
A Distributed Platform for Simulating
Peer-to-Peer Distributed Virtual Environments

Silvia Rueda, Pedro Morillo, Juan Manuel Orduña1

Resumen— The current expansion of multi-player
online games has promoted the growth of large scale
distributed virtual environments (DVEs). In these
systems, peer-to-peer architectures have been proved
as an efficient scheme for supporting massively multi-
player applications. In order to research on this type
of architecture, stand-alone simulators do not take
into account inconsistencies due to network latency,
and it is necessary to develop a distributed tool that
allows to simulate large-scale DVEs in an efficient way.
In this paper, we propose a distributed platform for
simulating the behavior of Peer-To-Peer DVEs. This
simulator is implemented following a modular archi-
tecture. It is capable of providing the main perfor-
mance metrics in distributed systems, and it contains
all the elements involved in real DVE simulations like
the awareness method and the graphic interface. As
a result, this tool can be used in real simulations of
Peer-to-Peer DVEs, becoming an invaluable tool for
capturing the behavior of this kind of systems.

Palabras clave— Peer-to-Peer architectures, Dis-
tributed Virtual Environments.

I. Introducción

NO wadays, the extensive use of multi-player on-
line games has promoted the use of large scale

distributed virtual environments (DVEs). Users in
these systems share a 3D virtual world and can in-
teract among them and with the elements of the
virtual scene. Usually, each system user is repre-
sented inside the virtual world by an entity called
avatar. Users control their avatars through a client
computer, which should render the images of the vir-
tual 3D environment that the user would see if he
was located at that point of the virtual world. Cur-
rently, large scale DVEs can simultaneously support
thousands and even hundreds of thousands clients.
Clients can connect to these systems through dif-
ferent networks, and usually through Internet. Al-
though DVE systems are present in many different
applications [1], such as civil and military distributed
training, collaborative design and e-learning, the
most extensive example of DVE systems are commer-
cial, massively multi-player online games (MMOG)
[2], [3], [4].

Peer-to-peer architectures were proposed some
years ago for DVE systems [5], [6]. In classic peer-
to-peer architectures, each client computer is also
a system server, and the control of the simulation
is distributed among all the client computers. In
hybrid peer-to-peer architectures, only some of the
client computers act as system servers.

Peer-to-peer architectures seem to be an efficient
scheme for supporting Distributed Virtual Environ-
ments [7]. However, in order to allow an in-depth

1Dpto. de Informática, Universidad de Valencia, e-mail:
{Silvia.Rueda,Pedro Morillo,Juan.Orduna}@uv.es

research on P2P DVE, it is necessary to develop an
efficient simulation tool capable of managing simula-
tions and evaluating the performance of medium and
large-scale DVEs.

Currently, in other fields of computer science like
image compression or algorithmic analysis there are
standardized methodologies for performance evalua-
tion [8]. However, the field of Distributed Virtual
Environments still lacks a standardized evaluation
methodology. As a result, the literature on this sub-
ject shows a great heterogeneity in the way that these
systems are evaluated [9], [10].

In this paper, we propose a distributed peer-to-
peer simulator of P2P DVEs. The distributed na-
ture of the simulator allows taking into account dis-
tributed features that stand-alone simulators can-
not evaluate, like inconsistencies due to network la-
tency, computer delays, clock drifts, etc. This simu-
lator is based on the methodology proposed in [10],
and it takes into account crucial parameters like the
number of avatars in the system, their distribution
in the virtual world and their movement pattern,
among other aspects. The simulator includes mech-
anisms for evaluation and data acquisition in real
time, and it accurately reproduces the behavior of
a Distributed Virtual Reality system. This simula-
tor has been used for researching on the saturation
of P2P DVE systems [11], providing the necessary
evaluation data for the research on these systems.

The rest of this paper is organized as follows: Sec-
tion II describes the the main modules and function-
alities of the proposed simulator. Section III shows
some examples of use of the peer-to-peer simulator,
as well as some performance evaluation results of dif-
ferent DVE configurations. Section IV shows some
conclusions and future work to be done.

II. A Distributed Peer-to-peer Simulator

The literature on P2P DVEs does not describe
any distributed simulator for this kind of systems.
Therefore, we have developed a simulator that is
capable of performing the evaluation, parameteriza-
tion and result acquisition in real time during the
simulation of DVEs. This simulator accurately re-
produce the behavior of a peer-to-peer DVE com-
posed of N avatars (for the sake of shortness, in the
rest of the paper we will refer to avatars also to de-
note the client computer controlling the avatars) in-
terconnected through a network that uses point-to-
point TCP/IP communications implemented upon
BSD socket APIs. Additionally, there is a single cen-
tral entity, denoted as the Loader, that manages the
clients to join the system. The simulator follows the



main standards for modeling collaborative virtual en-
vironments [12], [13].

A. Simulator Description

Since the purpose of the performance evaluation is
to study how the system behavior evolves when it is
working, not how clients join the system, the simula-
tor uses some configuration files for system initializa-
tion, the joining of new avatars to the simulation and
also the initial interconnection of avatars with their
neighbors. These files include informations such as
the initial location of avatars in the virtual world,
data about the neighborhood and IP addresses of all
clients in the simulations. All the computers involved
in the simulation should have the same copy of these
configuration files.

In a generic DVE system, each avatar should ex-
change messages at least with all the other avatars
within its Area of Interest (AOI) [1]. These mes-
sages contain the location of the avatars in the vir-
tual world, as well as the changes in the state of
other (usually static) elements of the AOI. For the
sake of simplicity, the clients in the simulator exclu-
sively move with the same movement rate, and they
do not change the state of any other elements in the
AOI. This limitation makes easier the system simu-
lation and evaluation, since all the messages contain
the same kind of information and it is possible to
control when each movements are made. In its turn,
this control allows stopping the simulation and mak-
ing any correction if necessary.

A simulation is defined in this simulator as the
set of 100 iterations. Each iteration, in its turn, is
defined as a single movement of all the avatars in
the virtual world. The virtual scene consists of a 2D
square whose sides are 200 meters long. We have
chosen this size because in this way (taking into ac-
count the number of iterations and the maximum dis-
tance traveled by the avatar in a single movement) an
avatar can go in a single simulation from the center
of the world to any of the vertices of the world.

During the simulation, each time that a given
avatar i makes a movement, it reports about its
movements to all its neighbors by sending updat-
ing messages. Among other informations, these up-
dating messages contain a timestamp indicating the
instant when the message was generated. When an
avatar receives an updating message, it returns an ac-
knowledgment message to the sending avatar. When
the sender avatar receives the acknowledgment it can
compute the round-trip delay for the message by sim-
ply subtracting the timestamp in the message from
the current time. Since both instants (the instant
when the updating message is generated and the in-
stant when the acknowledgment arrives to its des-
tination) are time-stamped in the same computer,
clock shifts between different computers are avoided.
We have denoted the round-trip delays for all the
messages sent by a client as the Average System Re-
sponse (ASR) for that client. Among other output
results, the simulator provides not only the ASR for

each client, but also the average value of the ASR
provided to all the clients in the simulation.

The simulator is composed of two different kind of
applications, written in C++. One of them imple-
ments the clients, and the other one implements the
central manager or Loader [14] to whom the rest of
the clients should connect to in order to join the sys-
tem. Both type of applications use different threads
for managing the connections that should be estab-
lished. As indicated above, the communications are
implemented by means of sockets.

Each client has a main thread that manages the
actions required by the user. Additionally, for each
of its neighbors each client has also two different
threads, one for listening and one for sending infor-
mation. In the same way, the central Loader has two
communication threads for each client in the system,
and also a main thread. The Loader do not repre-
sent a system bottleneck, because once an avatar has
joined the system it no longer needs to exchange in-
formation with the Loader.

Each client initially has (by means of a configu-
ration file) the IP addresses of those other clients
that are going to be its neighbors initially. That is,
each client needs a configuration file with its initial
location in the virtual world, the list of its initial
neighbors, and also the IP addresses and the listen-
ing ports of these neighbors. Once all the simulation
clients have connected to the Loader, the Loader it-
self broadcasts a synchronizing message for starting
the simulation. From that instant, avatars can move
within the virtual world.

Since one of the main issues in peer-to-peer DVEs
is the awareness method [15], the simulator should
be provided with an awareness mechanism. Con-
cretely, we have implemented the VON method [16],
the method proposed in [17], and also the COVER
method [18] as a simulator option. In order to
achieve this feature, the clients also have an addi-
tional thread for eventually performing supernode
tasks if necessary (as the COVER method requires).
Since the behavior of the threads in the system is in-
dependent, we have solved the concurrency concerns
by creating in each peer client a queue of messages
and a specific thread for processing this queue. In
each peer client, all the listening threads (one for
each current neighbor) drop the received messages ei-
ther on the avatar queue or on the supernode queue,
depending of the type of message. The main thread
of the avatar is the one in charge of processing the
messages in the queue of incoming messages. In the
same way, the main thread of the supernode pro-
cesses the messages in the queue of incoming mes-
sages for the supernode. An analog scheme is used
for sending messages. The main thread of the client
adds messages to the different sending queues (one
for each current neighbor). The corresponding send-
ing thread is in charge of processing the messages
(sending them in order to the neighbor to whom the
thread is connected). This scheme allows sending in-
order messages without blocking the sending thread.



In order to guarantee correct concurrent accesses to
the queues, we have used locks to implement the crit-
ical sections of these accesses. The same mechanism
is also used for implementing the communications in
the Loader. In order to illustrate these mechanisms,
Figure 1 shows the communications among the differ-
ent client applications in the proposed peer-to-peer
simulator.

Fig. 1. Communications between different clients in the sim-
ulator

As Figure 1 shows, each client application can per-
form client functions as well as supernode functions
(if the COVER awareness method is used). The com-
munications between a client application i (running
on a given client computer) and other client j in the
simulation are performed by means of two threads,
one for listening from the socket and one for sending
to the socket communicating i and j. A socket is es-
tablished between i and j because of one of these rea-
sons: i needs to communicate with j because j is the
Loader, because j is a neighbor within the AOI of i or
because j is an uncovered avatar and i is a supernode
of j (when the COVER awareness method is used).
Although each client requires multiple threads, the
peer-to-peer scheme allows this workload, as shown
in section III.

A simulation in the proposed simulator consists of
a given number of iterations. Each iteration consists
of all avatars making a new movement. When a given
avatar arrives to the 101th iteration (it has already
performed 100 movements) it leaves the simulation,
notifying about it to both the Loader and its current
neighbors. Additionally, the simulator generates a
simulation log with all the relevant information pro-
duced during the simulation, for a detailed off-line
analysis.

Although in real systems there are no communi-
cations between the Loader and each client after the
client has joined the system, the simulator imple-
ments a monitoring algorithm that allows to mea-
sure the awareness rate (the percentage of clients
that have correctly computed which other clients are
their current neighbors [18], [15]) in real time. In
order to achieve this feature, each client has two dif-
ferent phases in its cycle time. In the first phase, the
client moves the avatar and notifies its new position
in the virtual world to all its neighbors. In the sec-
ond phase, the client sends the Loader information
containing its new position and which other clients
it considers as its current neighbors. In this way,
the Loader can compute the percentage of clients
that have correctly computed which other avatars
are its neighbors (the awareness rate). Additionally,

this monitoring algorithm also measures the aware-
ness delay of avatars. These performance measure-
ment consists of the time interval between the in-
stant when a new neighbor enters the AOI of a given
avatar i and the instant when the own avatar i con-
siders that neighbor as its neighbor.

The simulator allows a high number of configura-
tion options, in order to study a wide range of situ-
ation that can arise in P2P DVEs. Concretely, the
configurable attributes of the client application in the
proposed simulator are the following ones:

Avatar identifier: Every avatar should have a
unique identifier. However, this identifier can
be changed ad-hoc.

Awareness monitoring: If this option is active,
then the awareness rate is monitored by the
Loader (the avatar should notify the Loader its
current position and which other clients it con-
siders as its neighbors).

Awareness period: Delay between each movement
of the avatar and the instant when the client
notifies the Loader its current neighbors.

AOI size: Size of the AOI for the avatar controlled
by the client. This parameter is directly re-
lated with the presence factor [19] (the number
of neighbors that can see a given avatar cur-
rently), and in its turn this parameter has an
effect on the workload generated to the hosting
client.

Quad-tree size: Minimum region size (COVER
awareness method).

Uncovered threshold: Maximum number of uncov-
ered avatars in a region (COVER awareness
method).

Number of AE: Number of active entities (aware-
ness method shown in [17]).

Iterations: Number of iterations in the simulation.

Additionally, the simulator has a global configu-
ration file for establishing global simulation options.
These options are the following ones:

DVE size: Number of clients in the simulation.
Log file: Name of the log file for the simulation.
Updating period: Period between iterations, that

is, the time between two consecutive movements
of the avatars.

Awareness algorithm: Awareness method to be
used in the simulation (COVER,VON, or the
one shown in [17]).

Initial distribution: This parameter determines
the initial location of the avatars in the virtual
world. The current options allowed are the uni-
form distribution of avatars, the skewed distri-
bution and the clustered distribution [10].

Movement pattern: This parameter determines
the different paths that each avatar can follow in
the simulation. Concretely, the simulator sup-
ports three movement patterns: Changing Cir-
cular Pattern (CCP), Hot-Points-ALL (HPA),
and also Hot-Point-Near (HPN). CCP considers
that all avatars in the virtual world move ran-



domly around the virtual scene following circu-
lar trajectories. HPA considers that there exists
certain “hot points” where all avatars approach
sooner or later. This movement pattern is typ-
ical of multiuser games, where users must get
resources (as weapons, energy, vehicles, bonus
points, etc,) that are located at certain loca-
tions in the virtual world. Finally, HPN also
considers these hot-points, but only avatars lo-
cated within a given radius of the hot-points
approach these locations. In order to illustrate
these movement patterns, Figure 2 shows the
final distribution of avatars that a 2-D virtual
world would show if these movement patterns
were applied to an uniform initial distribution
of avatars. The nine combinations of the initial
distributions and movement patterns cover any
possible situation in a virtual world.

Fig. 2. Movement patterns supported by the simulator: a)
CCP, b) HPN, and c) HPA

B. Internal Implementation

Since the purpose of the simulator is to become
a peer-to-peer platform for simulating peer-to-peer
DVEs, the implementation of the simulator consists
of the software to perform the tasks that a peer node
should potentially perform: standard node tasks,
supernode tasks (COVER awareness method) and
Loader tasks. The software architecture used to im-
plement a peer node is modular, and each module
has been performed as a C++ class. Figure 3 shows
a XML scheme of all the modules implemented, as
well as the interactions among them.

Fig. 3. Modular architecture of a peer node

The classes implemented for this scheme are the
following ones:

MessageManager class: This is a generic class
that includes a thread for processing requests

and also a FIFO queue where other objects can
drop their requests.

CPUusageThread class: Thread in charge of peri-
odically monitoring the utilization of the CPU
as well as other resources (number of messages
sent, etc.).

Quad-tree class: This class represent the hierar-
chical division of the virtual world. It contains
information about the current scene tree and the
client identification of the supernode of each re-
gion.

Node class: This class represents each one of the
regions in the quad-tree.

CBlockingSocket class: A communication class
that is based on sockets for reading and writ-
ing messages, listening for connections requests,
etc..

SenderThread class: This class is derived from the
MessageManager class, and it is in charge of tak-
ing out and sending the messages in the Mes-
sageManager FIFO queue. In order to sned
the messages, it uses an object belonging to the
CBlockingSocket class.

Supernode class: This thread is derived from the
MessageManager class, and it processes the mes-
sages sent to the client when that client is the
supernode of a region.

ElementDVE class: This is a generic class. Both
the clients and the Loader derive from this
class, that contains the common methods and
attributes of both applications: list of clients
in the system, methods for obtaining the initial
configuration, etc..

Loader class: It is the main class for the Loader
client, and it derives from the MessageManager
class. It processes the requests that the listening
threads (one for each avatar in the simulation)
receive. This processing consists of computing
the awareness rate in real time, synchronizing
the start of the simulation, etc.

LoaderThread class: This class is composed of lis-
tening threads used for receiving the clients re-
quests. It exists one object of this class for each
client in the simulation. In order to receive a
message, it uses an object of the CBlocking-
Socket class.

Client class: This is the main class of the client
application. It processes all the requests that
the listening threads (connected either to the
Loader or to other clients) receive and drop in
its queue. It contain methods for moving the
avatar, computing the neighbors, sending data
to the Loader, etc. It uses objects belonging to
the SenderThread class for sending information
to the rest of clients (including the Loader). It
also includes an object of the Supernode class.

ClientThread class: This class is composed of lis-
tening threads that are used for receiving re-
quests either from the clients or from the
Loader. It exists an object of this class for each
neighbor client and another additional object for



the Loader. When these objects receive a mes-
sage they drop the message either on the client
queue or on the supernode queue.

III. Examples of use

We have used the proposed simulator for evaluat-
ing the performance of peer-to-peer DVEs. Also, we
have used it to evaluate the performance of different
awareness methods [17], [16], [18]. These methods
had been previously evaluated on sequential systems.
However, there are a lot of situations in a real dis-
tributed system that do not arise in a stand-alone
(sequential) simulator, it is executed on a single com-
puter and therefore time-space inconsistencies due to
network latency, computer delays, clock drifts, etc.
do not actually exist. Only a distributed simulator
like the one proposed in this paper is able to repro-
duce such situations.

Figure 4 shows the ASR values (latency values) ob-
tained when using the considered awareness method
in a given DVE configuration (consisting of 100
avatars using an AOI radius of 10 meters). In this
Figure, the X-axis shows the iteration number, and
the Y-axis shows the average ASR value obtained
for that iteration. Concretely, in this case we have
considered the awareness method proposed in [17]
with two different sizes of the list of Active Entities,
10 and 20 neighbors. The plots corresponding to
these awareness methods are labeled as ”KW10” and
”KW20”, respectively. The awareness method pro-
posed in [16] is labeled as ”VON”, and the awareness
method proposed in [18] is labeled as COVER. In this
case, the simulation results show that the awareness
method that provides the lowest ASR values is the
COVER method.

Fig. 4. ASR values obtained with different awareness meth-
ods.

Figure 5 shows the awareness delays obtained by
the considered awareness methods for the same DVE
configuration. In this case, the Y-axis shows the
awareness delays provided by the simulator. These
values show that the COVER method provides the
best awareness delays during the whole simulation.

Table I shows another performance results that
can be achieved with the proposed simulator. Con-
cretely, it shows the awareness rates provided by

Fig. 5. Awareness delays obtained with different awareness
methods.

the considered awareness methods for the same DVE
configuration. This table show on each row the av-
erage awareness rates achieved in a simulation by a
given method when avatars follow a given combina-
tion of initial distribution and movement pattern of
avatars. Each column shows the results achieved for
a different DVE size. Concretely we have considered
in this example a P2P DVE of 100, 500 and 1000
avatars.

TABLA I

Awareness rates provided by different awareness

methods

KW10

100 av. 500 av. 1000 av.

UNF-CCP 90.9 95.9 96.1

UNF-HPA 85.5 85.9 96.0

UNF-HPN 81.8 92.0 98.2

SKW-CCP 92.7 97.5 96.8

SKW-HPA 88.7 91.8 97.9

SKW-HPN 88.7 94.5 98.0

CLS-CCP 96.4 96.8 97.6

CLS-HPA 90.9 93.5 94.4

CLS-HPN 90.9 96.4 98.7

VON

100 av. 500 av. 1000 av.

UNF-CCP 90.8 94.1 92.1

UNF-HPA 79.4 63.8 92.5

UNF-HPN 89.3 81.1 93.6

SKW-CCP 98.2 92.0 96.3

SKW-HPA 90.3 83.0 88.5

SKW-HPN 89.7 79.4 91.2

CLS-CCP 85.4 87.7 94.6

CLS-HPA 88.6 77.3 89.4

CLS-HPN 92.4 84.8 94.7

COVER

100 av. 500 av. 1000 av.

ALL 100 100 100

Each value in Table I has been computed as the
average value of 10 different simulations with the
same input parameters. For the sake of shortness,
in this case we have shown in this table the results
for the KW10, VON and COVER method. Also, the
results for the COVER method where all the same
(100%) for all the combinations of movement pat-
terns. Therefore, we have shown only a single row
for this awareness method. These results show how



two of the considered awareness methods (KW10 and
VON) do not actually provide a full (100%) aware-
ness rate (as claimed by heir authors), when non-
uniform movement patterns are followed. These re-
sults can only be obtained with a distributed plat-
form for simulating P2P DVEs.

Additionally, the proposed simulator can be used
as the kernel of any P2P DVE application, due to
its modular architecture. The graphical interface for
the particular application can be easily linked to the
Client module described above. As a result, the im-
plementation of the graphical interface is indepen-
dent of the high-level graphic library. In order to
show that this feature can be used for real simula-
tions, Figure 6 shows a snapshot of a peer-to-peer
simulation where the avatars are cars and the vir-
tual world is a city. In this case, the purpose of the
simulation tool is the training of novel drivers. The
graphical interface has been developed on OpenGL
Performer 3.2. This figure shows how the monitoring
algorithms and the computations made to evaluate
the system performance do not affect the graphical
quality of the simulations.

Fig. 6. Peer-to-peer simulation of cars driving inside a city.

IV. Conclusions and Future Work

In this paper, we have proposed a distributed plat-
form for simulating the behavior of Peer-To-Peer
DVEs. This simulator takes into account crucial
parameters like the number of avatars in the sys-
tem, their distribution in the virtual world and their
movement pattern, among other aspects. It includes
mechanisms for evaluation and data acquisition in
real time, and it accurately reproduces the behavior
of a Distributed Virtual Reality system.

The software architecture used to implement a
peer node is modular, and each module has been
performed as a C++ class. In this way, the overhead
added to clients for measuring the performance met-
rics in a peer-to-peer DVE have no significant effects
on the system response. As a result, the simulator
can be used in real simulations to characterize the
behavior of peer-to-peer DVEs.

Acknowledgment

This work has been jointly supported by the
Spanish MEC and the European Commission
FEDER funds under grants Consolider-Ingenio 2010
CSD2006-00046 and TIN2006-15516-C04-04.

Referencias

[1] S. Singhal and M. Zyda, Networked Virtual Environ-
ments, ACM Press, 1999.

[2] ,” Lineage: http://www.lineage2.com.
[3] ,” Quake: http://www.idsoftware.com/games/quake.
[4] ,” Anarchy Online: : http://www.anarchy-online.com.
[5] E. Frecon and M. Stenius, “Dive: A scalable network

architecture for distributed virtual environments,” Dis-
tributed Systems Engineering Journal, vol. 5, no. 3, pp.
91–100, September 1998.

[6] Michael R. Macedonia, M. Zyda, David R. Pratt, Don-
ald P. Brutzman, and Paul T. Barham, “Exploiting re-
ality with multicast groups: A network architecture for
large-scale virtual environments,” in Proceedings of the
1995 IEEE Virtual Reality Annual Symposium, 1995, pp.
2–10.

[7] P. Morillo, J.M. Orduña, and J. Duato, “A scalable
synchronization technique for distributed virtual envi-
ronments based on networked-server architectures,” in
Proceedings of the 35th IEEE International Conference
on Parallel Processing (ICPP’06) Workshops. 2006, pp.
74–81, IEEE Computer Society Press.

[8] David Salomon, A guide to data compression methods,
Springer-Verlag, 2001.

[9] John C.S. Lui and M.F. Chan, “An efficient partitioning
algorithm for distributed virtual environment systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 13,
2002.

[10] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato,
“Improving the performance of distributed virtual envi-
ronment systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 7, pp. 637–649, 2005.

[11] Silvia Rueda, Pedro Morillo, and Juan Manuel Orduña,
“On the characterization of peer-to-peer distributed vir-
tual environments,” in Proceedings of International Con-
ference on Cyberworlds 2007 (Cyberworlds’07), Han-
nover, Germany. 2007, IEEE Computer Society Press.

[12] IEEE, 1278.1 IEEE Standard for Distributed Interactive
Simulation-Application Protocols (ANSI), 1997.

[13] F. Kuhl, R. Weatherly, and J. Dahmann, Creating Com-
puter Simulation Systems: An Introduction to the High
Level Architecture, Prentice-Hall PTR, 1999.

[14] M. Oliveira, J. Crowcroft, and M. Slater, “Compo-
nents for distributed virtual environments,” PRES-
ENCE: Teleoperators and Virtual Environments, vol. 10,
no. 1, pp. 56–61, 2001.

[15] Randall B. Smith, Ronald Hixon, and Bernard Horan,
Collaborative Virtual Environments, Springer-Verlag,
2001.

[16] S. Y. Hu and G. M. Liao, “Scalable peer-to-peer net-
worked virtual environment,” in Proceedings ACM SIG-
COMM 2004 workshops on NetGames ’04, 2004, pp.
129–133.

[17] Y. Kawahara, T. Aoyama, and H. Morikawa, “A peer-to-
peer message exchange scheme for large scale networked
virtual environments,” Telecommunication Systems, vol.
25, no. 3, pp. 353–370, 2004.

[18] P. Morillo, W. Moncho, J. M. Orduña, and J. Duato,
“Providing full awareness to distributed virtual envi-
ronments based on peer-to-peer architectures,” Lecture
Notes on Computer Science, vol. 4035, pp. 336–347,
2006.

[19] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato,
“On the characterization of avatars in distributed virtual
worlds,” in EUROGRAPHICS’ 2003 Workshops. The
Eurographics Association, 2003, pp. 215–220.


