
Avoiding Client Saturation in Peer-to-Peer
Distributed Virtual Environments

Silvia Rueda, Pedro Morillo, Juan Manuel Orduña1

Resumen— The current expansion of multi-player
online games has promoted the growth of large scale
distributed virtual environments (DVEs). In these
systems, peer-to-peer architectures have been proved
as the most scalable scheme for supporting massively
multi-player applications. Nevertheless, the interac-
tions among clients that can take place in this type of
systems can lead to the temporal saturation of some of
the clients. Since a client saturation has an effect on
other clients, these situations limit the performance
of peer-to-peer DVEs. In this paper, we propose an
adaptive technique for avoiding the saturation of the
client computers in DVE systems based on peer-to-
peer architectures. This technique is based on mon-
itoring the client state and discarding some of the
messages received from other clients when the client
is close to saturation. The evaluation results show
that the proposed method improves the system per-
formance without having an effect on the awareness
rate, regardless of the movement pattern that avatars
can follow. As a result, both the performance and
the scalability of peer-to-peer DVEs are significantly
improved.

Palabras clave— Peer-to-Peer architectures, Dis-
tributed Virtual Environments.

I. Introducción

TH e current expansion of multi-player online
games has promoted the growth of large scale

distributed virtual environments (DVEs).

Users in these systems share a 3D virtual world
and can interact among them and with the elements
of the virtual scene. Usually, each system user is
represented inside the virtual world by an entity
called avatar. Users control their avatars through
a client computer, which should render the images
of the virtual 3D environment that the user would
see if he was located at that point of the virtual
world. Currently, large scale DVEs can simultane-
ously support thousands and even hundreds of thou-
sands clients. Clients can connect to these systems
through different networks, and usually through In-
ternet. Although DVE systems are present in many
different applications,such as civil and military dis-
tributed training or collaborative design, the most
extensive example of DVE systems are commercial,
massively multi-player online games (MMOG)[1], [2],
[3].

Peer-to-peer architectures were proposed some
years ago for DVE systems. In classic peer-to-peer
architectures, each client computer is also a sys-
tem server, and the control of the simulation is dis-
tributed among all the client computers. In hybrid
peer-to-peer architectures, only some of the client
computers act as system servers.

1Dpto. de Informática, Universidad de Valencia, e-mail:
{Silvia.Rueda,Pedro Morillo,Juan.Orduna}@uv.es

Peer-to-peer architectures have been proved as the
most scalable scheme for supporting massively multi-
player applications [4]. However, these architectures
must face the awareness problem. It consists of
ensuring that each avatar (for the sake of short-
ness, in the rest of the paper we will use the term
avatar to denote the client computer controlling that
avatar) is aware of all the avatars in its neighbor-
hood [5]. Usually, the Area Of Interest (AOI) [6]
of an avatar is considered as the neighborhood for
that avatar. Providing awareness to all the avatars
is crucial for MMOGs. For example, if two neighbor
avatars are not aware of such neighborhood, they
will not exchange messages about their movements
and/or changes, and therefore they will not have the
same vision of the shared environment.

Recently, the expansion of MMOGs has made large
scale DVE systems to become usual, and networked-
server architectures seem to lack scalability to prop-
erly manage the current number of avatars that these
system can support (up to some hundred thousands
of avatars [3]). As a result, some studies have pro-
posed again the use of P2P architectures [7], since
these schemes are the most scalable ones (each new
client also becomes a new server, thus proportion-
ally increasing the computing bandwidth). In DVE
systems based on P2P architectures, the neighbor-
hood attribute of the different avatars must be de-
termined in a distributed manner. In this sense, sev-
eral techniques for providing awareness to avatars in
P2P DVE systems have been proposed, and some
of them seem to provide a full awareness rate [8],
[9]. Therefore, peer-to-peer architectures seem to be
the most efficient and scalable scheme for supporting
large-scale DVE systems.

Nevertheless, the use of a peer-to-peer scheme does
not prevent client computers from reaching satura-
tion. A recent study shows that when the number
of avatars in the system increases and they move fre-
quently, the density of avatars in the virtual world re-
quires some clients to process a high number of mes-
sages, in order to achieve both the 100% of the aware-
ness rate and an acceptable time-space consistency.
Depending on the computing power of these clients,
such requirements can lead to the client saturation,
decreasing the performance not only of that client,
but also of the clients controlling the surrounding
avatars [4]. Since the number of client computers
that can reach saturation depends on many factors
(computing power of the client, number of neighbor
avatars, movement rate of avatars, etc.) but in gen-
eral it is unbounded, these situations can seriously
affect the scalability and/or the performance of P2P

DVE systems.

In this paper, we propose an adaptive technique
for avoiding the saturation of client computers in
P2P DVE systems. This technique consists of mon-
itoring the CPU utilization of the client computer.
When the CPU utilization exceeds a threshold value
(the client is reaching saturation), then the proposed
method consists of discarding the oldest updating
messages still not processed, since under such situ-
ation is very likely that they contain obsolete infor-
mation and some of the most recent messages con-
tain more updated information. The evaluation re-
sults show that the benefits achieved by preventing
client computers from reaching saturation are higher
than the drawbacks of loosing information about the
current state of other client computers. Thus, the
proposed method avoids client saturation on DVE
systems based on P2P architectures while maintain-
ing the awareness rate close to 100%, regardless of
the movement pattern and the initial distribution of
avatars. Therefore, this technique can significantly
improve the performance and the scalability of P2P
DVE systems.

The rest of the paper is organized as follows: Sec-
tion II describes the proposed method for avoiding
the saturation of the client computers. Next, Sec-
tion III shows the performance evaluation results ob-
tained with the proposed method. And finally, Sec-
tion IV outlines some concluding remarks.

II. Avoiding Client Saturation

The workload that a given avatar adds to a DVE
system basically depends on two factors, the move-
ment rate of that avatar and the number of neighbor-
ing avatars[10]. Therefore, the computational work-
load that a given client computer should support in
a P2P DVE system is directly related to the num-
ber of neighbor avatars in the virtual world and also
to the movement rate of that avatar and its neigh-
bors. Additionally, the computational requirements
of each client computer also depends on the current
state of the simulation (computing requirements for
updating and rendering the 3D virtual environment,
the time required for establishing new connections,
etc.).

In large-scale DVE systems, a given avatar a can
be frequently surrounded by a high number of neigh-
bors. In such situations (and depending on the
awareness technique the system uses) avatar a will
receive a new message containing the updated loca-
tion of its neighbors each time that any of its neigh-
bors moves. If the client computer controlling the
avatar a supports a high load (its CPU(s) utiliza-
tion rate is (are) close to 100% due to the simulation
state), it cannot process such updating messages at
the required rate, and the processing of such mes-
sages is delayed (they are saved in a FIFO buffer).
As a result, the processing of these messages be-
comes useless (since they provide obsolete informa-
tion). Moreover, the delayed processing of such mes-
sages also requires some of the computational power,

therefore contributing even more to the saturation of
the client computer. The basic idea of the proposed
method is to discard the oldest updating messages
when the client is close to saturation, and to process
only the newest messages.

We have denoted the proposed method as DPMess,
for Discarding Pending messages. The DPMess tech-
nique consists of checking the CPU utilization rate
of the client computer each time that the avatar
hosted by that client moves, in order to detect if
the computer is close to saturation. In that case, the
client computer should check all the updating mes-
sages that are pending from processing, and it should
discard those messages older than a certain thresh-
old value (by deleting them from the FIFO buffer).
We have chosen to execute this algorithm just prior
to the movement of the associated avatar because
at that moment the client computer will have to
send a new updating message to each of its neighbor
avatars, still increasing the workload that the client
computer supports. In order to prevent the client
computer to reach saturation, the useless workload
is discarded before increasing the useful workload.
The pseudocode of the proposed algorithm could be
the one shown in Figure 1:

IF CPU_current > CPU_threshold
FOR ALL messages IN pending_msg_queue

IF msg.type = location_update

IF Time - msg.t_recv > t_threshold
discard(msg)

ENDIF
ENDIF

ENDFOR
ENDIF

Fig. 1. Pseudocode for the proposed algorithm

It is worth mention that the DPMess technique
only discards messages containing location updates
of other avatars. It does not discard any mes-
sage containing information concerning the aware-
ness method. In this way, it provides an awareness
rate as high as possible.

The DPMess technique has two parameters that
should be tuned, the CPU threshold value and the
t threshold value. The first one defines the limit for
considering a client computer as saturated, and the
second one defines the limit for considering an updat-
ing message as obsolete. We have chosen for the first
parameter a CPU utilization of 90%, because this is
the limit proposed in the literature for considering a
server (in a DVE based on a networked-server archi-
tecture) as saturated [10]. We have experimentally
tuned the second parameter. Although the results
corresponding to this tuning are not shown here due
to space limitations, we have obtained the best re-
sults for a tthreshold value of 0.005 seconds.

III. Performance Evaluation

We propose the evaluation of the proposed method
by simulation. We have used an evaluation method-
ology based on the main standards for modeling col-
laborative virtual environments: FIPA, DIS, and

HLA. Concretely, we have developed a simulator
modeling a DVE system based on a peer-to-peer ar-
chitecture. The simulator is written in C++ and
it is composed of two applications, one modeling the
clients and the other one modeling the central loader,
to which the clients must initially connect with in
order to join the system. Both applications use dif-
ferent threads for managing the different connections
they must establish. Such connections are performed
by means of TCP sockets.

Each client has a main thread for managing the ac-
tions requested by the user, and different threads for
communicating with its neighbor clients. For each
neighbor, two threads are executed, one for listening
and the other one for sending messages. Similarly,
the central loader has two threads for communicat-
ing with each client in the system and also a main
thread. It must be noted that once a client has joined
the system, it is not necessary for that client to com-
municate with the central loader.

A simulation consists of each avatar performing
100 movements. An iteration of the whole system
consists of all avatars making a movement. Each
avatar notifies its neighbors as well as the central
loader when it reaches the 101th iteration, and then
it leaves the system. The virtual world is a 2D square
whose sides are 100 meters long. Each time an avatar
moves, it sends a message to all its neighbor avatars
(the client computer controlling that avatar sends
a message to the client computers controlling the
neighbor avatars). These destination avatars then
send back an acknowledgment to the sending avatar,
in such a way that when the acknowledgments arrive
to the sending avatar then it can compute the round-
trip delay for each message sent. We have denoted
the average round-trip delay for all the messages sent
by an avatar as the Average System Response (ASR)
for that avatar (for that client computer). The neigh-
boring avatars of each avatar are determined by the
awareness technique. We have used the COVER
method, because this technique provides an aware-
ness rate of 100% [9].

In order to simulate a peer-to-peer DVE system in
a feasible way, we used 51 personal computers inter-
connected by a fast Ethernet network. One of these
PCs hosted the central loader, and the rest of the
50 PCs hosted the avatars in a uniformly distributed
way.

We have implemented a monitoring algorithm to
check the awareness rate. This algorithm consists of
each client dividing its cycle time in two phases. In
the first phase, clients move following a given move-
ment pattern (described below) and they commu-
nicate their new location to their neighbors in the
virtual space by exchanging messages. In the sec-
ond phase, each client sends a message to the cen-
tral loader containing both its new location and also
which other clients it considers as its neighbors. In
this way, the central loader can compute in real time
the percentage of avatars that have correctly com-
puted which other avatars are its neighbors (that is,

the awareness rate). We used an AOI size of 10 me-
ters.

We have simulated a set of independent avatars in
a generic DVE system based on a P2P architecture.
These avatars are located within a seamless 3D vir-
tual world following three different and well-known
initial distributions: uniform, skewed and clustered
[10]. Starting from these initial locations, in each
simulation avatars can move into the scene following
one of three different movement patterns: Changing
Circular Pattern (CCP) [11], HP-All (HPA) [12] and
HP-Near (HPN) [13]. CCP considers that all avatars
in the virtual world move randomly around the vir-
tual scene following circular trajectories. HPA con-
siders that there exist certain ”hot points” where all
avatars tend to approach sooner or later. This move-
ment pattern is typical of multiuser games, where
users must get resources (as weapons, energy, vehi-
cles, bonus points, etc,) that are located at certain
locations in the virtual world. Finally, HPN also
considers these hot-points, but only avatars located
within a given radius of the hot-points approach
these locations. In order to illustrate these move-
ment patterns, Figure 2 shows the final distribution
of avatars that a 2-D virtual world representing a
square would show if these movement patterns were
applied to a uniform initial distribution of avatars.
In this Figure, avatars are represented as grey dots.
For evaluation purposes, we have considered the nine
possible combinations of the three initial distribu-
tions of avatars in the virtual world and the three
movement patterns.

Fig. 2. Movement patterns a) CCP, b) HPN, and c) HPA

For evaluation purposes, we have used different
metrics. In order to measure the overall performance
of the system, we have used a well-known metric in
distributed systems. Concretely, we have used the
round-trip delay of the messages sent by each client
computer, instead of latency. In this way, any pos-
sible clock skewing between the sending and the re-
ceiving client computer is avoided, since the sending
and the receiving instants are both computed by the
clock of the sender computer.

Additionally, we have studied other parameters
specific from peer-to-peer DVE systems. Concretely,
we have studied the awareness rate achieved in each
simulation and also the delay between the instant
when a new neighbor enters the AOI of a given avatar
and the instant when that avatar knows about that
neighbor. We have denoted this parameter as the
Awareness Delay. Finally, we have also studied the
percentage of discarded messages by the proposed
method.

We have studied the behavior of the proposed algo-
rithm for the nine combinations of initial movement
patterns and initial distributions of avatars. Also,
we have performed simulations with different pop-
ulations sizes (different numbers of avatars) and for
different movement rates. Nevertheless, for the shake
of shortness we only present here some representa-
tive results for a population size of 100 avatars. The
results for the different possible configurations were
similar to the ones shown in this section.

In order to study the performance of the proposed
method, we have studied the system behavior under
both a high and a low workload levels. Concretely,
we have used a high movement rate (all avatars per-
forming a new movement every 0.15 seconds) in order
to generate a high workload, and a lower movement
rate (a new movement every 0.5 seconds) to generate
a low system workload.

For comparison purposes, we show in this section
the simulation results for each DVE configuration
when using the DPMess technique and also the re-
sults obtained without applying the DPMess. We
have denoted the plots corresponding to the former
option as ”DPMess”, and the ones corresponding to
the latter option as ”Original”.

A. Latency

First, we have studied the system latencies (Av-
erage System Response) achieved with the proposed
technique. Figure 3 shows the average ASR values
obtained for a system supporting a high workload
(each avatar performing a movement every 0.15 sec-
onds) when avatars move following the combination
of HPA movement pattern-skewed initial distribu-
tion. This Figure shows on the X-axis the iteration
number, and on the Y-axis it shows the average ASR
value obtained for all the avatars in that iteration.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60 70 80 90

A
S

R
 (

se
cs

.)

Iteration

ORIGINAL
DPMess

Fig. 3. Average ASR values obtained under a high workload

The plot for the DPMess method in Figure 3 shows
a flat slope, keeping the average ASR values below
0.04 seconds, far away from the latency values con-
sidered as acceptable for users [14]. However, the
plot corresponding to the simulation without the pro-
posed technique (Original) shows a significant and
constant slope, linearly increasing the average ASR
values as the simulation proceeds. These results

show that when the system is under a high work-
load then preventing avatars from reaching satura-
tion provides significant benefits in term of the re-
sponse time offered to avatars.

Figure 4 shows the results for the same system
but when supporting a low workload. Concretely, it
shows the results for the same combination of ini-
tial distribution and movement pattern of avatars,
but in this case when avatars move at a lower move-
ment rate (each avatar makes a new movement every
0.5seconds). In this figure, both plots are very sim-
ilar, showing a flat slope and average ASR values
around 0.02 seconds. The plot corresponding to the
DPMess technique does not significantly differ from
the Original plot, showing that the proposed method
provides similar performance (in terms of latency),
when the system is under a low workload.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 10 20 30 40 50 60 70 80 90

A
S

R
 (

se
cs

.)

Iteration

ORIGINAL
DPMess

Fig. 4. Average ASR values obtained under a low workload

B. Awareness

Additionally, we have studied how the proposed
technique affects to the awareness rate provided to
avatars, since providing a good awareness rate is a
necessary condition for achieving time-space consis-
tency in DVE systems. On the one hand, if an
avatar becomes saturated and it does not respond
to its neighbors in time, then the awareness rate of
its neighbors could be affected. On the other hand,
the impact of rejecting messages could have an ef-
fect on the awareness rate, and therefore it should
be analyzed.

In order to measure the awareness rate, at each it-
eration each avatar sends information about its posi-
tion and which other avatars it considers as its neigh-
bors to the central loader, as we described above.
The central loader can determine from this informa-
tion if each avatar must be aware or not of all its
neighbors. By means of the central loader, we have
measured the ratio between the number of neigh-
bors that each avatar should detect and the number
of neighbors that each avatar has actually detected.
We have denoted this parameter as the awareness
rate Cs for each avatar.

Figure 5 shows the results for the awareness rate
when the system is under a high workload. In
this Figure, the X-axis shows the current iteration,

whereas the Y-axis shows the average value for the
Cs parameter obtained in each iteration.

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90

A
w

ar
en

es
s

ra
te

(%
)

Iteration

ORIGINAL
DPMess

Fig. 5. Awareness Rates (%) provided under a high workload

Figure 5 shows that preventing avatars from reach-
ing saturation (by discarding messages) does not
have any significant effect on the awareness rates pro-
vided to avatars when the system is under a high
workload. Although the awareness rate provided by
the DPMess method is slightly lower in some initial
iterations, it reaches 100% and keeps on providing
that rate for most of the iterations. The awareness
rate provided by this method is not lower than 99%
in any case.

Due to space limitations, we do not show the
equivalent results for the same system under a low
workload. These results show that the DPMess
method doesn’t have a significant effect, since the
CPU utilization is not high.

C. Awareness Delay

Another important parameter that could be af-
fected by the proposed method is the awareness de-
lay. This parameter can be defined as the time inter-
val from the instant when an avatar i enters the AOI
of an avatar j to the instant when avatar i receives
the acknowledgment from j as a new neighbor. We
have denoted this parameter as AD. This parameter
is crucial, since it determines the maximum time-
space inconsistencies that can arise in the system.
We must study if the use of the DPMess method has
any significant effect on this parameter.

Figure 6 shows the results for the awareness delay
when the system is under a high workload (combina-
tion SKEWED-HPA and a new movement every 0.15
s.). This Figure shows on the X-axis the iteration
number, while it shows on the Y-axis the average
awareness delays (the average AD value) obtained
for all the avatars in that iteration. The plots in
this Figure (and also the plots in the next one) only
show forty iterations. The reason for this behavior
is the combination SKEWED-HPA. When using this
movement pattern, all the avatars tend to crowd on
a single point of the virtual world. From iteration
40, no avatar enters in the AOI of another avatars,
since all of them are so close among them that they

can only make small movements trying to find alter-
native paths to their destination point. Therefore,
from that iteration these small movements are no
large enough to allow the avatars to enter or exit
another avatars AOI.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90

A
D

 (
se

cs
.)

Iteration

ORIGINAL
DPMess

Fig. 6. Awareness Delay values provided under a high work-
load

Figure 6 shows that if the proposed method is not
used, then some significant delays appear (two peaks
arise in the ”Original” plot). Although these peaks
do not last more than several iterations, they reach
an order of magnitude of several seconds. There-
fore, unacceptable time-space inconsistencies can oc-
cur during some iterations. These peaks are due to
the distribution of avatars and the movement pat-
tern in these experiments. A significative number
of clients reach saturation during some of the itera-
tions, greatly increasing the awareness delay. How-
ever, when using the DPMess method (DPMess plot)
these two peaks produced by the momentary satura-
tion of some clients dissappear. These results indi-
cate that if clients are close to saturation, then (when
the messages are processed) they provide obsolete
information about the location of other avatars. If
messages are not processed within a given period,
then it is a better strategy to discard them in order
to process faster the most recent messages. In this
way, the awareness delay is kept below acceptable
values during the whole simulation. Therefore, the
proposed method not only does not have an effect on
this parameter, but it improves the system behavior.

Although we do not show the results for a low
workload due to spece limitations, they show that
the DPMESS method does not have an effect on the
awareness delay, because the CPU utilization is low.

D. Discarding Rate

Another important parameter to be studied is the
Discarding Rate, that is, the percentage of received
messages that the proposed method discards. This
parameter is important in order to study how the
network efficiency is reduced by the DPMess method,
because the more messages are discarded, the more
network bandwidth is wasted. This parameter also
shows the percentage of messages that should be dis-
carded in order to avoid the system saturation. Con-

cretely, we have defined the Discarding Rate DR as

DR =
Discarded Messages

Received Messages
(1)

Due to space limitations, we only present here the
results for the combination SKEWED-HPA, that is
the combination whose results has been shown when
studying the rest of parameters. That is, the Figure
below shows the percentage of messages discarded
in order to obtain the results shown in the previous
subsections.

Concretely, Figure 7 shows the results obtained
when the system is under a high workload (a new
movement every 0.15 seconds).In this Figure the X-
axis shows the iteration number and the Y-axis shows
the average Discarding Rate value obtained for all
the avatars in that iteration.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 10 20 30 40 50 60 70 80 90

D
R

Iteration

ORIGINAL
DPMess

Fig. 7. Average Discarding Rate values provided under a high
workload

Figure 7 shows that the percentage of discarded
messages by the proposed method is very low (it does
not reach 0.6%). Only by discarding such a small
percentage of messages, the rest of performance pa-
rameters are improved as shown above.

In this case, due to space limitations we have not
shown the results obtained under a low workload,
because they are trivial: no messages are discarded
if the CPU utilization is not high, so the proposed
method has no significant effects on the discarding
rate.

IV. Conclusions

In this paper, we have proposed an adaptive
method (DPMess) for avoiding the saturation of
client computers in peer-to-peer DVE systems. Un-
like other proposals in the literature, we have evalu-
ated the proposed technique on actually distributed
systems. We have measured the impact of the pro-
posed technique in regard to well-known performance
metrics in distributed systems. Also, we have mea-
sured some specific performance metrics for peer-to-
peer DVE systems.

The evaluation results show that when the sys-
tem is under a high workload then preventing client
computers from reaching saturation can significantly
reduce the response time offered to avatars without

affecting the awareness rate, regardless of the move-
ment pattern that avatars follow in the virtual world.

Additionally, the proposed strategy processes
faster the most recent messages, in such a way that
the awareness delay is kept below acceptable values.
As a result, the proposed method not only does not
have an effect on this parameter, but it improves
the system behavior. All these improvements are
achieved by discarding a very small percentage of
the exchanged messages, thus not significantly wast-
ing network bandwidth.

Since the proposed method is dynamic, it does
not have any effect on system performance when the
system is under a low workload. As a result, both
the performance and the scalability of peer-to-peer
DVEs are significantly improved.

Acknowledgment

This work has been jointly supported by the
Spanish MEC and the European Commission
FEDER funds under grants Consolider-Ingenio 2010
CSD2006-00046 and TIN2006-15516-C04-04.

Referencias

[1] ,” Lineage: http://www.lineage2.com.
[2] ,” Quake: http://www.idsoftware.com/games/quake.
[3] ,” Everquest: http://everquest.station.sony.com/.
[4] Silvia Rueda, Pedro Morillo, Juan Manuel Orduña, and

José Duato, “On the characterization of peer-to-peer
distributed virtual environments,” in Proceedings of
the IEEE Virtual Reality 2007 (IEEE-VR07), Charlotte,
NC, USA. 2007, pp. 107–114, IEEE Computer Society
Press.

[5] Randall B. Smith, Ronald Hixon, and Bernard Horan,
Collaborative Virtual Environments, Springer-Verlag,
2001.

[6] S. Singhal and M. Zyda, Networked Virtual Environ-
ments, ACM Press, 1999.

[7] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-
peer support for massively multiplayer games,” in IEEE
Infocom, March 2004., 2004.

[8] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen, “Von: a
scalable peer-to-peer network for virtual environments,”
IEEE Network, vol. 20, no. 4, pp. 22–31, 2006.

[9] P. Morillo, W. Moncho, J. M. Orduña, and J. Duato,
“Providing full awareness to distributed virtual envi-
ronments based on peer-to-peer architectures,” Lecture
Notes on Computer Science, vol. 4035, pp. 336–347,
2006.

[10] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato,
“Improving the performance of distributed virtual envi-
ronment systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 7, pp. 637–649, 2005.

[11] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick,
“A multiserver architecture for distributed virtual walk-
through,” in Proceedings of ACM VRST’02, 2002, pp.
163–170.

[12] F. C. Greenhalgh, “Analysing movement and world tran-
sitions in virtual reality tele-conferencing,” in Procee-
dings of 5th European Conference on Computer Sup-
ported Cooperative Work (ECSCW’97), 1997, pp. 313–.

[13] M. Matijasevic, K. P. Valavanis, D. Gracanin, and
I. Lovrek, “Application of a multi-user distributed vir-
tual environment framework to mobile robot teleopera-
tion over the internet,” Machine Intelligence & Robotic
Control, vol. 1, no. 1, pp. 11–26, 1999.

[14] T. Henderson and S. Bhatti, “Networked games: a qos-
sensitive application for qos-insensitive users?,” in Pro-
ceedings of the ACM SIGCOMM 2003. 2003, pp. 141–
147, ACM Press / ACM SIGCOMM.

