
XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 1

On the Design of a Scalable Architecture for
Crowd Simulation

Miguel Lozano, Pedro Morillo, Juan M. Orduña, Vicente Cavero

Resumen— Crowd simulations require both rende-

ring visually plausible images and managing autono-

mous behaviors. Therefore, scalability is crucial for

these applications. Although several proposals have

focused on the software architectures for these sy-

stems, no proposals have focused on the computer

systems supporting them.

In this paper, we analyze the computer architec-

tures used in the literature to support virtual envi-

ronments. Also, we propose a computer architecture

scalable enough to support simulations of thousand of

autonomous agents. This proposal consists of a clu-

ster of computers in order to provide scalability, as

well as a client-server software architecture that effi-

ciently provides consistency. Performance evaluation

results show that the trade-off between scalability and

consistency allows to efficiently manage thousands of

autonomous agents.

Palabras clave— Crowd simulation, autonomous

agents, distributed virtual environments

I. Introduction

Crowd simulations have become an essential tool
for many virtual environment applications. Exten-
sive use of virtual crowds has been made in many
commercial movies like AntZ [1] or The Lord of the
Rings [2]. Also, high quality crowd simulations are
crucial for many virtual environment applications in
education, training, and entertainment [3], [4].

Crowd simulations can be considered as virtual
environment applications with two different goals.
On the one hand, crowd simulations must focus on
rendering visually plausible images of the environ-
ment, requiring a high computational cost. On the
other hand, complex agents must have autonomous
behaviors, greatly increasing the computational cost
as well. Thus, some proposals tackle crowd simu-
lations as a particle system with different levels of
details (eg:impostors) in order to reduce the compu-
tational cost [5], [6]. Although these proposals can
handle crowd dynamics and display populated inte-
ractive scenes (10000 virtual humans), they are not
able to produce complex autonomous behaviors for
their actors. On the contrary, several proposals have
been made to provide efficient and autonomous be-
haviors to crowd simulations [3], [4]. However, they
are based on a centralized system architecture, and
they can only control a few hundreds of autonomous
agents with different skills (pedestrians with navi-
gation and/or social behaviors for urban/evacuation
contexts). Tacking into account that pedestrians re-
present the slowest human actors (in front of other
kind of actors like drivers in cars, for example) these

This paper is supported by the Spanish MEC under Grant
TIC2003-08154-C06-04

Departamento de Informática, Universidad de Valencia. e-
mail: Juan.Orduna.@uv.es.

results show that scalability has still to be solved in
crowd simulations.

Although some scalable, complex multi-agent sy-
stems have been proposed [7], these proposals are
exclusively focused on the software architecture, for-
getting the underlying computer architecture (the
actual implementation of the computer and the ap-
plication executing on it [8]). As a result, impor-
tant features like inter-process communications, wo-
rkload balancing or network latencies are not taken
into account. In this paper, we analyze the com-
puter architectures used in the literature to support
crowded virtual environments. In order to manage
the trade off between scalability, rich behaviors, and
computational cost required by crowd simulations,
we propose a hybrid computer architecture. This
architecture consists of a networked-server Distribu-
ted Virtual Environment (DVE) [9]. Also, in order
to efficiently supporting consistency and autonomous
behaviors we propose a centralized software architec-
ture. Performance evaluation results show that this
architecture can efficiently manage thousands of au-
tonomous agents.

The rest of the paper is organized as follows: sec-
tion II analyzes the existing computer architectures
proposed in the literature for supporting Distributed
Virtual Environments (DVEs). As a result of such
analysis, section III describes the proposed architec-
ture for crowd simulations. Next, section IV shows
the performance evaluation of the proposed system
architecture. Finally, section V shows some conclu-
sion remarks.

II. Computer architectures for DVEs

Different computer architectures have been propo-
sed in order to efficiently support DVEs: centralized-
server architectures [10], networked-server architec-
tures [11] and peer-to-peer architectures [12]. Fi-
gure 1 shows an example of each one of these archi-
tectures. In this example, the virtual world is two-
dimensional and avatars are represented as dots. The
area of interest (AOI) of a given avatar is represented
as a circumference.

Fig. 1. Different architectures for DVE systems: a) Centrali-
zed b) Peer-to-peer c) Networked-server

Figure 1 a) shows an example of a centralized-
server architecture. In this example, the virtual



2 M. LOZANO ET AL. : ON THE DESIGN OF A SCALABLE ARCHITECTURE FOR CROWD SIMULATION

world is two-dimensional and avatars are represen-
ted as dots. In this architecture there is only a sin-
gle server and all the client computers are connected
to this server. Figure 1 c) shows an example of a
networked-server architecture. In this scheme there
are several servers and each client is exclusively con-
nected to one of these servers. This scheme is more
distributed than the client-server scheme, and since
there are several servers, it considerably improves the
scalability in regard to the client-server scheme. Fi-
nally, figure 1 b) shows an example of a peer-to-peer
architecture. This scheme is the most distributed
one, since each client computer is also a server.

Although the first DVEs were based on centralized
architectures, during the last few years architectu-
res based on networked servers have been the major
standard for DVE systems [11]. However, each new
avatar in a DVE system represents an increase not
only in the computational requirements of the ap-
plication but also in the amount of network traffic
[13]. Due to this increase, networked-server architec-
tures seem not to properly scale with the number of
clients, particularly for the case of MMOGs [14], due
to the high degree of interactivity shown by these
applications. As a result, Peer-to-Peer architectures
have been proposed for massively multi-player online
games[12].

Nevertheless, P2P architectures must still efficien-
tly solve the awareness problem. This problem con-
sists of ensuring that each avatar is aware of all the
avatars in its neighborhood [15]. Providing aware-
ness to all the avatars is a necessary condition to
provide time-space consistency (as defined in [16]).
Awareness is crucial for DVEs, since otherwise ab-
normal situations could happen. For example, a
game user provided with a non-coherent view of the
virtual world could be shooting something that he
can see although it is not actually there. Also, it
could happen that an avatar not provided with a co-
herent view is killed by another avatar that it cannot
see. In networked-server architectures, the awareness
problem is easily solved by the existing servers, since
they periodically synchronize their state and there-
fore they know the location of all avatars during all
the time. Each avatar reports about its changes (by
sending a message) to the server where it is assigned
to, and the server can easily decide which avatars
should be the destinations of that message (by using
a criterion of distance). There is no need for a me-
thod to determine the neighborhood of avatars, since
servers know that neighborhood every instant.

III. A New Architecture for Crowd

Simulation

From the discussion above it seems that the more
physical servers the DVE relies on, the more scala-
ble it is. On the contrary, features like the awareness
and/or consistency are more difficult to be provided
as the underlying architecture is more distributed
(peer-to-peer architecture). Therefore, we propose
a networked-server scheme as the computer system

architecture for crowd simulation. On the one hand,
this distributed scheme allows to improve scalability
(the maximum number of agents in the system) when
compared to centralized (client-server) architectures.
On the other hand, the small number of servers in
networked-server architectures makes easy to provide
awareness (and therefore time-space consistency) to
the avatars moving in the virtual world.

On top of this networked-server architecture, a
software architecture must be designed to manage
a crowd of autonomous agents. In order to easily
maintain the coherence of the virtual world, a cen-
tralized semantic information system is needed. In
this sense, it seems very difficult to maintain the co-
herence of the semantic information system if it fol-
lows a peer-to-peer scheme, with lots of computers
supporting each one a small number of actors and
a copy of the semantic database. Therefore, on top
of the networked-server computer system architec-
ture, we propose the software architecture shown in
figure 2. This architecture has been designed to di-
stribute the agents of the crowd in different server
computers (the networked-servers). We denote this
computers as the clients, and each one of them can
manage a variable number of autonomous agents.

Fig. 2. The proposed software architecture

This centralized software architecture is compo-
sed of two elements: the Action Server (AS) and
the Client Processes (CP). In turn, the action ser-
ver is composed of two different modules, Semantic
Data Base (SDB) and the Action Execution Module
(AEM).

A. The Action Server

The AS can be viewed as the world manager, since
it controls and properly modifies all the information
the crowd can perceive. The Action Server is fully
dedicated to verify and execute the actions required
by the agents, since they are the main source of chan-
ges in the virtual environment. For scalability purpo-
ses, the AS must be placed on the computer with the
highest computational power. This computer should
exclusively used for this purpose. Since the AS is uni-
que, consistency is easily provided. In this context,
consistency involves the information that the agents



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 3

Fig. 3. The Semantic Data Base

should know to animate consistent behaviors. Addi-
tionally, another important parameter for interactive
crowd simulations is the server main frequency. This
parameter represents how fast the world can change.
Ideally, in a fully reactive system all the agents send
their action requests to the server, which processes
them in a single cycle. In order to provide realistic
effects, the server cycle must not be greater than the
threshold used to provide quality of service to users
in DVEs [17]. Therefore, we have set the maximum
server cycle to 250 ms..

The server can be viewed as the world manager,
since it controls and properly modifies all the infor-
mation the crowd can perceive. It consists of two
modules: the Semantic Data Base and the Action
Execution Module. The SDB represents the glo-
bal knowledge about the interactive world that the
agents should be able to manage, and it contains the
necessary functionalities to handle interactions be-
tween agents and objects. In our case, we manage
two maps (objects, agents) which let us to efficiently
control a set of (attribute, value) pairs associated to
each object/agent during the simulation. Since these
attributes are centered into objects or agents, we use
their names to index the correspondent map. The
semantic information managed can be symbolic (eg:
objecti free true, objecti on objectk, ...) and nume-
ric (eg: objecti position, objecti bounding volume,
..), since it has been designed to be useful for diffe-
rent types of agents. Figure 3 illustrates this data
base scheme.

We have decided to avoid complex spatial maps
(such as cuad/oct-trees) to control the SDB, since
these structures can be too expensive to handle when
the number of insertions and deletions grows (agents
can be continually changing their location). Instead,
we use STL maps, which allows us to access to any
object/agent with a logarithmic cost. Also, in or-
der to face the collision detection in a scalable way,
we reduce the visible area for each agent. Concre-
tely, we use a vector of cells (2D-grid) to manage the
list of the elements contained in each collision area.
Figure 4 shows an example of such cells. Once the

Fig. 4. A collision example.

server frequency has been set (in our case to 250 mil-
liseconds), the available time to process each agent
action results from dividing the server frequency by
the number of agents in the system. If the number of
agents increases in such a way that the server is not
be able to process all the actions in a single cycle, the
pending actions are simply left to be processed in the
next cycle. In the experiments shown in section IV
we measure the action latency, so we could estimate
the degree of reactivity achieved by these scheme.

The Action Execution Module manages the ac-
tion’s flow of the simulation. In order to allow the
maximum flexibility, the AS can process 4 types of
actions:

Motion actions : Location changes where colli-
sions can occur, although agents were (poten-
tially) able to navigate without colliding. If an
agent wants to move to the location currently
occupied by another object/agent, the environ-
ment should simply not allow it. Figure 4 il-
lustrates an example of a collision situation for
agentw. Since the server knows the location of
the agent, it can access to its cell through a sim-
ple function (similar to the one used by hash
tables), and perform an object-object collision
test with the neighbors of agentw.

Motor actions : We use simple key-framing tables
to animate the actors in walking, running, and
other motions. Since no constraints are allowed,
the value received is simply accepted in the SDB
as an internal change in an agent attribute. We
consider the agent motor system as the responsi-
ble to continually read its animation state from
the SDB. The graphic engine, which contains all
the actor’s skeletons of the crowd, will perform
this task according to its frame rate.

Agents interactions : Corresponds to a normal
agent-agent communication scheme, which can
be easily obtained from the system through the
server. Messages can be managed as other agent
attributes, so the SDB will simply route them
into the correspondent slots.

STRIPS actions : STRIP is the action language
used by our planning agents. A STRIPS ac-



4 M. LOZANO ET AL. : ON THE DESIGN OF A SCALABLE ARCHITECTURE FOR CROWD SIMULATION

tion scheme [18] can be represented through the
Preconditions, Add and Delete lists associated
to each agent action. Before executing an ac-
tion (eg: pick up an object), the server verifies
its preconditions using the SDB maps (eg: is
object-k free?). When a STRIPS action is ac-
cepted, the Add and Delete lists contain the new
information the SDB needs to update its state.

When an action is positively checked, it should be
executed and (possibly) the SDB updated. In order
to do this, this module puts all the action effects
in a new vector (vUpdate) which reflects the local
changes produced by each actuation (eg: an agent
changes its position). Finally, when the server cycle
has finished, this vector is sent to both, the clients
and the SDB, which will update their correspondent
environmental states.

For example, when an agent tries to perform a mo-
tor action (a movement) then a collision can occur.
The agent should request the server to validate that
movement by sending a message. Since the server
knows the location of the agent, it accesses to its cell
through a simple function (similar to the one used
by hash tables), and perform an object-object colli-
sion test with the neighbors of agentw. If no collision
caused by that movement is detected, then the ser-
ver should send an acknowledgment message to the
agent.

B. The clients

Each process in a client computer (the rest of the
networked servers not used as the AS) manages an
independent group of autonomous agents (a subset
of the crowd), and it is executed in a single compu-
ter as a single process. This process has an interface
for receiving and updating the information from the
server, and a finite number of threads (each thread
for an agent). Using this interface, a client initially
connects to the Action Server and downloads a com-
plete copy of the SDB. From that instant, agents
can think locally and in parallel with the server, so
they can asynchronously send their actions to the ser-
ver, which will process them as efficiently as possible
(since each agent is a process thread, it can sepa-
rately access to the socket connected to the server).
When a server cycle finishes, the accepted changes
are submitted to all the clients interfaces, that will
update their SDB copies.

The proposed multi-threading approach is inde-
pendent of the agent architecture (the AI formalism
driving the agent behavior), that is out of the scope
of this paper. However, the proposed action scheme
guarantees the awareness for all agents [15], since all
the environmental changes are checked in a central
server and then broadcasted to the agents. Although
time-space inconsistencies can appear due to agent
asynchronies and network latencies, all these incon-
sistencies are kept below the limit of the the server
period.

As an example, figure 5 shows a snapshot of a real
system with the architecture described in this sec-

tion. For the sake of clearness, this snapshot has
been taken for a simulation of only 1000 agents. This
figure shows an overall view where agents are repre-
sented as black dots. In this example we have si-
mulated a square bi-dimensional world, all agents
were initially located in the world following a ran-
dom distribution inside one half of the world, and
they moved trying to arriving to the opposite side of
the world.

Fig. 5. Snapshot of a simulation of 1000 agents

IV. Performance Evaluation

This section shows the performance evaluation of
the architecture described in the previous section. In
order to achieve such goal, we have performed measu-
rements on a real system with this architecture. Con-
cretely, we have performed simulations where each
agent keeps moving during 5 or 6 minutes. As cited
in the previous section, the AS cycle (the maximum
period of time an interactive actor can wait for it ac-
tion response) has been set to 250ms., and every 2.5
seg. statistics are computed, resulting in 30 different
samples. Each point of the plot and each value of the
tables in this section has been computed as the ave-
rage value of the 30 samples. In order to make a per-
formance evaluation we have used wandering agents,
since this type of agents is the one that generate the
highest workload to the AS (since they simply move,
they require the server to validate their movements
in each server cycle).

Like in other distributed systems, the most impor-
tant performance measurements in DVE systems are
latency and throughput. First, we have focused on
system throughput (the number of agents that the
system can efficiently support), that is limited in our
architecture by the AS throughput. Concretely, we
have measured the AS throughput when it is fully
dedicated to collision detection tasks. The rationale
of this test is to evaluate the number of actions that
the server is able to carry out in a single cycle, since
this could be a plausible bottleneck.



XVII JORNADAS DE PARALELISMO—ALBACETE, SEPTIEMBRE 2006 5

When an action is requested by an agent, the ser-
ver basically must access to its cell and then it must
compute a set of simple distance checking against
the agents which are sharing the same cell, as fi-
gure 4 shows. If no collisions are produced, then this
process continues until the 8 neighbor cells pass the
same test.

Figure 6 shows the results obtained in a collision
detection test performed in an isolated server while
handling 10.000 agents demanding a random position
as soon as they can, in order to saturate the server.
The purpose is to know how fast the server can run,
that is, the average of actions that it is able to process
in a single cycle. As figure 6 shows, this value highly
depends on the density of the crowd. Nevertheless,
we have represented this parameter as the percen-
tage of finally executed actions (ACK’s), since it is
more informative for our purposes. Thus, an ACK
percentage of 0% occurs when no motion is allowed
because the crowd is completely full and no one can
move. On the other hand, when all the agents pass
a full collision test, all the actions are allowed (100%
of ACK’s) and all the agents finally move. In these
experiments, this case (94% of ACK’s) represents the
worst case because the server should access to 8 +
1 cells and compute a variable number of distance
checks for each action.

Fig. 6. Server performance on collision tests

Figure 6 shows that in the worst case (94% of
ACK’s) the server is able to process around 6000
actions in a single cycle (250 ms). However, when
the density of the crowd increases the percentage of
ACK’s decreases because the probability of collision
increases in very dense worlds. This will produce
that the server can finish the cell checking without
visiting all the neighbors cells. As a consequence,
the server can process a higher number of actions
requests per cycle (12000 actions for a percentage
of 0% ACKS). It is also worth mention that for a
medium case (48% ACK’s), the system can manage
around 8000 agents.

Additionally, we have evaluated the throughput
and the latency of the entire system in a configura-
tion composed of 4 clients and 1 server. For both
cases, agents continuously demand a random posi-

TABLA I

System throughput for a fixed agent cycle of 250ms.

S0 C1 C2 C3 C4
Agents % %(cy.) %(cy.) %(cy.) %(cy.)
1000 11 1(1) 1(1) 1(1) 1(1)
2000 22 4(1) 4(1) 4(1) 4(1)
3000 32 10(1) 10(1) 11(1) 10(1)
4000 43 18(1) 18(1) 18(1) 17(1)
5000 54 24(1) 27(1) 25(1) 23(1)
6000 64 31(1) 32(1) 30(1) 32(1)
7000 79 39(1) 40(1) 37(1) 36(1)
8000 94 45,0(1) 48(1) 45(1) 46(1)
9000 97 50(1,5) 49(1,3) 50(1,4) 49(1,3)
10000 98 48(2,0) 48(1,6) 48(1,7) 48(1,6)

tion to the server. The purpose of these evaluations
is to check if the proposed architecture can improve
the latency and throughput provided by other ge-
neral purpose DVEs [13]. In these experiments, the
existing agents are distributed among the existing
client computers, in such a way that all the client
computers manage a similar crowd subset (group of
agents). We have increased the number of agents
until the whole system has entered saturation (the
system response time greatly increases and the CPU
utilization reaches 100% in any computer [13]).

Table I shows the results for different simulations
with the same AS cycle (250 ms.) but with different
numbers of agents. Each column in this table shows
two different values, except for the server. The co-
lumn labeled with S0 shows the percentage of CPU
utilization reached in the server. The columns labe-
led with Cx show the percentage of CPU utilization
reached in that client and the average response time
(measured in AS cycles) for the agents supported
by that client. The left column show the number
of agents used in each simulation. Each row in this
table shows the results for a simulation with a diffe-
rent number of agents, ranging from 1000 to 10,000
agents.

Table I shows that, as it could be expected, the sy-
stem bottleneck is the AS, since it shows the highest
percentage of CPU utilization in all the rows. This
table also shows that the system provides accepta-
ble response times with up to 8000 agents. Although
the CPU utilization in the AS is close to saturation
(94%), the response times in all the clients are kept
below the AS cycle. That is, the AS is able to pro-
cess all the requests in a single cycle. However, when
the system is supporting 9000 or 1000 then the AS
can only serve part of such requests, increasing the
average response time up to 2,0 cycles (client C1 for
ten thousand agents). It is worth mention that none
of the clients reaches a CPU utilization of more than
50%, showing that there is a single bottleneck (the
AS).

Table II also shows the results for different simu-
lations performed with different numbers of agents.
However, in these cases we have studied the mini-
mum response times that can be achieved. In order
to achieve such goal, for each number of agents we
have adjusted the AS cycle until either it has reached



6 M. LOZANO ET AL. : ON THE DESIGN OF A SCALABLE ARCHITECTURE FOR CROWD SIMULATION

TABLA II

Response times obtained at maximum throughput when

supporting different numbers of agents

S0 C1 C2 C3 C4
Agents % %(s.) %(s.) %(s.) %(s.)
1000 28 2(0,1) 3(0,1) 4(0,08) 3(0,11)
2000 59 12(0,1) 13(0,1) 13(0,09) 16(0,1)
3000 90 36(0,1) 35(0,1) 43(0,08) 37(0,1)
4000 93 49(0,11) 48(0,11) 48(0,13) 48(0,13)
5000 96 50(0,15) 50(0,15) 50(0,16) 50(0,15)
6000 94 51(0,19) 51(0,22) 52(0,18) 52(0,18)
7000 95 52(0,23) 52(0,21) 51(0,23) 53(0,21)
8000 97 47(0,25) 48(0,25) 46(0,25) 46(0,25)
9000 97 45(0,29) 47(0,29) 46(0,31) 46(0,3)
10000 97 43(0,36) 43(0,34) 43(0,35) 42(0,34)

a CPU utilization close to saturation (90-97%) or un-
til the CPU utilization did not increase (that number
of agents was not enough to saturate the AS). The-
refore, the column S0 in table II shows values equal
or higher than 90% for the last eight rows, and the
average response times for the agents supported by
each client (the values in parenthesis) are expressed
in seconds.

Table II shows that for 3000 or less agents in the
system the average response times in all the clients
is below 0.1 s, and these average response times in-
crease as more agents are in the system. When com-
paring tables I and II and figure 6, it can be seen
that they provide coherent results. Effectively, the
results in table I are obtained with an AS cycle of
250 ms., and that table shows that the system can
support up to 8000 agents while providing average
response time of 1 cycle in all the clients. Table II
shows that for 8000 agents the average response ti-
mes in all the clients are 250ms.. That is, the system
can manage up to 8000 autonomous agents if the AS
cycle is 250ms.. These results are obtained with a
50% of positive server acknowledgment, and there-
fore they agree with the ones in figure 6, where the
server process around 8000 actions (one per agent
and cycle) for a moderately dense world (48% of
ACKs). Effectively, since the agents considered for
performance evaluation exclusively move following a
random pattern, they generate the highest number
of requests as possible to the AS server, that is the
system bottleneck. Therefore, more complex agents
will require more time between successive requests to
the AS, thus allowing the system to support a hig-
her number of agents. Therefore, these results vali-
date the proposed scheme (a computer architecture
based on networked servers and a client-server sof-
tware architecture) as a trade-off between scalability
and consistency.

V. Conclusions

In this paper, we have proposed a scalable hybrid
architecture for crowd simulations. On the one hand,
this architecture consists of a computer system ba-
sed on networked server, in order to achieve scalabi-
lity while providing awareness and time-space consi-
stency. On the other hand, it consists of a software

architecture based on centralized semantic informa-
tion system that can easily maintain the coherence of
the virtual world (there is a single copy of the seman-
tic database). Performance evaluation results show
that this architecture can efficiently manage thou-
sands of autonomous agents. Concretely, for the case
of an AS cycle of 250ms., this scheme can handle at
least 8000 autonomous agents.

As a future work to be done, we plan to charac-
terize the requirements of different kinds of autono-
mous agents. In order to improve the scalability of
the proposed scheme, the idea is to use each client
for supporting one (or more) kind of agents, accor-
ding to the computational power of the client and the
requirements of the agents. Thus, by properly balan-
cing the existing load among the clients we expect to
improve the system throughput.

Referencias

[1] ,” AntZ: http://www.pdi.com/feature/antz.htm.
[2] ,” Lord of the rings: http://www.lordoftherings.net.
[3] Paul A Kruszewski, “A game-based cots system for simu-

lating intelligent 3d agents,” in BRIMS ’05: Proceedings
of the 2005 Behavior Representation in Modelling and
Simulation Conference, 2005.

[4] Mankyu Sung, Michael Gleicher, and Stephen Chen-
ney, “Scalable behaviors for crowd simulations,” in
Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation. 2004, pp. 519–528,
ACM Press.

[5] Simon Dobbyn, John Hamill, Keith O’Conor, and Carol
O’Sullivan, “Geopostors: a real-time geometry/impostor
crowd rendering system,” ACM Trans. Graph., vol. 24,
no. 3, pp. 933–933, 2005.

[6] Franco Tecchia, Celine Loscos, and Yiorgos Chrysathou,
“Visualizing crowds in real time,” Computer Graphics
Forum, vol. 21, 2002.

[7] Huaglory Tianfield, Jiang Tian, and Xin Yao, “On the
architectures of complex multi-agent systems,” in Proc.
of the Workshop on ”Knowledge Grid and Grid Intel-
ligence”, IEEE/WIC International Conference on Web
Intelligence / Intelligent Agent Technology,. 2003, pp.
195–206, IEEE Press.

[8] Dezso Sima, Terence Fountain, and Peter Karsuk, Ad-
vanced Computer Architectures : A Design Space Ap-
proach, Addison Wesley, 1997.

[9] S. Singhal and M. Zyda, Networked Virtual Environ-
ments, ACM Press, 1999.

[10] ,” Quake: http://www.idsoftware.com/games/quake/quake/.
[11] John C.S. Lui and M.F. Chan, “An efficient partitioning

algorithm for distributed virtual environment systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 13,
2002.

[12] S. Mooney and B. Games, Battlezone: Official Strategy
Guide, BradyGame Publisher, 1998.

[13] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato,
“Improving the performance of distributed virtual envi-
ronment systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 16, no. 7, pp. 637–649, 2005.

[14] T. Alexander, Massively Multiplayer Game Development
II, Charles River Media, 2005.

[15] Randall B. Smith, Ronald Hixon, and Bernard Horan,
Collaborative Virtual Environments, chapter Supporting
Flexible Roles in a Shared Space, Springer-Verlag, 2001.

[16] S. Zhou, W. Cai, B. Lee, and S. J. Turner, “Time-
space consistency in large-scale distributed virtual envi-
ronments,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 14, no. 1, pp. 31–47, 2004.

[17] T. Henderson and S. Bhatti, “Networked games: a qos-
sensitive application for qos-insensitive users?,” in Pro-
ceedings of the ACM SIGCOMM 2003. 2003, pp. 141–
147, ACM Press / ACM SIGCOMM.

[18] Richard Fikes and Nils Nilsson, “Strips: a new approach
to the application of theorem proving to problem sol-
ving,” Artificial Intelligence, vol. 5, no. 2, pp. 189–208,
1971.


