiding low refresh rates, facilitating the collaborative work. Therefore, CAR
applications can provide better performance if the terminals use this operating sys-
tem. However, this stage can be programmed to work as in iOS operating system in
ad-hoc implementations. On other hand, the use of multicore devices does not sig-
nificantly improve the performance provided by CAR applications. The results also
show that some recent mobile phones like iPhone 4 [2] only works with high reso-
lution images. As a result, these mobile devices need a lot of time for detecting the
markers in the camera image. These results can be used as the basis for an efficient
design of CAR systems and applications based on mobile phones.

The rest of the paper is organized as follows: Sect. 2 presents some details on how
AR marker tracking is implemented on mobile phones. Next, Sect. 3 describes the
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Fig. 1 A description of the
most common stages in the AR
marker tracking process

characterization setup, and Sect. 4 shows the characterization results. Finally, Sect. 5
presents some conclusions and future work to be done.

2 CAR applications on mobile phones

Any CAR application needs a device equipped with an on-board camera, CPU and
display. The most common devices used for CAR applications are Tablet PCs or mo-
bile phones. We will focus on mobile phones, because they are more wearable devices
than tablet PCs and, therefore, they are more suitable for many CAR applications de-
signed for daily life common situations [21].

There are different kinds of mobile phones, with different operative systems (OS)
and capabilities. The most extended OSs for mobile phones are Nokia Symbian,
Google Android OS (commonly referred as Android), RIM/Blackberry, Apple iOS,
Microsoft Windows Mobile/Phone 7, and Samsung Bada [1]. In this work, we are
focusing on two of them, Android and iOS, because they share the vast majority of
the current market [8].

The Augmented Reality marker tracking process in CAR applications can be split
into four stages, as depicted in Fig. 1: The first stage is denoted as image acquisition
stage, and it consists of obtaining an image from the camera’s flow. In the second
stage, markers are detected from the image obtained before. Using the position of
this markers, the third stage consists of drawing a 3D object on the image. Finally, in
the fourth phase, this information (for example, the position(s) of the mark(s)) is sent
to the other application nodes through some kind of broadcast communication.

The first three phases are similar on any AR application [22], but the last one
can be performed by using different technologies like WiFi, 3G or Bluetooth [20].
Although there are some classic CAR applications that uses Bluetooth, usually WiFi
or 3G technologies are used, since the use of Bluetooth severely limits the spatial
range of transmission.
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Table 1 Hardware features of the considered mobile phones

OS
model

Android iOS

Milest. Nex. one S.G.SIII iPh 3GS iPh 4 iPh 4S

CPU TI OMAP Qual. 32 bit Samsung Samsung Apple Apple A5

3430 QSD8250 Exynos 4412 S5PC100 APL0398 APL0498

Freq. (MHz) 550 998 1400 412 800 800

GPU SGX530 Qual. ARM SGX535 SGX535 PowerVR

Adreno200 Mali-400 SGX543MP2

RAM (MB) 256 512 1024 128 512 512

Camera (MP) 5.02 4.92 7.99 1.92 4.92 7.99

N. of Cores 1 1 4 1 1 2

3 Characterization setup

In this work, we propose the characterization of each of the stages of a CAR with
marker tracking over different mobile phones. For characterization purposes, we have
considered the coordinates of the mark(s) found within the image as the information
that the client should send to the server. We have considered both single core de-
vices and multicore devices for characterization purposes. Also, we have tested two
different mobile phones using Android and another two mobile phones using iOS op-
erating system (when studying single core devices). Table 1 shows the main features
of these mobile phones, including the CPU, GPU models, RAM capacity, camera res-
olution and number of cores. For the Android operative system, we have considered
the Motorola Milestone, with 550 MHz of CPU frequency, and Nexus One, with al-
most double CPU frequency (998 MHz). The Motorola Milestone terminal executes
the Android 2.0 version, while the Nexus One terminal executes the Android 2.1 ver-
sion. For the iOS operating system, we have considered the iPhone 3GS, with 412
MHz of CPU frequency, and iPhone 4, with double CPU frequency (800 MHz). Both
the iPhone 3GS and iPhone 4 execute the iOS 4.3.2 version. All of them include a
5 megapixels (5 MP) resolution camera, except the iPhone 3GS, which equips a 2
megapixels (2 MP) resolution camera. Regarding the GPU, the Milestone and both
iPhone models contain PowerVR SGX graphical drivers, while the Nexus One has a
Qualcomm GPU. Regarding Android OS, we have tested one low-end mobile phone
called Motorola Milestone, a middle-end device named Nexus One, and a high-end
multicore device named Samsung Galaxy SIII. For iOS operating system, we used
an equivalent device to each category, which names are iPhone 3GS, iPhone 4 and
iPhone 4S, respectively. The features of each mobile are included in Table 1.

As we mentioned earlier, CAR applications are closely related with AR applica-
tions. In fact, CAR is an extension of AR that includes the communication stage, as
we will describe later. Previous studies on AR applications show that the mark size
does not affect performance in which the tracking computing is primarily CPU bound
and not influenced much by the operating system, and that the tracking performance
increases linearly with the CPU clock [19]. The problem of changing lighting con-
ditions is solved on ARToolKitPlus with an Automatic thresholding. The increased
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resolution on the camera provides only minimal improvement in the tracking quality
[22]. Our purpose is to analyze the amount of time that each stage needs to run, the
CPU consumption, the amount of memory that it requires, and the round-trip delay
of the data transmission. We have performed all the tests with a single mark, since
multi-marker tracking provides highly stable tracking [22].

Different types of markers are available, such as ARToolKit, ARToolKitPlus,
ARTag [6], ARSTudio, QR-Code, ShotCode, etc. However, the most widely used
are the first two ones, due to their source code availability [10]. For that reason, we
have selected the ARToolKitPlus library. ARToolKitPlus is the ARToolKit version
for mobile devices that, among other adjustments, eliminates the use of floating point
arithmetic. Concretely, we have used the ARToolKitPlus in its 2.1.1. version. Also,
we focus on two different operating systems that are widely used in mobile phones:
Android and iOS.

On the Internet, there are some implementations for Android and iOS that are
open sources. We have used them as a starting point to obtain an AR marker tracking
implementation. Concretely, for the Android implementation, we have used the code
provided in the NyARToolKit web site [16]. For the iOS implementation, we have
used the implementation made by Benjamin Loulier, which uses ARToolkitPlus, and
can be found on his blog [13].

NyARToolKit [17] is a version of ARToolkit that was exclusively written in Java;
it is a library of functions oriented to visual interpretation and integration of Vir-
tual Reality (VR) data into physical environments, including real-time camera vision
functionality, 3D rendering of virtual objects, using Open GL, and integrating both
into the output stream. Concretely, we have used the NyARToolKit version 2.5.2.
After obtaining the source code, we analyzed it to delimit each of stages of the AR
marker tracking process by adding timestamps. Then we added the sending stage,
creating a TCP socket that sends the information to a Server or other devices. Among
the different camera resolutions that offers Android, we have chosen the smaller one,
in order to provide a fast way to find the mark from the image obtained. Concretely,
we have used a resolution of 320 × 240 pixels for all mobile phones. For illustration
purposes, the pseudocode corresponding to the instrumentalized version of the code
(for the case of Android OS) is shown in Fig. 2.

We have developed two CAR applications starting from the AR libraries
NyARToolKit (Android) and the implementation made by Benjamin Loulier (iOS).
We added the send stage to these implementations in order to make them collabora-
tive, and using these codes we developed the particular applications. Figure 3 shows
two snapshots of the Android implementation taken during a test with real indus-
trial elements. In this case, the system has been used as a remote assistant to control
some critical steps in a car maintenance procedure. Concretely, the disconnection of
the sixteen ignition coil connectors in an 8-cylinder BMW engine, as shown in the
figure, should be carried out in a proper sequence in order to avoid important dam-
ages in the electrical installation of the engine. The two snapshots show two different
steps of the repairing process: the release of some connectors and the extracting of
an ignition coil.

As mentioned before, for iOS devices, we used the implementation developed by
Benjamin Loulier [13], based on ARToolKitPlus [22]. Among the features provided
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begin
1. timeC1 //Camera_s tarts
2. mCameraDevice.setOneShotPreviewCallback(mOneShotPreviewCallback);
3. cb.onP reviewFrame(data, null);
4. t imeC2 //Camera_ends

5. t imeM1 //MarkerDetect_starts

6. createNyART ool(width, height);
7. f ound_markers = nya.detectMarkerLite(raster, 100);
8. t imeM2 //MarkerDetect_ends

9. t imeR1 //Render_starts

10. gl.glMatrixMode(GL10.GL_MODELV IEW);
11. model[ar_code_index[i]].disables(gl);
12. t imeR2 //Render_ends

13. t imeS1 //Send_to_the_server

14. out.println(message);
15. while ((c = in.read()) ! = −1);
16. t imeS2 //Receive_ACK_f rom_the_server

end

Fig. 2 Pseudocode of the instrumentalized source code (Android)

Fig. 3 Some snapshots of the Android implementation obtained from a HTC Nexus One

by this application, we can found single marker detection (the marker detection is
done using an objective-c wrapper developed over ARToolKitPlus), loading of 3D
objects using custom XML and “.h” files (or “.obj,” but the parser is very slow for
now), and only one texture file is supported. The association between a markerID and
an object is done by using a XML exchange file, which in turn gives access to a GUI
to modify the display parameters associated to an object [14]. It also uses OpenGL
ES for rendering.

After getting the application, we did the same procedure as in the Android version:
analyzing its stages, putting time marks, and adding the sending stage, also with TCP
sockets. The pseudocode shown in Fig. 2 is also valid here.

In contrast to Android, iOS only provides two camera resolutions: full or half. In
half resolution, it obtains the same resolution that is in full resolution, but it only
analyzes one of every two pixels. In order to make the fairest comparison as possible,
we used half of the resolution, with a resolution of 400 × 304 pixels on the iPhone
3GS and a resolution of 1280 × 720 pixels on the iPhone 4.
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Fig. 4 Some snapshots of the iOS implementation using an iPhone 4 in a maintenance procedure

Figure 4 shows the use of the iOS implementation on an iPhone 4. In this case,
the system has been used as a remote assistant to control some critical steps in a
maintenance procedure. In this process, the on-site worker (which is repairing on-site
the machine at the factory) is guided by the qualified technician (at the laboratory)
until the maintenance/repair task is completed.

4 Performance evaluation

This section shows the performance evaluation of different mobile phones when used
in a CAR application. Concretely, we have measured the latency and the number
of frames per second that a CAR system could provide when using each model of
mobile phone, analyzing the time required for each CAR stage. We have measured
the latency (in milliseconds (ms)) as the time required for sending each new marker
location update from each device to the server. However, in distributed systems, the
latency of data exchanged among different devices cannot be measured with accuracy,
due to potential clock skews between the sending and the receiver clocks. In these
cases, the round-trip-time (RTT) is used, since it allows that the sending and received
instant are measured by the same clock. Table 2 shows these times together with the
total aggregated cycle time and its inverse value (FPS). We are looking for the most
time consuming stage and we want to see how mobile phone manage in each stage,
as well as see what OS must be chosen in order to achieve the best performance.

On Table 2, the first four columns show the average duration of each CAR stage
per cycle for each device, the fifth column shows the total aggregated cycle time
and the most right column shows the FPS. The column labeled as “total” shows the
time elapsed between two same phases in consecutive cycles, that is, the time elapsed
between two consecutive executions of the call “timeC1” in Fig. 2. So, it is the total
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Table 2 Execution time (ms)
per stage for each considered
mobile phone

Stages (ms) Acq. Detect Render Send (RTT) Total FPS

Milestone 248.64 288.53 30.42 14.14 698.34 1.43

Nexus One 40.25 78.08 13.23 5.54 167.11 5.98

iPhone 3GS 33.29 58.07 28.26 15.42 398.00 2.51

iPhone 4 17.66 182.17 23.34 7.06 523.26 1.91

iPhone 4S 1.19 114.64 6.37 8.30 182.46 5.48

Samsung SIII 60.05 9.34 5.90 7.90 128.02 7.81

time needed to complete a CAR cycle. As mentioned before, the FPS showed on
the most right column are obtained by converting the total time from milliseconds to
seconds and inverting the resulting value.

Regarding the single core devices, the Motorola Milestone provides the worst
throughput because it is six times slower in obtaining images, and almost twice slower
in detecting a mark, than the next in the list. In this sense, it is worthwhile mention-
ing the great difference between the Milestone and the rest of the considered devices
for the acquisition stage. The same goes for the rendering and sending stages, there
are also significant differences with other devices. On the other hand, the Nexus One
provides the best throughput, but this is a foregone conclusion because it is the faster
device in all the stages, except for the first one. In the Sending stage, the latency re-
mains almost constant (only ten milliseconds separate the best from the worst case),
as it could be expected, because it depends on network features more than the com-
puting capabilities of the considered mobile phone.

Table 2 also shows that the Android devices are faster than iOS phones because
the images captured from the on-board cameras equipped in the Android devices are
four times smaller than the images captured by an iPhone 4. In this sense, iPhone
3GS takes less time than Android devices to complete the marker detection stage
taking not only into account that the images captured by an iPhone 3GS has a size
similar to the images obtained by Android devices, but also the CPU of an Nexus
One (Android) is twice as powerful as the CPU included in an iPhone 3GS. In this
sense, the image acquisition process is twice faster on a iPhone 4 than the same stage
performed on an iPhone 3GS. However, the marker detection stage in the iPhone 4 is
three times slower than in the iPhone 3GS. Although the CPU of an iPhone 4 is twice
as powerful as the CPU included in an iPhone 3GS, the reason of this result is that
the images processed in an iPhone 4 are six times bigger than the images processed
by an iPhone 3GS. On the other hand, the iPhone 4 is slightly faster than the former
model for the sending and rendering stages, but both are twice slower than the fastest
Android in this last stage.

Regarding the multicore devices, the quad-core device (Samsung SIII) does not
provide a linear throughput with the number of cores with respect to the dual core de-
vice (iPhone 4S), and neither an inversely linear latency (RTT). Moreover, the single
core device Nexus One provides better throughput than the iPhone 4S, a dual core
device. Also, the latency (RTT) provided by the single core devices Nexus One and
iPhone 4 are lower than the latencies provided by both multicore devices. These re-
sults clearly show that the use of multicore devices improve slightly the throughput
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in CAR applications. This improvement is higher on iOS, since the iPhone 4 and the
iPhone 4S work both at the same frequency (800 MHz), and with only an extra core
the iPhone 4S obtains more than twice FPS. On the Android side, the benefits are
lower, since Samsung Galaxy SIII, with more computing power and three extra cores
only provides an increment of two FPS (from 5.98 to 7.81). So, it can be said that
iOS has a better use of the extra cores than Android. Therefore, we have not achieved
a significant improvement by adding new cores because the four stages described in
the previous sections are inherently sequential and, therefore, they cannot take ad-
vantage of the parallelism offered by multicore devices. In fact, the code executed in
both single core and multicore devices was exactly the same.

Although Table 2 shows execution times for very different devices and even sin-
gle core and multicore platforms and, therefore, this table does not represent a fair
comparison from the architectural point of view, it must be noticed that the purpose
of this work is to analyze the resulting latencies that the different phones can provide
to users in a CAR application, in order to select the best kind of device depending on
the application constraints. Thus, for example, different devices manage images with
very different resolutions, but CAR users/developers cannot change the resolution of
images; they can only design CAR applications taking into account the latency pro-
vided by each kind of device. In this sense, the only important factor is the resulting
latency, regardless the unfairness of the comparison.

Also, it could be expected that the total execution time is the aggregation of the
time required by each CAR stage. In fact, this situation occurs in single core Android
devices, which show a perfect matching between the total sum of the time required by
all the stages and the cycle time (the column labeled as “Total” in Table 2). However,
the cycle time in single core iOS smartphones is almost twice the aggregated time
required by the four stages. This unexpected behavior can be due to the fact that
Android applications do not need to manage the memory directly because they are
executed on a Virtual Machine (VM), which automatically manages the memory.
Alternatively, this unexpected behavior could be due to the fact that some CAR stages
in Android-based devices are implemented in independent threads, and they are not
executed in a blocking manner. As an example, the code for the rendering stage is
decoupled with the rest of the CAR stages (it is executed as a separated thread), and
it does not wait the update performed by the marker detection stage. In this way, when
it is time to render the scene and the new position is not ready, the render thread works
with the previous position.

These results seem to indicate that the Android devices render the final Augmented
Reality scenes more often than the iOS devices. In order to confirm this result, we
have measured the number of completed rendering stages compared to the rest of the
threads of the CAR framework. The obtained averaged values are 6.28 renderings
per cycle in Motorola Milestone and 5.55 renderings per cycle in the case of the HTC
Nexus One.

The number of extra renderings per cycle depends on the number of polygons
and the amount of texture data in the 3D model. Table 3 shows the relation between
the number of renderings per cycle and the complexity of the 3D scene for all the
Android devices. In order to differentiate complexities, we have selected two classical
3D models as benchmarks consisting in a cylinder (simple 3D model) and a plane
(complex 3D model).
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Table 3 Relation of the number
of renderings per cycle and the
complexity of the 3D scene for
different models on Android
devices

Render (ms) RRender FPS

Milestone (simple model) 21.40 18.24 1.23

Milestone (complex model) 48.32 9.90 1.25

Nexus One (simple model) 5.48 6.27 5.80

Nexus One (complex model) 24.46 4.47 5.87

Samsung SIII (simple model) 3.26 5.73 7.95

Samsung SIII (complex model) 9.83 3.11 7.96

Table 4 Memory and CPU
consumption of the considered
smartphones

Device Memory (MB) CPU (%)

Milestone 25 97

Nexus One 11 96

iPhone 3GS 7 95

iPhone 4 4 97

iPhone 4S 7.4 14.36

Samsung SIII 9.2 11.24

The first column in Table 3 shows the number of milliseconds that the render-
ing stage needs to finish on each device and 3D model. The next column (RRender)
indicates the number of renderings per AR cycle (repetitions of the same control pro-
grams), and finally the last column (FPS) shows the application throughput expressed
in frames per second. A similar experiment in iOS devices only generates an slight
increase in the total time of the AR cycle. Table 3 shows that all Android smartphones
require more time to complete the rendering stage as the complexity of the 3D models
is increased. In this experiment, the average time required to complete the rendering
stage for the complex 3D models is the double of the time needed in the case of the
simple 3D models. This variation is more evident for the parameter corresponding
to the number of repetitions of the rendering stage. Since the rendering stage needs
more time as the complexity of the 3D model is increased, the number of repetitions
of this stage in the regular cycle of the AR application is decreased to maintain a
constant application throughput. In this case, the use of multicore devices does not
significantly change the performance obtained with the single core devices.

Additionally, we have measured the CPU and the memory utilization for the con-
sidered mobiles phones in the experiment. Table 4 shows the results of the performed
test indicating in the first row the used memory size (in MB), as well as the percent-
age of CPU time executing the AR marker tracking process. The Android project is
done using the development platform named Eclipse, and the iOS project uses the
platform named XCode. In both architectures, the development platform provides
tools to measure performance, so we have used these tools for measuring the results
in the table.

Table 4 shows that all the considered single core smartphones are close to reach
the saturation point, in terms of CPU usage since (100 % CPU usage). AR marker
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tracking can be considered as a CPU-intensive process, since it demands the maxi-
mum microprocessor resources available in a coupled (iOS) or a decoupled (Android)
mode of operation. However, the marker tracking process requires a significantly
lower percentage of CPU utilization in multicore devices, decreasing from not less
than 95 % in single core devices to 14.36 % in a dual core device. Also, it is worth
mentioning that the small difference in the percentage of CPU utilization between
the quad core and the dual core devices is around 3 %. Also, Table 4 shows that AR
marker tracking processes are not necessarily memory-intensive. In terms of memory
usage, the results obtained with the considered smartphones show that Android-based
smartphones need more memory than the iOS-based mobile phones when the same
AR marker tracking process is executed on them, regardless of the number of cores
present in each device. The reason for this memory overhead is related to the man-
agement of the memory resources performed by the Android devices. Unlike iOS
devices, where the programmer controls the amount of memory allocated to the AR
marker tracking process, the management of the memory in Android smartphones is
transparent to the application developers and it is based on a Virtual Machine (VM).

5 Conclusions and future work

In this paper, we have proposed a performance characterization of mobile phones in
the AR marker tracking process, an essential process that takes place in any CAR ap-
plication. In order to ensure an robust analysis of the mobile phone market for CAR
purposes, we have considered different mobile phones based on Android and iOS op-
erating systems. These devices have been used to execute a simple CAR application
on a real system where we have measured the performance.

The performance evaluation results show that when the same AR marker tracking
process is executed on different mobile phones, the best throughput, measured in
frames per second (FPS), is obtained for smartphones based on Android operative
platforms. However, as the hardware capabilities of the mobile phones decrease, iOS-
based devices reach and exceed the performance of Android-based smartphones. The
multicore devices do not provide a linear throughput with the number of cores, and
even one of the single core devices provides a better throughput and latency. The
reason for this behavior is that the four stages in AR marker tracking process are
inherently sequential, and they cannot take advantage of the parallelism offered by
multicore devices.

We have also studied the different stages that compose a common AR marker
tracking process. The results show that the most time consuming stage in this process
is the marker detection stage, followed by the image acquisition stage, the rendering
stage, and finally, the transmission stage. Regarding the different operating systems,
the results show that the rendering stage is decoupled on devices using the Android
OS, in such a way that it is executed with the rest of the stages concurrently. There-
fore, CAR applications can provide better performance if the terminals use this oper-
ating system. Nevertheless, this stage can be programmed to work as in iOS operating
system in ad hoc implementations. Moreover, the results also show that some mobile
phones like the iPhone 4 only works with high resolution images. As a result, these
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mobile devices achieve the most visual quality at the expense of needing a lot of time
for detecting the markers in the camera image plane. Overall, we can conclude that
unless a poor network bandwidth makes the network to become the system bottle-
neck, the performance of CAR applications based on mobile phones will be limited
by the detection stage. These results can be used as the basis for an efficient design
of CAR systems and applications.

For future work to be done, we plan to reproduce a similar study but focusing
on CAR applications based on natural feature tracking. Since these applications tend
to exploit the GPU’s capabilities in the real-time feature tracking, the new graphic
oriented hardware, included in the most recent high-end mobile phone, could have a
significative impact in the performance of CAR applications.
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