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Abstract

Crowd simulation requires both rendering visually plausible images and managing

the behavior of autonomous agents. Therefore, these applications need an efficient

design that allow them to simultaneously tackle these two requirements. Although

several proposals have focused on the software architectures for these systems, no

proposals have focused on the computer systems supporting them.

In this paper, we analyze the computer architectures used in the literature to

support virtual environments. Also, we propose a distributed computer architec-

ture efficient enough to support simulations of thousand of autonomous agents.

This proposal consists of a cluster of interconnected computers in order to improve

flexibility and robustness, as well as a hierarchical software architecture that effi-

ciently provides consistency. Performance evaluation results show that the trade-off

between flexibility and consistency allows to efficiently manage thousands of auto-

nomous agents. Therefore, this network-based system architecture can provide the

required scalability for large-scale crowd simulations.
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1 Introduction

Crowd simulation has become an essential tool for many virtual environment

applications. Extensive use of virtual crowds has been made in many commer-

cial movies. Also, high quality crowd simulations are crucial for many virtual

environment applications in education, training, and entertainment [3,15,33].

Crowd simulations can be considered as virtual environment applications with

two different goals. On the one hand, crowd simulations must focus on ren-

dering visually plausible images of the environment, requiring a high com-

putational cost. On the other hand, complex agents must have autonomous

behaviors, greatly increasing the computational cost as well. Thus, some pro-

posals tackle crowd simulations as a particle system with different levels of

details (eg:impostors) in order to reduce the computational cost [4,34]. Alt-

hough these proposals can handle crowd dynamics and display populated in-

teractive scenes (10000 virtual humans), they are not able to produce com-

plex autonomous behaviors for their actors. On the contrary, several proposals

have been made to provide efficient and autonomous behaviors to crowd si-
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mulations [28,24,5,26,19,14]. However, they are based on a centralized system

architecture, and they can only control a few hundreds of autonomous agents

with different skills (pedestrians with navigation and/or social behaviors for

urban/evacuation contexts). Tacking into account that pedestrians represent

the slowest human actors (in front of other kind of actors like drivers in cars,

for example) these results show that scalability has still to be solved in crowd

simulation.

Although some scalable, complex multi-agent systems have been proposed

[35], these proposals are exclusively focused on the software architecture, for-

getting the underlying computer architecture (the actual implementation of

the computer and the application executing on it [13,29]). As a result, import-

ant features like inter-process communications, workload balancing or network

latencies are not taken into account, seriously limiting the performance of this

applications.

In a previous work, we proposed a system architecture for crowd simulation

that can take advantage of the underlying computer system [16]. In this pa-

per we present, in an extended manner, the computer architectures used in

the literature to support virtual environments and we propose an efficient sy-

stem architecture, capable of simulating crowds of thousands of autonomous

agents. In order to manage the trade off between scalability, rich behaviors,

and computational cost required by crowd simulation, this system architecture

is based on a hybrid computational model. It consists of a Distributed Virtual

Environment (DVE) [30] based on a networked-server architecture. On top of

this hardware architecture, we propose a hierarchical software architecture,

in order to efficiently support consistency and autonomous behaviors: one of

the servers is used to host a centralized semantic data-base, and agents are
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uniformly distributed among the rest of the servers in the system (denoted

as replicas). This scheme allows to scale up the number of servers with the

number of agents in the system, while the centralized database easily provides

consistency. Additionally, we present an extended performance evaluation of

the proposed architecture. The results obtained in the performance evalua-

tion show that this architecture can efficiently manage up to thousands of

autonomous agents.

The rest of the paper is organized as follows: Section 2 analyzes the existing

computer architectures proposed in the literature for supporting Distributed

Virtual Environments (DVEs). As a result of such analysis, Section 3 describes

the proposed architecture for crowd simulation. Next, Section 4 shows the

performance evaluation of the proposed system architecture. Finally, Section 5

shows some conclusion remarks and future work to be done.

2 Computer architectures for DVEs

Different computer architectures have been proposed in order to efficiently

support DVEs: centralized-server architectures [36,25], networked-server ar-

chitectures [17,23] and peer-to-peer architectures [20,18]. Figure 1 shows an

example of a centralized-server architecture. In this example, the virtual world

is two-dimensional and avatars are represented as dots. In DVEs based on a

centralized-server architecture, there is a single server and all the client com-

puters are connected to this server. The server is in charge of managing the

entire virtual world. As a result, it becomes a potential bottleneck as the

number of avatars in the system increases. In fact, the DVEs based on this

architectures are the ones that support the lowest number of clients.
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Fig. 1. Example of a client-server architecture

Figure 2 shows an example of a networked-server architecture. In this scheme

there are several servers and each client computer is exclusively connected

to one of these servers. This scheme is more distributed than the client-server

scheme. Since there are several servers, it considerably improves the scalability,

flexibility and robustness regarding to the client-server scheme. However, it

requires a load balancing scheme that assigns clients to servers in an efficient

way.

Fig. 2. Example of a networked-server architecture

Figure 3 shows an example of a peer-to-peer architecture. In this scheme, each

client computer is also a server. This scheme provides the highest level of load

distribution. Although the first DVEs were based on centralized architectu-

res, during the last few years architectures based on networked servers have

been the major de-facto standard for DVE systems [17,11]. However, each new
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avatar in a DVE system represents an increase not only in the computatio-

nal requirements of the application but also in the amount of network traffic

[23,22]. Due to this increase, networked-server architectures seem not to pro-

perly scale with the number of clients, particularly for the case of MMOGs [1],

due to the high degree of interactivity shown by these applications. As a re-

sult, Peer-to-Peer architectures have been proposed for massively multi-player

online games[20,18,10].

Fig. 3. Example of a peer-to-peer architecture

Nevertheless, P2P architectures must still efficiently solve the awareness pro-

blem. This problem consists of ensuring that each avatar is aware of all the

avatars in its neighborhood [32]. Providing awareness to all the avatars is a ne-

cessary condition to provide time-space consistency (as defined in [37,9,27,31]).

Awareness is crucial for DVEs, since otherwise abnormal situations could arise.

For example, a game user provided with a non-coherent view of the virtual

world could be shooting something that he can see although it is not actually

there. Also, it could happen that an avatar not provided with a coherent view

is killed by another avatar that it cannot see. In networked-server architec-

tures, the awareness problem is easily solved by the existing servers, since

they periodically synchronize their state and therefore they know the location

of all avatars during all the time. Each avatar reports about its changes (by
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sending a message) to the server where it is assigned to, and the server can

easily decide which avatars should be the destinations of that message (by

using a criterion of distance). There is no need for a method to determine the

neighborhood of avatars, since servers know that neighborhood every instant.

3 A System Architecture for Crowd Simulation

From the discussion above it seems that the more physical servers the DVE

relies on, the more scalable and flexible it is. On the contrary, features like the

awareness and/or consistency are more difficult to be provided as the under-

lying architecture is more distributed (peer-to-peer architecture). Therefore,

we propose a networked-server scheme as the computer architecture for crowd

simulation. On the one hand, this distributed scheme allows to improve scala-

bility, flexibility and robustness when compared to centralized (client-server)

architectures. On the other hand, the small number of servers in networked-

server architectures makes it easy to provide awareness (and therefore time-

space consistency) to the avatars moving in the virtual world. However, crowd

simulations are not user-driven applications, but computer-driven applicati-

ons. This means that there are not user-driven client computers. As a result,

the computer is exclusively composed of the interconnected servers, and they

are used to manage the crowd simulation. Figure 4 shows an example of the

proposed computer architecture with three servers.

On top of this networked-server architecture, a software architecture must be

designed to manage a crowd of autonomous agents. In order to easily maintain

the coherence of the virtual world, a centralized semantic information system

is needed. In this sense, it seems very difficult to maintain the coherence of
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Fig. 4. An example of the proposed computer architecture for crowd simulation

the semantic information system if it follows a peer-to-peer scheme, where

hundred or even thousand of computers support each one a small number of

actors and a copy of the semantic database. Therefore, on top of the computer

architecture shown in Figure 4 we propose the software architecture shown in

Figure 5. This architecture has been designed to distribute the agents of the

crowd among the different servers of a networked -server architecture.

Fig. 5. The proposed software architecture

This hierarchical software architecture is composed of two kind of elements:

the Action Server (AS) and the Client Processes (CP). The AS is unique,

but the system can have as many client processes as necessary, in order to

properly scale with the number of agents to be simulated. In his turn, each

CP manages a group of autonomous agents. In order to take advantage from
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the underlying computer architecture, the most suitable distribution for this

software architecture consists of allocating the AS in a single server, and uni-

formly distributing the CPs among the rest of the networked servers. In this

way, the scalability and flexibility of the networked-server scheme can be used

to add more CPs (and servers) as the number of agents increases. Since each

client process can manage a variable number of autonomous agents, the ser-

vers usually host one CP, although they can host several ones. On the other

hand, the action server is composed of two different modules, the Semantic

Data Base (SDB) and the Action Execution Module (AEM). The action server

is hosted on another networked server.

3.1 The Action Server

The Action Server corresponds to the action engine [6,7], and it can be viewed

as the world manager, since it controls and properly modifies all the informa-

tion the crowd can perceive. The Action Server is fully dedicated to verify and

execute the actions required by the agents, since they are the main source of

changes in the virtual environment. For scalability purposes, the AS must be

placed on the computer with the highest computational power. This computer

should exclusively be used for this purpose. Since the AS is unique, consistency

is easily provided. In this context, consistency involves the information that

the agents should know to animate consistent behaviors. Additionally, another

important parameter for interactive crowd simulation is the server main fre-

quency. This parameter represents how fast the world can change. Ideally, in

a fully reactive system all the agents send their action requests to the server,

which processes them in a single cycle. In order to provide realistic effects, the
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Fig. 6. The Semantic Data Base

server cycle must not be greater than the threshold used to provide quality of

service to users in DVEs [21,12]. Therefore, we have set the maximum server

cycle to 250 ms..

The AS consists of two modules: the Semantic Data Base and the Action Exe-

cution Module. The SDB represents the global knowledge about the interactive

world that the agents should be able to manage, and it contains the necessary

functionalities to handle interactions between agents and objects. In our case,

we manage a simple map for objects and agents which let us to efficiently

control a set of (attribute, value) pairs associated to each object/agent during

the simulation. Since these attributes are centered into objects or agents, we

use their names to index the correspondent map. The semantic information

managed can be symbolic (eg: objecti free true, objecti on objectk, ...) and

numeric (eg: objecti position, objecti bounding volume, ..), since it has been

designed to be useful for different types of agents. Figure 6 illustrates this data

base scheme.

We have decided to avoid complex spatial maps (such as quad/oct-trees) to

control the SDB, since these structures can be too expensive to handle when
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Fig. 7. A collision example.

the number of insertions and deletions grows (agents can be continually chan-

ging their location). Instead, we use a 2D Grid (Cellular Automata), which

allows us to access to any object/agent efficiently and it is also useful for

pathfinding behaviors, as we review below.

The AEM is devoted to guarantee the coherence of the virtual world, as it

is responsible for the action checking and execution. For example, if an agent

wants to change its location, it will try to perform a motor action, so a collision

can occur. The agent should request the server to validate that movement by

sending a message. Since the server knows the location of the agent, it accesses

to its cell through a simple function (similar to the one used by hash tables),

and perform an object-object collision test with the neighbors of agentw (see

Figure 7). If no collision caused by that movement is detected, then the server

should update the SDB and send an acknowledgment message to the agent.

As commented in the example, we reduce the visible area for each agent to

face collision detection. Concretely, we use a Cellular Automata (CA) as an

adequate formalism to handle motion behaviors for crowd simulation [2]. This

formalism let us to manage collision detection and pathfinding behaviors in

several situations (see Figure 8). As pathfinding behaviors clearly depends on
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the agent decision taking, it is reviewed in the next Section.

In order to manage the high number of changes produced, the AEM puts

all the action effects in a vector (vUpdates) which reflects the local changes

produced by each actuation (eg: an agent changes its position). Finally, when

the server cycle has finished, this vector is sent to both the CPs and SDB,

which will update their corresponding environmental states (see Figure 5).

Once the server cycle has been set (in our case to 250 milliseconds), the availa-

ble time to process each agent action results from dividing the server cycle by

the number of agents in the system. If the number of agents increases in such

a way that the server is not able to process all the actions in a single cycle,

then the pending actions are simply left to be processed in the next cycle. In

the experiments shown in Section 4 we measure the action latency, so we can

estimate the degree of reactivity achieved by this scheme.

The AEM manages the action’s flow of the simulation. In order to allow the

maximum flexibility, it can currently process 4 types of actions:

Motion actions : Location changes where collisions can occur, although

agents were (potentially) able to navigate without colliding. If an agent

wants to move to the location currently occupied by another object/agent,

the environment should simply not allow it.

Motor actions : We use simple key-framing tables to animate the actors

in walking, running, and other motions. Since no constraints are allowed,

the value received is simply accepted in the SDB as an internal change in

an agent attribute. We consider the agent motor system as the responsible

to continually read its animation state from the SDB. The graphic engine,

which contains all the actor’s skeletons of the crowd, performs this task

12



according to its frame rate .

Agents interactions : Corresponds to a normal agent-agent communication

scheme, which can be obtained from the system through the server. Mes-

sages can be managed as other agent attributes, so the SDB will simply

route them into the correspondent slots. This scheme has made us possible

to investigate on social crowds in the future.

STRIPS actions : STRIP is the action language used by our planning agents.

A STRIPS action scheme [8] can be represented through the Preconditions,

Add and Delete lists associated to each agent action. Before executing an

action (eg: pick up object), the AEM verifies its preconditions using the

SDB maps (eg: is object-k free?). When a STRIPS action is accepted, the

Add and Delete lists contain the new information the SDB needs to update

its state.

3.2 The Client Processes

Each client process in a replica manages an independent group of autonomous

agents (a subset of the crowd). This process has an interface for receiving

and updating the information from the server, and a finite number of threads

(each thread for an agent). Using this interface, a replica (a server hosting a

CP) initially connects to the server hosting the Action Server and downloads

a complete copy of the SDB. From that instant, agents can think locally and

in parallel with the server, so they can asynchronously send their actions to

the server, which will process them as efficiently as possible (since each agent

is a process thread, it can separately access to the socket connected to the

server). When a server cycle finishes (every 250 ms.), the accepted changes
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are submitted to all the replicas interfaces, that will update their SDB copies.

This multi-threading approach is independent of the agent architecture (the

AI formalism driving the agent behavior), that is out of the scope of this paper.

However, the proposed action scheme guarantees the awareness for all agents

[32], since all the environmental changes are checked in a central server and

then broadcasted to the agents. Although time-space inconsistencies can ap-

pear due to agent asynchronies and network latencies, all these inconsistencies

are kept below the limit of the server period.

Unlike in the architecture shown in [16], in the system proposed in this paper

we have added a pathfinding behavioral model for agents. Thus, we have

evaluated the proposed architecture with both models, wandering agents and

pathfinding agents. Each kind of agents generates a different motion pattern,

that is, a different system workload.

Our pathfinding approach is based on cellular automata theory. The basic

procedure in cellular automata based motion is to compute a set of rules

associated to each cell to determine the next cell until the goal is reached.

In our system, a CA is included as a part of the SDB, and each cell has

precomputed the k-best paths of length l to achieve any exit cell.

To calculate all the paths (k paths per cell; cell = 1m side square), we are using

a variation of the A∗ algorithm which can be precomputed initially in an empty

environment. The algorithm starts from each goal cell, and by inundation we

select and store the k best paths that arrive to each cell. Parameters such

as k and the cell size allow to reduce the memory required for managing

large environments, avoiding memory problems. Furthermore, the calculation

of complete paths is not interesting generally, as agents can only evaluate the
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k-first steps before deciding its next cell. The algorithm we have used to pre-

compute all the possible paths to reach the exit cells for a specific environment

could be the following one:

VAR

Lab /* Auxiliary list of cells */

Mop /* Map of paths (MoP) for each cell */

goal /* exit cell */

begin

/*Initialization*/

Lab <- goal;

// Stores the next cell with its distance, for a specific goal

recNext(goal, goal, NULL, 0.0);

while(Lab != NULL) // Lab is not empty

cell_i = Lab.pop();

// Computes distance from all the neighbor cell to the goal

for (next_cell_i in neighbours(cell_i))

if (next_cell_i is not an obstacle)

d_next = distance(next_cell_i, goal);

dthrogh_next = distance(cell_i, portal) +

distance(next_cell_i, cell_i);

if(d_next > dthrough_next)

recNext(goal, cell_i, next_cell_i, dthrough_next);

Lab <- next_cell_i;

// Creates the best path going backward from cell to a goal
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path_i = buildPathfromCell(cell_i, longPath);

MoP <- addPath(path_i,dthrogh_next, MAX_PATHS = k);

end

As a result of this algorithm, each cell contains a map with the best k paths

(MoP) to reach any goal (exit) cell. These paths will be used by the agents.

However, along the simulation time these paths can be either empty (not

used by any agent) or busy. Therefore, each agent should evaluate all the

paths to obtain the best next cell for any situation (state of the simulation).

Since the purpose of the application is the evacuation of the virtual world, it

is necessary to balance the distance for each path to any goal cell with the

waiting time associated to each one. This waiting time is composed of the total

sum of cycles that agents are waiting in a path and also the path congestion

percentage (the percentage of busy cells in a path). In order to perform this

balancing, we have defined an evaluation function H that measures the quality

of each of the paths pi.

H(pi) = α ∗ Dist(pi, goal) + (1 − α) ∗ (Wait(pi) + Cong(pi))
(1)

where the function Dist measures the distance for each path i to any goal cell,

the function Wait measures the total sum of cycles that agents are waiting

in path i, the function Cong measures the path congestion percentage, and

α is a weighting parameter to balance both terms of the sum. Each agent

should minimize the function H(pathi) in order to find the best way to exit

the virtual world.

As an example, Figure 8 shows two snapshots of the system running an eva-

cuation simulation with 8000 agents in a square two-dimensional world corre-
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sponding to a urban environment. In this picture, the virtual world seen from

above, the buildings are represented as black rectangles, and the avatars are

represented as grey dots. The avatars must leave the virtual world through 8

exit cells that are located on the perimeter of the virtual world. These exit

cells can be easily recognized by following the different crowd flows. Concre-

tely, Figure 8 -a) shows the initial situation of the crowd, which is randomly

distributed in the virtual world. Figure 8 -b) captures the crowd situation at

the cycle 100. At this point it can be clearly seen different crowd flows and

some congested areas (all agents try to follow the shortest non-busy paths).

Fig. 8. Evacuation test with 8000 agents

On other hand, it is important to ensure that the system can render visually

plausible images of the virtual world. In this sense, Figures 9 and 10 show two

different three dimensional views of a urban simulation environment inhabited

by 8000 agents. Figure 9 shows a general view of the city when the simulation

starts, while figure 10 shows a more detailed view of an avenue. These figures

show that the graphical quality provided during the simulation is acceptable

enough.
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Fig. 9. Urban environment with 8000 agents

Fig. 10. Detailed view of the urban environment (8000 agents)

4 Performance Evaluation

This Section shows the performance evaluation of the architecture described in

the previous Section. We have performed different measurements on a real sy-

stem with this architecture, following different behavioral models. Concretely,

we have performed simulations with wandering agents, as well as simulations

with complex avatar behaviors (pathfinding). As cited in the previous Section,

the AS cycle (the maximum period of time an interactive actor can wait for

it action response) has been set to 250ms., and every 2.5 seg. statistics are

computed, resulting in 30 different samples. Each point of the plot and each
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value of the tables in this Section has been computed as the average value of

the 30 samples.

We have used wandering agents for the first phase of the performance evalua-

tion wandering agents, since this type of agents is the one that generate the

highest workload to the AS (since they simply move, they require the server

to validate their movements in each server cycle). The computer platform has

been a cluster of computers based on AMD Opteron (2 x 1.56 Ghz processors)

with 3.84GB of RAM, executing Linux 2.6.9-1 operating system. Depending

on the test, we have used from one to five nodes of the cluster.

Like in other distributed systems, the most important performance measure-

ments in DVE systems are latency and throughput. First, we have focused

on system throughput (the maximum number of agents that the system can

efficiently support), that is limited in our architecture by the AS throughput.

Concretely, we have measured the AS throughput when it is fully dedicated to

collision detection tasks. The rationale of this test is to evaluate the number

of actions that the server is able to carry out in a single cycle, since this could

be a plausible bottleneck.

When an action is requested by an agent, the server must access to its cell and

check out the resulting distance to all the agents which are sharing the same

cell, as Figure 7 shows . If no collisions are produced, then the same process

is performed in the 8 neighbor cells. A positive acknowledgment can be sent

back to the requesting agent only if no collisions are produced in the nine cells

checked.

Figure 11 shows the results obtained in a collision detection test performed in a

single server where 10,000 wandering agents demand a random position as soon
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as they can, in order to saturate the server. The purpose of this experiment is

to know the maximum server throughput, in terms of the average number of

actions that it is able to process in a single cycle. As Figure 11 shows, this value

mainly depends on the density of the crowd. Nevertheless, we have measured

this parameter as the percentage of finally executed actions (ACK’s), since it

is more informative for our purposes. Thus, an ACK percentage of 0% occurs

when no motion is allowed because the crowd is completely full and no one can

move. On the other hand, when all the agents completely pass a collision test

all the actions are allowed (100% of ACK’s) and all the agents finally move.

This is the worst case for the server, because in order to pass each collision

test it should access to 9 cells. However, if the collision test fails it may require

to access to less cells, depending on which is the cell where the test fails. Thus,

the worst case for the server in the plot shown in Figure 11 is when 94% of

ACK’s are provided.

Fig. 11. Server performance on collision tests

Figure 11 shows that in the worst case (94% of ACK’s) the server is able

to process around 6000 actions in a single cycle (250 ms). However, when the

density of the crowd increases then the percentage of ACK’s decreases because

the probability of collision grows in very dense worlds. This will produce that

the server can finish the cell checking without visiting all the neighbors cells. As
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a consequence, the server can process a higher number of action requests per

cycle (12000 actions for a percentage of 0% ACKS). It is also worth mention

that for a medium case (48% ACK’s), the system can manage around 8000

agents.

Additionally, we have evaluated the throughput and the latency of the entire

system in a configuration composed of 4 replicas and 1 server. For both cases,

agents continuously demand a random position to the server. The purpose

of these evaluations is to check if the proposed architecture can improve the

latency and throughput provided by other general purpose DVEs [23]. In these

experiments, the existing agents are distributed among the existing CPs in

such a way that all the replicas manage a crowd subset (group of agents) of

similar size. We have increased the number of agents until the whole system has

reached saturation. The saturation point is reached when the CPU utilization

reaches 100% in any computer, and it results in a huge increase of the system

latency [23].

Table 1 shows the results for different simulations with the same AS cycle (250

ms.) but with different numbers of agents. Each column in this table shows

two different values, except for the server. The column labeled with S0 shows

the percentage of CPU utilization reached in the computer hosting the AS.

The columns labeled with Cx show the percentage of CPU utilization reached

in that computer (replica) and the average response time (measured in AS

cycles) for the agents supported by that computer. The left column shows the

number of agents used in each simulation. Each row in this table shows the

results for a simulation with a different number of agents.

Table 1 shows that if a distributed (cluster-based) computer is used then the
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S0 C1 C2 C3 C4

Agents % %(cy.) %(cy.) %(cy.) %(cy.)

1000 11 1(1) 1(1) 1(1) 1(1)

2000 22 4(1) 4(1) 4(1) 4(1)

3000 32 10(1) 10(1) 11(1) 10(1)

4000 43 18(1) 18(1) 18(1) 17(1)

5000 54 24(1) 27(1) 25(1) 23(1)

6000 64 31(1) 32(1) 30(1) 32(1)

7000 79 39(1) 40(1) 37(1) 36(1)

8000 94 45.0(1) 48(1) 45(1) 46(1)

9000 97 50(1.5) 49(1.3) 50(1.4) 49(1.3)

Table 1

System throughput for a fixed agent cycle of 250ms.

proposed architecture takes advantage of the distributed hardware, in such

a way that the use of multiple computers allows to improve the number of

supported agents until the server hosting the AS becomes the system bottlen-

eck. Effectively, this table shows that the system provides acceptable response

times with up to 8000 agents, when the computer hosting the AS reaches a

CPU utilization of 94%. Although the CPU utilization in the AS is close to

saturation (94%), the response times in all the replicas are kept below the

AS cycle. That is, the AS is able to process all the requests in a single cycle.

However, when the system is supporting 9000 or 10000 agents then the AS
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can only serve part of such requests, increasing the average response time up

to 2.0 cycles (replica C1 for ten thousand agents). It is worth mention that

none of the computers reaches a CPU utilization of more than 50%, showing

that there is a single bottleneck (the AS).

Table 2 also shows the results for different simulations performed with different

numbers of agents. However, in these cases we have studied the minimum

response times that can be achieved. Concretely, for each number of agents

(each row) we have adjusted the AS cycle until either it has reached a CPU

utilization close to saturation (90-97%) or until the CPU utilization did not

increase (that number of agents was not enough to saturate the AS). Therefore,

the column S0 in table 2 shows values equal or higher than 90% for the last

eight rows. The average response times for the agents supported by each replica

(the values in parenthesis) are expressed in milliseconds.

Table 2 shows that for 3000 or less agents in the system the average response

times in all the replicas is below 0.1 s, and these average response times in-

crease as more agents are in the system. When comparing tables 1 and 2 and

Figure 11, it can be seen that they provide coherent results. Effectively, the

results in table 1 are obtained with an AS cycle of 250 ms., and that table

shows that the system can support up to 8000 agents while providing average

response time of 1 cycle in all the replicas. Table 2 shows that for 8000 agents

the average response times in all the replicas are 250ms. That is, the system

can manage up to 8000 autonomous agents if the AS cycle is 250ms.. These

results are obtained with a 50% of positive server acknowledgment, and the-

refore they agree with the ones in Figure 11, where the server process around

8000 actions (one per agent and cycle) for a moderately dense world (48%

of ACKs). Since the agents considered for performance evaluation exclusively
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S0 C1 C2 C3 C4

Agents % %(ms.) %(ms.) %(ms.) %(ms.)

1000 28 2(100) 3(100) 4(80) 3(110)

2000 59 12(100) 13(100) 13(90) 16(100)

3000 90 36(100) 35(100) 43(80) 37(100)

4000 93 49(110) 48(110) 48(130) 48(130)

5000 96 50(150) 50(150) 50(160) 50(150)

6000 94 51(190) 51(220) 52(180) 52(180)

7000 95 52(230) 52(210) 51(230) 53(210)

8000 97 47(250) 48(250) 46(250) 46(250)

9000 97 45(290) 47(290) 46(310) 46(300)

Table 2

Response times obtained at maximum throughput

move following a random pattern, they generate the highest number of re-

quests as possible to the AS, that is the resource that can potentially become

a bottleneck. Therefore, if the number of agents is increased then the time

between successive requests to the AS will also increase, thus allowing the

system to support a higher number of agents.

In order to prove the real improvement that the proposed architecture provides

in regard to classical approaches, where a centralized application is executed on

a single computer, table 3 shows the throughput achieved when the proposed

software architecture is executed on a single node of the cluster. Table 3 shows
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Agents CPU(%) Av-RT(ms)

1000 35 0.11

2000 73 0.16

3000 77 0.24

4000 82 0.32

5000 82 0.40

Table 3

Evaluation results for a fully centralized system configuration

that for 3000 agents the average response time practically reaches the 0.25

s. threshold, and with 4000 agents the average response time exceeds this

threshold.

When comparing tables 2 and 3 it can be clearly seen that the proposed

system architecture can take advantage of distributed computer architectures

distributing the agents between the existing servers. In this way, the number

of supported agents can be improved.

Additionally, we have evaluated the performance of the proposed scheme with

the pathfinding behavioral model. For evaluation purposes, we have used a

range of values of α between 0.4 and 0.6, and we have simulated a urban

environment (the one shown in Figures 9 and 10) with a single exit. If these

behavioral model and virtual world are used together with an initial uniform

distribution of the avatars(agents), initially avatars move in such a way that a

very high percentage of positive requests are sent to the server. These effects

can be seen on Figure 12. This Figure show on the X-axis the simulation time,
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while on the Y-axis it shows the percentage of positive answers provided by

the server. The percentage of positive acknowledgments to the requests sent by

the agents to the AS is very high during the first cycles, reaching around 90%.

As the simulation proceeds this percentage linearly decreases, since avatars

tend to follow similar paths.

Fig. 12. Percentage of positive ACKs during the evacuation simulation

Taking into account these results, we have measured the average time response

provided to the agents in each client computer during the simulation time.

Table 4 shows the results for an evacuation simulation with 8000 complex

agents (using pathfinding behavioral model). This table shows in each row

the results for a different simulation time (measured in the number of sample

periods from the beginning of the simulation, 1 sample = 2.5 seconds). Starting

from the left, the first column in this table shows the simulation time. The

second column shows the total number of agents in the virtual world for that

simulation instant. The four remaining columns show the average performance

results for the four client computers. Concretely, each of these columns shows

the average time response provided to the agents hosted in that computer.

Table 4 shows that for the first simulation instants all of the clients are provi-

ded with an average response time higher than two or more server cycles. The
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Sim. Number of C1 C2 C3 C4

Time Agents ms. ms. ms. ms.

7 7535 504 518 1004 837

11 7153 473 493 1032 751

19 6144 249 249 1014 517

23 5493 250 249 754 309

30 4249 250 250 318 250

35 3431 250 250 249 250

Table 4

Average response times obtained with pathfinding agents

reason for this performance is the percentage of positive answers that the ser-

ver must initially support, together with the number of current agents. Since

the virtual world is well-dimensioned for the amount of agents, the percentage

of positive answers is very high during the whole simulation. According to

Figure 11, this is very close to the worst case, and as an average the server

only can provide a response time lower than one cycle to around six thousand

agents. Since this simulation contains eight thousand agents, the average re-

sponse times provided to the agents is much higher. As the simulation proceeds

(second and third row) the number of agents significantly decreases, reducing

the server workload accordingly. As a result, in the third row two of the cli-

ents already have an average response time below the server cycle. The high

numbers of clients C3 and C4 in the first three rows are due to the semantic

data base implementation. In order to show that the server performance is
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critical for the performance of the whole system, we have implemented the AS

in such a way that it sorts the received request by the client process, instead

of balancing the requests from the different processes. Therefore, the requests

coming for the same process are processed first, in such a way that we can

identify the requests of how many client processes can actually answer the AS

in a single cycle. Finally, for a simulation time corresponding to 35 sample

periods (87.5 seconds) the agents in any client computer are provided (as an

average) with a response time below 250 milliseconds.

These results show that even when using agents with complex behaviors the

system is capable of supporting thousands of agents. These results validate

the proposed scheme (a computer architecture based on networked servers

and a hierarchical software architecture) as a trade-off between scalability

and consistency.

5 Conclusions and future work

In this paper, we have analyzed the computer architectures used in the lite-

rature to support virtual environments. Also, we have proposed an efficient,

distributed architecture for crowd simulation. On the one hand, this architec-

ture consists of a computer system based on networked servers, in order to

improve scalability but also as a trade-off for efficiently providing awareness

and time-space consistency. On the other hand, it consists of a hierarchical

software architecture that can easily maintain the coherence of the virtual

world (there is a single copy of the semantic database). Performance eva-

luation results show that this architecture can take advantage of distributed

architectures, efficiently managing thousands of autonomous agents. Concre-
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tely, for the case of an AS cycle of 250ms., this scheme can handle from 6000 to

8000 autonomous agents when using 5 computers, depending on the behavioral

model of the agents.

As a future work to be done, we plan to efficiently distribute the action ser-

ver in different machines by using distributed databases techniques, in order

to improve the scalability. Also, we plan to characterize the requirements of

different kinds of autonomous agents. The idea is to use each replica for sup-

porting one (or more) kind of agents, according to the computational power

of the computer and the requirements of the agents. Thus, by properly balan-

cing the existing load among the computers we expect to improve the system

throughput.
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