
Improving the Server Performance of CAR
Systems Based on Mobile Phones

Vı́ctor Fernández, Juan Manuel Orduña and Pedro Morillo 1

Resumen— Collaborative Augmented Reality
(CAR) systems allow multiple users to share a real
world environment including computer-generated
images in real time. The hardware features of most
current mobile phones include wireless network
capabilities that offer a natural platform for CAR
systems. However, the potential number of clients
in CAR systems based on mobile phones is much
larger than on CAR systems based on other kind
of mobile devices, requiring a system design that
takes into account scalability issues. This paper
presents the experimental comparison of different
CAR systems based on mobile phones with different
server implementations. The performance evaluation
results show that the best implementation is the one
based on UDP messages instead of classical TCP
connections, in order to improve the system through-
put. The UDP-based implementation provides
a significant improvement in system throughput,
at the cost of loosing a very small percentage of
updating messages. However, the effects of these
small quantities of dropped messages cannot expand
beyond some jitter (bounded within a short period
of time) in a reduced number of clients of the CAR
application. These results validate the proposed
UDP-based implementation as the best option for
large-scale CAR systems based on mobile phones.

Palabras clave— Collaborative Augmented Reality,
Mobile Phones.

I. Introducción

AU gmented Reality (AR) systems are nowadays
widely used in applications such as medical pro-

cedures, scientific visualization, manufacturing au-
tomation, cultural heritage and military applica-
tions. The term Augmented Reality (AR) refers to
computer graphic procedures or applications where
the real-world view is superimposed by computer-
generated objects in real-time [1], [2]. From the be-
ginning of AR systems, the potential of collaborative
AR (CAR) systems was exploited for different activ-
ities such as Collaborative Computing or Teleconfer-
encing [3]. Wearable devices were used to provide
CAR systems, where a wearable AR user could col-
laborate with a remote user at a desktop computer
[4]. On other hand, mobile phones have become an
ideal platform for CAR systems, due to the multi-
media hardware that they include. As an example,
Figure 1 shows a CAR system developed for collab-
orative training in industrial electricity. It shows on
the left image the execution of the CAR tool on a
Samsung Galaxy NOTE mobile phone, while the im-
age on the center shows a real image of the the panel-
board where technicians collaboratively operate, and
the right image shows the execution of the CAR tool

1Dpto. de Informática, Univ. of Valencia, Va-
lencia, Spain. E-mails: {Victor.Fernandez-Bauset,
Juan.Orduna,Pedro.Morillo}@uv.es

on a HTC Nexus One mobile phone.

Fig. 1. Example of a CAR application developed for training
in industrial electricity.

The wide variety of current mobile phones, with
different graphic and processing capabilites, and dif-
ferent operating systems, can have significant effects
on the performance of a large-scale CAR system, in
terms of system latency, frames per second or num-
ber of supported clients with certain latency levels.
In previous works, we have characterized the behav-
ior of different mobile phones and the server when
used in Collaborative Augmented Reality applica-
tions, [5], [6]. The results showed that CAR systems
throughput heavily depends on the kind of client de-
vices, but for certain kind of devices, the system bot-
tleneck is the server I/O.

In this paper, we propose a comparative study of
different implementations of the CAR server, in order
to improve the performance of CAR systems based
on mobile phones. The performance evaluation re-
sults show the UDP-based implementation provides
a significant improvement in system throughput with
respect to other implementations, supporting more
than one thousand clients at interactive rates (twice
the number of supported clients of the TCP imple-
mentation). This improvement is achieved at the
cost of loosing a very small percentage of updating
messages but the effects of these dropped messages
cannot expand beyond some jitter (bounded within a
short period of time) in a reduced number of clients.

The rest of the paper is organized as follows: Sec-
tion II shows some related work about CAR appli-
cations on mobile phones. Section III describes the
different CAR implementations considered for com-
parison purposes, and Section IV shows the perfor-
mance evaluation results. Finally, Section V presents
some conclusion remarks.

The rest of the paper is organized as follows: Sec-
tion II shows some related work about CAR appli-
cations on mobile phones. Section III describes the
different CAR implementations considered for com-
parison purposes, and Section IV shows the perfor-



mance evaluation results. Finally, Section V presents
some conclusion remarks.

II. Related Work

Augmented Reality superimposes multimedia con-
tent - 3D object, text, sound, etc - to real world
through a display or screen. In order to locate digital
contents on a specific image of the real world point,
some references within the image are needed. These
references are known as markers, and two methods
are usually used: natural feature tracking and fidu-
cial marker tracking. The former method uses in-
terest point detectors and matching schemes to asso-
ciate 2D locations on the video with 3D locations [7].
This process can be grouped in three big phases: in-
terest point detection, creation of descriptor vectors
for these interest points, and comparison of vectors
with the database [8]. The latter method uses fidu-
cial markers to find a specific position of real world.
This process can be divided in three phases: edge
detection, rejection of quadrangles that are too large
or too small, and checking against the set of known
patterns [7].

Any CAR application needs a device equipped
with an on-board camera, CPU and display. The
most common devices used for CAR applications are
Tablet-PCs or mobile phones. We will focus on mo-
bile phones, because they are more suitable for CAR
applications [9].

There are few solutions based on fiducial marker
tracking over mobile phones. In 2003, ArToolKit
[10], one of the most well-known software libraries
for developing Augmented Reality (AR) applica-
tion, was released for Windows CE, and the first
self-contained application was developed for mobile
phones [11]. This software evolved later as the Ar-
ToolKitPlus tracking library [7]. A tracking solu-
tion for mobile phones that works with 3D color-
coded marks was developed [12], and a version of
ArToolKit for Symbian OS was developed, partially
based on the ArToolKitPlus source code [13]. The
research teams behind these works have worked on
fiducial marker tracking, but not from the collabora-
tive point of view. Also, there are many other works
that focus on natural feature tracking [7], [14], [15],
[16].

Although real-time natural feature tracking over
mobile devices has been currently achieved [7], fidu-
cial marker tracking is more widely used, because
it allows simultaneous computational robustness and
efficiency. A large number of locations and objects
can be efficiently labeled by encoding unique identi-
fiers on the markers. Additionally, the markers can
be detected with angles near to 90 degrees [7].

The first CAR applications improved the confer-
ence system highlights, giving the feeling of real pres-
ence to remote collaborators [3]. The Rekimoto’s
Transvision system showed how to share virtual ob-
jects through handheld displays [17]. Also, Schmal-
stieg created a software architecture to develop CAR
applications [18].

III. Server implementations

We have developed a multithreaded CAR server
that supports simulated clients (simulated mobile de-
vices) with the behavior measured in our previous
work [5]. The system configuration consists of this
server and a certain amount of mobile devices that
are scanning the visual space of their video camera
looking for a marker that will be converted into a 3D
object in their display. After each updating of the ob-
ject location, the mobile device sends a location up-
date message (containing the new location) to each of
its neighbor devices. The neighbor devices are those
who participate in the same collaborative task, and
we have denoted this set of neighbor devices as a
working group. The messages are sent through the
server (that is, it sends the location update message
to the server, and then the server re-sends the mes-
sage to the appropriate clients). For performance
evaluation purposes, the destination clients return
an acknowledgment message (ACK) to the server,
which, in turn, forwards it to the source client. When
the source client has received the ACK messages cor-
responding to the location update from all the clients
in its working group, then it computes the average
system response for that location update. Figure 2
illustrates the action cycle that takes place for each
of the mobile clients in the system.

Fig. 2. Stages of the action cycle in each mobile device.

Once the message with the location update is sent,
the action cycle performed by each client is com-
posed of the following steps: first, it performs one
new image acquisition followed by a marker detec-
tion stage. Then, the client waits until the cycle
period (determined by the action frequency, a sys-
tem parameter) finishes. Next, if the acknowledg-
ments from all the neighbors have been received, a
new message with the new marker location is sent. If
not all the acknowledgments have been received, then
it waits until a maximum threshold of 20 seconds,
and then a new round of messages (with the latest
marker location) are sent to the neighbors through
the server. The neighbors simply return an ACK
message to the sender device through the server. The
server simply forwards the messages to the corre-
sponding destination clients. It must be noticed that



the mobile devices will not send a new round of mes-
sages with a new location update until it has received
the acknowledgment message from all its neighbors,
even although new marker detection stages have been
completed in the device.

This characterization setup considers that all the
required static content in the scene has been loaded.
According to recent works [19], in these cases the
network bandwidth required is less than 50 kbps for
performing this information exchange. Since we are
using a Gigabit Ethernet, we ensure that the network
bandwidth does not become a system bottleneck.

The system latency provided for each location up-
date is computed by recording a timestamp when the
first message is sent to the server. Next, a second
timestamp is recorded with the last ACK message
for that location update received from the server.
The system response time is computed by subtract-
ing these two timestamps. The server response time
is computed by timestamping both each message for-
warded from each client and the reception of the cor-
responding ACKmessage from the destination client.
Also, the percentage of CPU utilization is measured
both in the server and the mobile devices every half
second.

A. TCP Implementation

The simulator starts generating a Server Process,
and for every 50 clients it generates a Client Process.
Figure 3 illustrates the general scheme of the Server
Process. This process starts listening connections,
and for each connection it generates a new array of
X TCP sockets, where X is the number of clients
that will be within a given working group. When all
the clients have connected to the Server Process (the
population size is a simulation parameter) then the
Server Process generates as many Server Threads as
needed. Each Server Thread is in charge of man-
aging all the clients within a working group. Con-
cretely, it starts the simulation by sending a wel-
come message to all the client sockets. When the
simulation finishes, it collects statistics from all the
clients in its working group. But the most important
task performed by server threads is the generation
of two threads for each of the clients in the work-
ing group: the Server Receiver Thread (SRT) and
the Server Processor Thread (SPT). The SRT asso-
ciated to client i receives the location update mes-
sages from the client i. Next, it computes the correct
destination clients (the neighbor clients, that is, the
clients within the same working group) and it gen-
erates messages that will be stored in the queues of
the Server threads managing these neighbor clients.
The SPT associated to client i extracts the queued
messages that the SRTs associated to other clients
may have generated for client i, and it sends them to
this client. Additionally, the server process collects
and processes the statistics generated by the server
threads, and it also measures the percentage of CPU
utilization.

Figure 4 illustrates the general scheme of the

Fig. 3. General scheme of the server process in the TCP
implementation.

Client Process. This process generates 50 client
threads (we have assumed a maximum population
size of 1000 client devices), and it also computes
the percentage of CPU utilization, client latencies,
etc.. Each Client Thread generates two threads for
each client: the Client Receiver Thread (CRT) and
the Client Processor Thread (CPT), and when the
welcome message from the Server Thread arrives to
the associated socket, then the Client Thread starts
the simulation, that consists of sending a given num-
ber of position update messages and receiving the
corresponding acknowledgments from the neighbor
clients.

Fig. 4. General scheme of the client process in the TCP
implementation.

Also, we developed another version where each
Server Thread has a single SRT and a single SPT
for managing all the clients in each working group,
instead of one SRT and one SPT for each client. Us-
ing the Select function, the SRT receives messages
from all the clients and it processes them. As it could
be expected, we obtained better performance results
with the Select version of the TCP implementation.

B. UDP Implementation

Finally, we have considered a connectionless ori-
ented implementation for the CAR system, in order
to study the effectiveness of TCP connections in a
distributed environment like a CAR system. The
motivation of this study are both the short message
size (usually carry a position update consisting of a



bunch of bytes) and the huge amount of the messages
generated by CAR systems. Although the UDP pro-
tocol can loose messages and the effects and size of
these losses should be studied, we have also consid-
ered this implementation for comparison purposes.
The UDP implementation is very similar to the TCP-
Select implementation. The only difference is that
in this implementation we have used UDP sockets.
Since this implementation can drop messages, it also
counts the number of dropped or lost messages (since
both the number of iterations and the number of
clients in each working group is known, each client
can compute the number of message that should ar-
rive).

IV. Performance Evaluation

We have performed different measurements on dif-
ferent simulated systems using these implementa-
tions. We have performed simulations with different
number of clients and we have measured the response
time provided to these clients (the round-trip delay
for each updating message sent by a given client to
the clients in its working group). In this way, we
can study the maximum number of clients that the
system can support while providing a response time
below a given threshold value. In order to define
an acceptable behavior for the system, we have con-
sidered 250 ms. as the threshold value, since it is
considered as the limit for providing realistic effects
to users in DVEs [20].

We have considered the system response time (in
milliseconds) for each updating message sent by a
given client to its neighbor clients as the time re-
quired for receiving the acknowledgments from all
the clients in the working group of this given client.
In order to measure the dispersion of this metric,
we have measured the standard deviation for all the
updating messages sent, as well. Also, we have com-
puted the response time in the server (in millisec-
onds) as the time required by the destination clients
to answer the server messages. We have measured
both the average and the maximum values measured
in the server for each simulation. Additionally, we
have computed the percentage of the CPU utilization
in the system server, since it can easily become the
system bottleneck. The computer platform hosting
the system server is a Intel Core 2 Duo E8400 CPU
running at 3.00 GHz with 4 Gbytes of RAM, exe-
cuting an Ubuntu Linux distribution with the 3.0.0-
14-generic x86 64 operating system kernel. In order
to study the system behavior for different levels of
workload, we have repeated simulations with work-
ing group sizes of 10,15,20 and 25 clients. Due to
space limitations, we only show here the results for
the biggest size (25 clients in each working group).

Table I shows the results for a CAR system whose
client devices are all of them HTC Nexus One, and
where the working group size for each client is of five
neighbor clients. This table shows the results for
the three considered implementations, organized as
three subtables with ten rows each, and labeled with

the name of the implementation (TCP, TCP-Select
and UDP). The most-left column in these subtables
shows the number of clients in the system, that is,
the population size. The values in this column range
from 100 to 1000 clients in the system. The next
two columns show the average value of the response
times (in milliseconds) provided by the system to all
the clients (labeled as ”RT”), as well as the corre-
sponding standard deviation values (column labeled
as ”Dev”). The fourth column (labeled as ”CPU”)
shows the percentage of the CPU utilization in the
server. Finally, the fifth and sixth columns (labeled
as ”RT S” and ”RT SM”, respectively) show the av-
erage and maximum values (in milliseconds) of the
response time in the server for all the messages ex-
changed during the simulation.

TCP implementation
Size RT Dev CPU RT S RT SM
100 62.37 22.68 9.9 19.36 20.9
200 63.77 22.21 15 20.12 22.43
300 66.71 22.66 22 25.15 28.28
400 68.68 22.5 32.7 27.14 29.56
500 71.04 23.56 45 27.14 30.9
600 71.5 24.18 48.6 26.58 31.95
700 72.37 25.01 59 27.17 35.42
800 72.85 26.01 68 27.87 34.54
900 75.01 28.98 79.2 28.61 35.89
1000 147.33 101.71 85 43.95 48.66

TCP-Select implementation
Size RT Dev CPU RT S RT SM
100 65.77 21.56 8 20.44 24.96
200 67.12 22.71 11.2 21.5 23.54
300 67.52 22.6 19.8 23.67 26.62
400 67.64 22.88 28 23.21 27.28
500 69.12 23.23 31 25.31 29.34
600 69.14 23 39.6 25.28 28.74
700 69.37 23.45 47 24.53 30.72
800 75.75 26.63 54.5 26.96 35.16
900 70.24 24.81 59.6 24.02 31.87
1000 71.05 27.53 67 22.64 35.04

UDP implementation
Size RT Dev CPU RT S RT SM
100 4.80 7.06 38.40 1.95 3.22
200 3.76 4.95 34.70 1.57 2.84
300 9.57 9.74 26.00 4.44 10.97
400 3.60 5.18 33.70 1.46 3.16
500 4.59 6.41 41.60 1.81 3.77
600 7.34 13.17 47.00 3.23 17.16
700 5.28 8.24 53.00 2.11 7.76
800 7.10 18.52 84.10 2.65 16.53
900 5.85 11.69 66.30 2.61 12.05
1000 7.15 15.47 69.50 2.87 15.18

TABLA I

Results for a working group size of 5 neighbors

Table I shows that none of the values in the RT
column reaches the threshold value of 250 millisec-
onds in any of the considered implementations, show-
ing that the system can efficiently support up to
one thousand clients while interactively displaying
the Augmented Reality content. Nevertheless, there
are significant differences in this column among the
considered implementations. Thus, the TCP imple-
mentation shows a huge rise in the response time
when the system reaches one thousand clients, pass-
ing from around 75 milliseconds to more than 147
milliseconds as an average. The standard deviation



of these values are also more than three times the
value shown for nine hundred clients. These values
show that for that population size the system is ap-
proaching saturation. On the contrary, the TCP-
Select implementation does not show an increase in
neither the column RT nor the column Dev for a
population of one thousand clients. Moreover, the
UDP implementation shows RT values that are one
order of magnitude lower than the ones shown by the
other two implementations.

The third column in table I shows that the CPU
utilization increases as the number of clients in the
system increases. In the case of the TCP implemen-
tation, the system approaches saturation when the
server reaches 85% of CPU utilization. For lower
percentages of CPU utilization the response times do
not significantly increase. It is worth mention that
the UDP implementation provides RT values that are
one order of magnitude lower than the ones provided
by the TCP implementations, even for CPU utiliza-
tion of around 70%. These values show that the la-
tency provided by CAR systems greatly depends on
the connection or connectionless scheme followed by
the system to exchange information with the clients.

Finally, the columns RT S and RT SM show that
most of the response time provided to clients is due
to processing in the server. Thus, for example, the
results for the TCP implementation and a system
size of 900 clients show that, as an average, each
client has to wait 75.01 milliseconds for receiving the
acknowledgments from all the clients in its working
group, but as an average the server must wait only
28.61 milliseconds to receive answers from clients.
This difference highly increases for the case of one
thousand clients, where the response time obtained
by the server from clients is around 44 milliseconds
but the average response time provided to clients is
147.33 milliseconds, around three times higher. It is
also worth mention that the ratio between the RT S
and the RT columns do not significantly vary among
the three implementations. Finally, the RT SM col-
umn shows that the maximum values in the RT S
parameter do not exceed the value in the RT column
for both TCP implementation, and they do not ex-
ceed twice the value in the RT column of the UDP
implementation. Therefore, we can conclude that
most of the time required to acknowledge each client
update is due to the processing of the updates and
acknowledgments in the server.

These results show that the best latencies when
the system is far from saturation are provided with
the UDP implementation. However, UDP is a
connectionless-oriented protocol, and therefore it
may drop messages when the system approach satu-
ration.

Table II shows the results for a working group size
of 25 clients. The most-left column in these subtables
shows the number of clients in the system, that is,
the population size. The values in this column range
from 100 to 1000 clients in the system. The next
two columns show the average value of the response

times (in milliseconds) provided by the system to all
the clients (labeled as ”RT”), as well as the corre-
sponding standard deviation values (column labeled
as ”Dev”). The fourth column (labeled as ”CPU”)
shows the percentage of the CPU utilization in the
server. Finally, the fifth and sixth columns (labeled
as ”RT S” and ”% lost”, respectively) show the av-
erage values (in milliseconds) of the response time in
the server for all the messages exchanged during the
simulation and the percentage of messages dropped
by the system. The latter column has been computed
by subtracting the number of messages received by
all the clients in a simulation (measured in the simu-
lation itself) from the theoretical number of messages
that clients should exchange for a given population
size.

TCP-Select implementation
Size RT Dev CPU RT S % lost
100 90.8 24.7 23.2 19.35 0.00
200 89.95 21.13 47 33.4 0.00
300 123.95 32.36 72 54.7 0.00
400 209.2 35.88 87.2 85.55 0.00
500 268.17 44.44 86 112.07 0.00
700 383.96 70.6 93.1 151.56 0.00
1000 566.44 133.33 93.1 166.79 0.00

UDP implementation
Size RT Dev CPU RT S % lost
100 9.86 6.78 72.50 4.06 0.83
200 21.70 14.73 82.00 9.84 1.18
300 26.01 21.91 79.60 11.61 0.69
400 39.41 30.66 81.90 18.26 0.83
500 48.68 39.68 83.80 22.84 0.74
700 79.70 97.87 85.10 37.26 0.76
1000 122.37 85.35 85.00 44.98 0.90

TABLA II

Results for a working group size of 25 neighbors

Table II shows that for this level of workload the
system enters saturation in the TCP-based imple-
mentation. Effectively, the RT column shows that
TCP-Select implementation reaches (and exceeds)
this threshold value for a population of 500 clients.
However, the UDP implementation does not reach
even half of this value for the maximum population
size considered, one thousand clients.
It is worth mention that for those cases when the

system reaches saturation, the percentage of CPU
utilization in the server is 85% or higher. The gap be-
tween 85% and 98% of CPU utilization for reaching
the saturation point can be explained by the shared
memory architecture of current multicore processors
(the dual core processor in the computer platform
used as simulation server), as shown in [6].
The ”% loss” column shows that for the UDP im-

plementation the percentage of lost messages is not
higher than 1.2%. The effects of loosing some mes-
sages will consist of producing some jitter in the dis-
play of the clients. However, these percentage values
ensure a reasonable quality in the visualization of the
CAR system. In order to ensure that the effects of
the UDP implementation in terms of dropped mes-
sages are consistent for all the workload levels consid-
ered, Figure 5 shows the average number of packets



dropped for each working group size considered.

Fig. 5. Number of packets lost in the UDP implementation.

Figure 5 shows that for working group sizes of 5
and 10 neighbor clients there are no packet losses.
For a working group size of 20 neighbors, the amount
of lost packets reaches 8581 for a theoretical total of
packets sent of 1.9 million packets. Analogously, for
a working group size of 25 neighbors, the amount of
lost packets reaches 21593 out of 2.4 million packets
sent. Therefore, in the worst case the number of lost
packets only represent a 1’18 % of the total amount
of packets sent. This value represents only a small
image flicker on some clients, and in very limited
periods of time. As the information is sent more
than once per second (since the action cycle of the
HTC Nexus One is 167.11 ms.), this value can be
considered an insignificant flickering.
Although they are not here for the shake of short-

ness, we repeated the same tests shown in this sec-
tion here using a different client device, the Motorola
Milestone, and we obtained analogous results. Those
results were less interesting because of the bigger ac-
tion cycle of the Milestone (698.34 ms.). With that
action frequency the system saturation point was not
reached even in the worst case of a working group size
of 25 neighbors and a population of 1000 clients. We
have shown here the results for the Nexus One as the
worst case for the server implementation.

V. CONCLUSIONS

This paper has proposed the experimental com-
parison of different large-scale CAR systems based
on mobile phones with different server implementa-
tions. The performance evaluation results show that
the best implementation is the one based on UDP
messages, instead of classical TCP connections, in
order to support more than one thousand clients at
interactive rates. These results validate the proposed
UDP-based implementation as the best option for
large-scale CAR systems based on mobile phones.

ACKNOWLEDGEMENTS

This work has been jointly supported by the Span-
ish MICINN and the European Commission FEDER
funds, under grant TIN2009-14475-C04.

Referencias

[1] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier,
and B. MacIntyre, “Recent advances in augmented re-

ality,” Computer Graphics and Applications, IEEE, vol.
21, no. 6, pp. 34 –47, 2001.

[2] S. Cawood and M. Fiala, Augmented Reality: A Practical
Guide, Pragmatic Bookshelf, 2008.

[3] M. Billinghurst and H. Kato, “Real world teleconferenc-
ing,” in Proc. of the conference on Human Factors in
Computing Systems (CHI 99), 1999.

[4] Tobias Hallerer, Steven Feiner, Tachio Terauchi, Gus
Rashid, and Drexel Hallaway, “Exploring mars: Devel-
oping indoor and outdoor user interfaces to a mobile aug-
mented reality system,” Computers and Graphics, vol.
23, pp. 779–785, 1999.

[5] Victor Fernández Bauset, Juan M. Orduña, and Pedro
Morillo, “Performance characterization on mobile phones
for collaborative augmented reality (car) applications,”
in Proceedings of the 2011 IEEE/ACM 15th DS-RT,
2011, DS-RT ’11, pp. 52–53.

[6] Victor Fernández Bauset, Juan M. Orduña, and Pedro
Morillo, “On the characterization of car systems based
on mobile computing,” in Proceedings of HPCC ’12 (AH-
PCN workshop), 2012.

[7] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni,
Tom Drummond, and Dieter Schmalstieg, “Pose track-
ing from natural features on mobile phones,” in Pro-
ceedings of the 7th IEEE/ACM International Sympo-
sium on Mixed and Augmented Reality, Washington, DC,
USA, 2008, ISMAR ’08, pp. 125–134, IEEE Computer
Society.

[8] Seung Eun Lee, Yong Zhang, Zhen Fang, S. Srinivasan,
R. Iyer, and D. Newell, “Accelerating mobile augmented
reality on a handheld platform,” in Computer Design,
2009. ICCD 2009. IEEE International Conference on,
October 2009, pp. 419 –426.

[9] Michael Haller; Mark Billinghurst; Bruce Thomas,
Emerging Technologies of Augmented Reality: Interfaces
and Design, IGI Global, 2007.

[10] Dr. Hirokazu Kato, “Artoolkit,” 2011, Available at
http://www.hitl.washington.edu/artoolkit/.

[11] Daniel Wagner and Dieter Schmalstieg, “First steps to-
wards handheld augmented reality,” in Proceedings of the
7th IEEE International Symposium on Wearable Com-
puters, Washington, DC, USA, 2003, ISWC ’03, pp. 127–
135, IEEE Computer Society.

[12] Mathias Mahring, Christian Lessig, and Oliver Bimber,
“Video see-through ar on consumer cell-phones.,” in IS-
MAR’04, 2004, pp. 252–253.

[13] A. Henrysson, M. Billinghurst, and M. Ollila, “Face to
face collaborative ar on mobile phones,” in Mixed and
Augmented Reality, 2005. Proceedings. Fourth IEEE and
ACM International Symposium on, October 2005, pp. 80
– 89.

[14] S. Srinivasan, Zhen Fang, R. Iyer, S. Zhang, M. Es-
pig, D. Newell, D. Cermak, Yi Wu, I. Kozintsev, and
H. Haussecker, “Performance characterization and opti-
mization of mobile augmented reality on handheld plat-
forms,” in Workload Characterization. IISWC 2009.
IEEE International Symposium on, 2009, pp. 128 –137.

[15] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and
D. Schmalstieg, “Real-time detection and tracking for
augmented reality on mobile phones,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 16, no.
3, pp. 355 –368, May-June 2010.

[16] D. Wagner, D. Schmalstieg, and H. Bischof, “Multiple
target detection and tracking with guaranteed framerates
on mobile phones,” in Proceedings of ISMAR 2009, 2009,
pp. 57 –64.

[17] Jun Rekimoto, “Transvision: A hand-held augmented re-
ality system for collaborative design,” in Virtual Systems
and Multi-Media (VSMM)’96, 1996.

[18] Z. Szalavari, D. Schmalstieg, A. Fuhrmann, and M. Ger-
vautz, “s̈tudierstubë: An environment for collaboration
in augmented reality,” Virtual Reality, vol. 3, pp. 37–48,
1998.

[19] Tuomas Kantonen, “Augmented collaboration in mixed
environments,” M.S. thesis, Helsinky University of Tech-
nology, 2009.

[20] T. Henderson and S. Bhatti, “Networked games: a qos-
sensitive application for qos-insensitive users?,” in Pro-
ceedings of the ACM SIGCOMM 2003. 2003, pp. 141–
147, ACM Press / ACM SIGCOMM.


