
A Sexual Elitist Genetic Algorithm for Providing QoS in Distributed Virtual
Environment Systems ∗

S. Rueda, P. Morillo, J. M. Orduña
Departamento de Informática

Universidad de Valencia
E-mail: Juan.Orduna@uv.es

J. Duato
DISCA

Universidad Politécnica de Valencia
E-mail: jduato@gap.upv.es

Abstract

Architectures based on networked servers have become
a de-facto standard for Distributed Virtual Environment
(DVE) systems. These systems allow a large number of re-
mote users to share a single 3D virtual scene. In order to
provide quality of service in a DVE system, clients should be
assigned to servers taking into account system throughput
and system latency. This highly complex problem is known
as the quality of service (QoS) problem.

This paper proposes an elitist sexual genetic algorithm
for solving the QoS problem in Distributed Virtual Environ-
ment systems. Performance evaluation results show that,
due to its ability of both finding good search paths and
keeping diversity escaping from local minima, this nature
inspired technique can provide significantly better solutions
than other heuristic methods like GRASP or SA with shorter
execution times. Therefore, the proposed implementation of
GA search method can improve the QoS offered by DVE sys-
tems.

1. Introduction

Distributed Virtual Environment (DVE) systems have
experienced a spectacular growth over the last few years.
These systems allow multiple users, working on different
client computers that are interconnected through different
networks (and even through the Internet) to interact in a
shared virtual world. This is achieved by rendering images
of the environment as they would be perceived by the user
if he was located at that point in the virtual environment.
Each user is represented in the shared virtual environment
by an entity called avatar, whose state is controlled by the
user. Since DVE systems support visual interactions be-
tween multiple avatars, every change in each avatar must

∗Supported by the spanish MCYT under grant TIC2003-08154-C06-04

be propagated to other avatars in the shared virtual environ-
ment. DVE systems are currently used in many different
applications [20], such as collaborative design [4], civil and
military distributed training [13], e-learning [19] or multi-
player games [9].

Architectures based on networked servers are becoming
a de-facto standard for DVE systems [20, 11, 21]. In these
architectures, the control of the simulation relies on sev-
eral interconnected servers. Client computers are attached
exclusively to one of the servers in the system. When a
user modifies an avatar, the client computer controlling this
avatar sends an updating message to the client computers
controlling other avatars, in order to achieve that all avatars
have a consistent and actualized view of the virtual world.
When the number of connected clients increases, the num-
ber of updating messages must be limited in order to avoid a
message outburst. In this sense, concepts like areas of influ-
ence (AOI) [20], locales [1] or auras [5] have been proposed
for limiting the number of neighboring avatars that a given
avatar must communicate with. All these concepts define a
neighborhood area for avatars, in such a way that a given
client computer controlling a given avatar i must notify all
the movements of i (by sending an updating message) only
to the client computers that control the avatars located in the
neighborhood of avatar i. The avatars in the AOI of avatar i

are denoted as neighbor avatars of avatar i. Figure 1 shows
an example of a DVE system whose architecture is based on
networked servers. In this example, the AOI of each avatar
is represented as a circumference.

The partitioning problem [10] has been shown as the
main issue in the design of efficient DVE systems based
on networked servers. It consists of efficiently distribut-
ing the workload among the different servers in the system
(by assigning avatars to servers). In a previous paper, we
proposed a nature inspired technique for solving the parti-
tioning problem [15]. Also, we have developed a partition-
ing method that provides a significant throughput increase
to DVE systems [14, 16, 18]. Nevertheless, the most im-
portant performance measures in DVE systems (as in any

Figure 1. Examples of AOI in a DVE system
whose architecture is based on networked
servers.

client-server system) are not only throughput but also la-
tency. Latency can be defined as the time interval from the
instant when any neighbor of a given avatar i makes a move-
ment until the instant when avatar i is notified of that move-
ment. Latency represents Quality of Service (QoS) provided
to users by the system, since it determines how fast changes
in the virtual world are notified to the proper client comput-
ers.

Once the partitioning method has ensured that the system
throughput is maximized (it has provided a partition where
the estimated percentage of CPU utilization in all the DVE
servers is under 99% [14]), then the computing resources
can still be used to decrease the average system time re-
sponse provided to avatars. This improvement should be
carried out also by the partitioning method, since it is really
a trade-off between system throughput and system latency.
The problem of solving the partitioning problem ensuring
both that the system is below its saturation point and that
time the average latency provided to avatars is minimized is
known as the QoS problem. This problem can be modeled
as finding a partition that minimizes a quality function. In a
previous paper, we performed a comparison study of some
heuristic methods applied to the QoS problem in DVE sys-
tems [17]. In this study, we implemented and tested Sim-
ulated Annealing and GRASP techniques. These heuris-
tic methods were capable of improving the QoS offered by
DVE systems.

In this paper, we present the implementation, tuning, and
evaluation of a sexual elitist variation of Genetic Algorithms
(SEGA) for solving the QoS in Distributed Virtual Environ-
ment Systems. Performance evaluation results show that
this nature inspired technique is able to improve the QoS
provided by DVE systems with shorter execution times than
GRASP or SA techniques. Therefore, this implementation
of GA technique can be considered as the best heuristic

method for providing QoS in DVE systems.
The rest of the paper is organized as follows: Section 2

details the problems to be solved for achieving QoS in
DVE systems . Section 3 describes the implementation
and tuning of SEGA. Next, Section 4 presents the perfor-
mance evaluation of the proposed method. Finally, Sec-
tion 5 presents some concluding remarks.

2. Background

The term Quality of Service (QoS) has been extensively
used in wide area network (WAN) environments to describe
the ability of some systems to conform with some specific
user requirements of latency, jitter delays, traffic peaks, etc.
[22, 2]. However, the term QoS can be applied to any sys-
tem, and it means that the system not only supports a given
client but it also fulfills some specific requirements of that
client.

The QoS problem has been already described in DVE
systems, and some strategies have been proposed for solv-
ing it [3, 7]. Approaches like [7] use latency compensating
methods in order to repair the effects of high network jit-
ter. Adaptive rendering strategies like [3] or [20] modify
the resolution of the 3-D models depending on the client
connection speed. However, none of these strategies takes
into account the non-linear behavior of DVE systems with
the workload assigned to each server, as described in [14].
Therefore, these strategies cannot guarantee that the per-
formance provided to avatars will not degrade beyond any
threshold value.

The QoS problem can be expressed in DVE systems as
latency constraints. A DVE system can only offer QoS to
clients if it is working below its saturation point and at the
same time the average round-trip delay for the messages
sent by each avatar (denoted as ASR, for average system
response) is lower than 250 ms. [7]. However, the ASR
provided to a given avatar i depends on which servers are
the neighbor avatars i assigned to. If avatar i is assigned to
server s, then the ASR for avatar i linearly decreases with
the number of neighbor avatars of i that are assigned server
s . A partitioning method that provides QoS to avatars
should maximize the number of neighbor avatars assigned
to the same server. At the same time, it should balance
the workload (avatars) in order to keep the system away
from saturation. Additionally, it must not migrate more than
30% of avatars in the system [8]. Therefore, the QoS prob-
lem consists of finding the best partition complying with all
these three requirements. In a previous paper we defined
a quality function that measures how a given partition ful-
fills these requirements [17]. In order to make this paper
self-contained, in this section we will briefly describe this
function.

Equation 1 represents the evaluation function proposed

2

for providing QoS, composed of three terms. This function
measures the quality of each possible partition (assignment
of n avatars to s servers). The partitioning method consists
of performing a heuristic search to find the partition with the
lowest value of FQoS as possible. FQoS function is defined
as

FQoS =

s∑

i=0

hcpu(i) +

n∑

i=0

hasr(i) + nm (1)

This function is the sum of three different functions or
terms. The term hcpu(i) is a function of the estimated per-
centage of CPU utilization in each server i. Figure 2 shows
the behavior of this function, that is exponential. This term
will make FQoS to assign a poor (high) value to any parti-
tion where at least one of the DVE servers is estimated to
be saturated or close to saturation.

Figure 2. Behavior of hcpu(i)

The term hasr(i) measures the estimated ASR provided
to each avatar in the system by a given partition. Figure 3
shows the behavior of this term, that is composed of two
sections. Function hasr(i) penalizes partitions where the
estimated ASR of avatars is higher than 250 ms.

Figure 3. Behavior of hasr(i)

Finally, the term nm measures the number of avatars that
should be migrated in order to obtain a given partition. This
function is also composed of two sections, as shown in Fig-
ure 4. This function penalizes partitions that migrates more
than 30% of avatars.

Figure 4. Behavior of nm

Thus, the QoS problem in DVE system is reduced to find
a partition (assignment of the existing n avatars to the s

existing servers in the DVE system) with the lowest value
of FQoS as possible. Because of the high complexity of
this problem, labeled as NP-hard in other systems [22], dif-
ferent approaches based on metaheuristic procedures were
proposed [17].

3. A Sexual Elitist Genetic Algorithm

In this section we describe the particular implementation
of Genetic Algorithms that we have used to solve the QoS
problem in DVE systems, denoted as Sexual Elitist Genetic
Algorithm (SEGA). Genetic Algorithms (GA) consists of a
search method based on the concept of evolution by natural
selection [6]. GA starts from an initial population, made of
P chromosomes, that evolves following certain rules, until
reaching a convergence condition that maximizes a fitness
function. Each iteration of the algorithm consists of gen-
erating a new population from the existing one by recom-
bining or even mutating chromosomes. A chromosome can
contain a genotype or particular solution of the problem and
also a phenotype or additional information for tuning the
behavior of the algorithm.

In SEGA implementation, the genotype consists of a list
with the pairs avatar-server. If there are N avatars in the
system, this list contains N pairs, each one designating the
server where that avatar is assigned to. The phenotype con-
sists of information about the estimated workload that each
avatar adds (in terms of the CPU utilization) to the server
where it is assigned to. Also, the phenotype indicates if
each avatar is a boarder avatar or not. If a given avatar is
assigned to server s, then this avatar is a boarder avatar if
any of its neighbor avatars (the avatars within its AOI) is

3

assigned to another server different from s. We use FQoS

as the fitness function to be (in our case) minimized.
Most of heuristic methods are based on the random gen-

eration of an initial population. However, if the initial popu-
lation has been correctly defined, then the heuristic method
easily obtains a good approximation to the global optimum.
In this case the algorithm should maintain a certain level of
structural diversity among all the chromosomes, in order to
avoid the premature convergence of the search [12]. There-
fore, the initial population in SEGA is provided by the ALB
partitioning method [16]. This load balancing method pro-
vides a balanced partition of the DVE system, ensuring low
initial values of the term

∑s

i=0
hcpu(i). The GA algorithm

must keep the workload balanced while providing QoS to
the maximum number of avatars as possible.

Each iteration consists of generating a descendant gen-
eration of chromosomes, starting from an ancestor genera-
tion. The way that the algorithm provides the next gener-
ation determines the behavior of SEGA. We have chosen a
sexual reproduction technique [12], in such a way that each
descendant is generated starting from two ancestors. How-
ever, in order to provide a high diversity, we have also used
non homogeneous hybrid derivation (certain rate of asexual
reproduction). Additionally, we use elitism in each itera-
tion, and so the name of the heuristic method. The term
elitism means that some individuals (chromosomes) of a
given population are directly passed to the next generation
without suffering any variation [12]. In each SEGA iter-
ation, an intermediate population of P + Nelitist chromo-
somes is generated, where the Nelitist chromosomes are the
ones with the best fitness function in the previous iteration.
At the end of the iteration, the new generation will be com-
posed of the P chromosomes with the best fitness function
in the intermediate population.

In the case of sexual reproduction, in each iteration the
first ancestor for the i − th chromosome of the population
is the i − th chromosome of the population in the previ-
ous iteration. The second ancestor is randomly selected
among the 50% of the previous population with the best fit-
ness function. The i − th chromosome of the population is
then obtained by applying one point crossover, multi-point
crossover or uniform crossover to the ancestors [12]. In the
case of asexual reproduction, the ancestor itself is selected
as the descendant.

Once the descendants of iteration t are obtained, if the
finishing condition is not reached then a recombination pro-
cess is performed on all the chromosomes of that descen-
dant. This recombination process consists of randomly se-
lecting two boarder avatars and exchanging the servers they
are assigned to. This process helps to keep diversity while
exclusively exploring highly probable solutions. Finally, a
mutation can be performed on the resulting descendant. It
consists of randomly selecting an avatar in a chromosome

and changing its server. The whole process performed in
each iteration can be expressed as the following pseudo-
code statements (where Genotype Gt is the resulting pop-
ulation of the previous iteration t, composed of P chromo-
somes):

Iteration t+1 (Genotype Gt)
CONST

Nelitist /* Num. of elitist chromosomes */
P /* Num. of chromosomes in genotype */
N /* Num. of avatars in DVE system */
Sexuality /* Sexuality rate */

TYPE
chromosome : int[N]

VAR
int i
Anc1, Anc2 : chromosome /* Ancestors */
Desc : chromosome /* Descendant */

begin
Copy_Nelitist_best_of_Gt_to Gi()
For i:=Nelitist to P+Nelitist do

Anc1 := Gt[i]
a := Reproduction_select(Sexuality)
if a = 0 then /* 0 = Sexual, 1 = Asexual */

Anc2 := Random_select_from(Gi)
crossover := Random_select_crossover()
case(crossover)

one-point:
Desc := 1point_cross(Anc1,Anc2)

multipoint:
Desc := mpoint_cross(Anc1,Anc2)

uniform:
Desc := unif_cross(Anc1,Anc2)

end_case
else

Desc := Anc1
end_if
if (NOT converg_condition(Desc)) then

recombination(Desc)
end_if
if (random()< mutation_rate) then

mutation(Desc)
end_if
Gi[i] := Desc;

end_for
Evaluate_And_Sort(Gi);
For i:=0 to P do

Gt+1[i] := Gi[i];
end_for

end

In order to establish the convergence condition (finish-
ing condition of the algorithm), we have considered three
parameters. The first one is the standard deviation of the fit-
ness function (FQoS). When all the individuals in the popu-
lation are very similar, it will hardly provide solutions better
than the current one. Therefore, we will stop the algorithm
if this parameter is below a threshold value. The second pa-
rameter is the number of consecutive iterations performed
without improving the current best fitness function. If we

4

cannot find a better chromosome (solution) in a given num-
ber of iterations, we assume that the current solution is the
best one. Finally, we have also limited the total number of
iterations to a given value. When any of these three condi-
tions is is fulfilled, then the algorithm finishes.

The proposed implementation has several parameters to
be tuned, in order to obtain the maximum performance of
the algorithm. These parameters are the following ones: the
number of chromosomes in the population (P), the num-
ber of iterations, the mutation rate, number of elitist chro-
mosomes (Nelitist), the sexuality rate (the percentage of
iterations in which sexual reproduction is used), the mini-
mum standard deviation allowed for the convergence condi-
tion, and the maximum number of iterations allowed with-
out improving the fitness function. We have empirically
tuned these seven parameters in two different DVE con-
figurations, denoted as MEDIUM1 and MEDIUM2 [17].
MEDIUM1 is composed of 250 avatars and 3 servers, and
MEDIUM2 is composed of 700 avatars and 10 servers.
However, due to space limitations, we only present here the
result for MEDIUM2 configuration. The results obtained
for MEDIUM1 configuration were very similar. For tuning
purposes we have measured both the system cost provided
by SEGA (the values of FQoS) and also the execution times
required by the algorithm in each case. Due to space limita-
tions, the figures showing the required execution times are
neither presented. Unless explicitely stated, most of them
show a linear correspondence with the parameter tuned in
each case.

In order to evaluate the performance of a given parti-
tioning method, usually 3 different avatar distributions in
the virtual world have been suggested in the literature: uni-
form, skewed and clustered [10]. The reason for using dif-
ferent distributions is that they generate a different work-
load. Fig. 5 shows an example of these avatar distributions
in a 2-D virtual world. In this figure, the virtual world is a
square and avatars are represented as black dots. We have
tuned and evaluated SEGA method for these three distribu-
tions of avatars in the virtual world.

Figure 5. Distributions of avatars in a 2-D vir-
tual world: a) Uniform b) Skewed c) Clustered

Figure 6 shows the values of FQoS reached with SEGA
for different population sizes. This figure shows on the X-
axis the number of chromosomes P , while on the Y-axis it
shows the FQoS values obtained for each one of the distribu-
tions considered. It can be seen that the three plots describe
a curve with descending slope, until a value of 100 chromo-
somes. From this value up, FQoS values hardly change as
the number of chromosomes increases. Therefore, we have
used 100 as the number of chromosomes P .

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 20 40 60 80 100 120 140 160 180 200

S
ys

te
m

 C
os

t F
qo

s

Number of chromosomes

Uniform
Skewed
Clutered

Figure 6. System costs obtained for different
population sizes

Figure 7 shows the values of FQoS provided by SEGA
when different numbers of iterations are performed. Again,
the values of FQoS describe a curve with descending slope
in all the plots, until a value of 300 iterations is reached.
From that value up, all the plots are almost a flat line.
This behavior shows that the algorithm finds another con-
vergence condition before reaching a total threshold limit
of 300 iterations. Therefore, we have used this value as the
total limit of iterations.

Figure 8 shows the values of FQoS provided by SEGA
when different mutation rates are used in each iteration.
This figure clearly shows that this parameter does not have
any effect on the behavior of the algorithm. We have chosen
a value of 0.05 for this parameter.

Figure 9 shows the values of FQoS provided by SEGA
when elitism is applied on different numbers of chromo-
somes (when Nelitist variable varies). This figure clearly
shows that the system cost greatly decreases as the elitism
rate increases, until a value of 50%. From that value up,
the system cost increases and then remains constant. Thus,
we have chosen an elitism rate of 50% of the population.
This means that 50 chromosomes from a population of 100
chromosomes will be directly copied from Gt to Gi in each
iteration.

5

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 50 100 150 200 250 300 350 400 450 500

S
ys

te
m

 C
os

t F
qo

s

Number of generations

Uniform
Skewed
Clutered

Figure 7. System costs obtained for different
number of iterations

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 5 10 15 20 25

S
ys

te
m

 C
os

t F
qo

s

Mutation Rate (%)

Uniform
Skewed
Clutered

Figure 8. System costs obtained for different
mutation rates

Figure 10 shows the values of FQoS provided by SEGA
for different sexuality rates (percentages of iterations where
sexual reproduction is used). This figure shows the same
behavior for the three distributions of avatars. The FQoS

values provided by SEGA decreases as the percentage of
sexual derivations increases. However, the slope of the three
plots progressively decreases as this percentage increases.
We have chosen 75% as the best sexuality rate (percentage
of sexual reproduction), in order to provide population di-
versity.

Due to space limitations, the tuning of the other two pa-
rameters (the minimum standard deviation allowed for the
convergence condition, and the maximum number of iter-
ations allowed without improving the fitness function) are
not presented here. We have chosen a value of 0.005 as the

minimum standard deviation for the population. A popu-
lation with a lower value of standard deviation is consid-
ered as the final population. In the same way, we have
chosen a value of 50 as the maximum number of iterations
allowed without improving the fitness function. If the algo-
rithm reaches this number of consecutive iterations without
decreasing the current minimum value of FQoS , then the
algorithm finishes. Using these values for these seven pa-
rameters, we have obtained the best performance of SEGA.

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 20 40 60 80 100

S
ys

te
m

 C
os

t F
qo

s

Elitism Rate (%)

Uniform
Skewed
Clutered

Figure 9. System costs obtained for different
elitism rates

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 20 40 60 80 100

S
ys

te
m

 C
os

t F
qo

s

Crossover Rate (%)

Uniform
Skewed
Clutered

Figure 10. System costs obtained for different
sexuality rates

6

4. Performance Evaluation

In this section, we present the performance evaluation of
the heuristic method described in the previous section when
it is used for solving the QoS problem in DVE systems.
For comparison purposes, we have also tested another two
heuristic methods, SA and GRASP, that have been adapted
to the QoS problem in DVE systems [17]. We have empir-
ically tuned these other heuristics in the same MEDIUM1
and MEDIUM2 configurations described in the previous
section. However, due to space limitations, we present here
the result for MEDIUM2 configuration. The results ob-
tained for MEDIUM1 configuration were very similar.

Table 1 shows the results obtained for a MEDIUM2 con-
figuration when avatars are uniformly located in the virtual
world. Each column of the table shows the results for a
given partitioning algorithm. For comparison purposes, the
first column shows the results for the ALB algorithm [16].
This algorithm is not oriented to provide QoS, and it only
provides a balanced initial partition. The rest of the columns
show the results for SA, GRASP and SEGA methods. Each
row in the table shows a different performance measure.
The first row shows the maximum estimated percentage of
CPU utilization that any server will have with the result-
ing partition provided by each method. This measure must
not be greater than 99%. The second row shows the sys-
tem cost (in terms of the quality function FQoS associated
to the resulting partition) provided by each method. The
third row shows the estimated number of avatars that will
be provided with QoS, according to the resulting partition
provided by each method[17]. The fourth row shows the
number of avatars that have to be migrated in order to arrive
to the resulting partition from the current (initial) partition.
Finally, last row shows the execution time (in seconds) re-
quired by each method in order to provide the resulting par-
tition.

ALB SA GRASP SEGA
Max Ut. (%) 17 17 19 16

FQoS 73851 69633 62048 61558
QoS 496 526 619 621

Γ(P0) 54 101 101
Texe (s.) 7,68 7,31 9,07

Table 1. Results for a MEDIUM2 DVE system
with a uniform distribution of avatars

Table 1 shows that all the considered methods manage
to keep the system below the saturation point, since the
maximum estimated utilization percentage does not reach
20%. These values also indicate that a uniform distribu-
tion of avatars generate a low load. The Γ(P0) row shows

that the three methods provide good partitioning efficiency,
since all of them provide a final partition where the number
of avatars to be migrated is below the threshold of one third
of the population (in the case of MEDIUM2, 700/3). This
table also shows that for a uniform distribution of avatars,
SEGA method does not provide a significant performance
improvement in regard to GRASP or SA heuristic meth-
ods. Although it provides a final partition with a slightly
lower value of FQoS , and it manages to provide QoS to two
avatars more than GRASP method does, the required exe-
cution time is longer than the one required by GRASP or
SA methods.

Table 2 shows the results for the MEDIUM2 configura-
tion when avatars are located in the virtual world following
a skewed distribution. In this case, the maximum utilization
rates increase in regard to the ones in Table 1, showing that
in this distribution the workload generated with the same
number of avatars is greater. Table 2 clearly shows how for
this distributions of avatars SEGA is able to provide a par-
tition with higher values of FQoS than the ones provided by
GRASP or SA, increasing in a 24% the number of avatars
provided with QoS when compared with GRASP method,
and increasing it in a 48% when compared to SA method.
Additionally, it requires the shortest execution time in order
to provide the resulting partition.

ALB SA GRASP SEGA
Max Ut. (%) 58 53 58 54

FQoS 99408 88426 82857 75326
QoS 211 290 347 431

Γ(P0) 194 81 169
Texe (s.) 84,08 20,07 18,43

Table 2. Results for a MEDIUM2 DVE system
with a skewed distribution of avatars

Finally, Table 3 shows the results for the MEDIUM2
configuration when avatars are located in the virtual world
following a skewed distribution. For this distributions of
avatars, the maximum utilization rates still increases in re-
gard to Table 2. This means that this is the distribution
where avatars generate the greatest workload. In this case,
SEGA is capable of providing a partition with a FQoS that
is 5% lower than the one provided by GRASP and 8.5%
lower than the one provided by SA method. As a result, the
number of avatars provided with QoS increases to a value of
436, while for the other two methods it is 415 and 349, re-
spectively. Nevertheless, the most spectacular improvement
is done in terms of execution times. The execution time re-
quired by SEGA method is around half the time required to
execute GRASP method.

All these results shows that the performance of SEGA
method increases as the distribution of avatars in the virtual

7

ALB SA GRASP SEGA
Max Ut. (%) 79 69 72 70

FQoS 99690 92677 88960 84774
QoS 314 349 415 436

Γ(P0) 95 82 120
Texe (s.) 48,89 43,66 23,40

Table 3. Results for a MEDIUM2 DVE system
with a clustered distribution of avatars

world generates a greater workload.

5. Conclusions

In this paper, we have proposed an elitist sexual genetic
algorithm for solving the QoS problem in Distributed Vir-
tual Environment systems. We have compared the perfor-
mance of the proposed method with the performance ob-
tained with other heuristic methods applied to the same
problem.

The results show that although the proposed method does
not improve the performance of the DVE system when
the workload is low, it properly scales with the workload
generated by avatars, therefore providing the best perfor-
mance for the QoS problem as the DVE system gets more
loaded. Since the purpose of the method is to provide QoS
to avatars as longer as possible (regardless of the distribu-
tions of avatars in the virtual world), these results validate
SEGA method as the best heuristic method for providing
QoS in DVE systems.

References

[1] D. Anderson, J. Barrus, and J. Howard. Building multi-user
interactive multimedia environments at merl. IEEE Multi-
media, 2(4), 1995.

[2] B. Caminero, C. Carrión, F. Quiles, J. Duato, and S. Yala-
manchili. A hardware approach to qos support in cluster
environments: The multimedia router mmr. In Proceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’03), 2003.

[3] Z. Choukair, D. Retailleau, and M. Hellstrom. Environ-
ment for performing collaborative distributed virtual envi-
ronments with qos. In Proceedings of the International Con-
ference on Parallel and Distributed Systems (ICPADS’00),
pages 111–118. IEEE Computer Society, 2000.

[4] J. S. Dias, R. Galli, and A. C. A. et al. mworld: A multiuser
3d virtual environment. IEEE Computer Graphics, 17(2),
1997.

[5] F. C. Greenhlagh. Awareness-based communication man-
agement in massive systems. Distributed Systems Engineer-
ing, 5, 1998.

[6] R. L. Haupt and S. E. Haupt. Practical Genetic Algorithms.
Ed. Willey, 1997.

[7] T. Henderson and S. Bhatti. Networked games: a qos-
sensitive application for qos-insensitive users? In Proceed-
ings of the ACM SIGCOMM 2003, pages 141–147. ACM
Press / ACM SIGCOMM, 2003.

[8] K. Lee and D. Lee. A scalable dynamic load distribution
scheme for multi-server distributed virtual environment sys-
tems with highly-skewed user distribution. In Proceedings
of the 10th ACM Symposium on Virtual Reality Software and
Technology (VRST 2003), pages 160–168. ACM, 2003.

[9] M. Lewis and J. Jacboson. Game engines in scientific re-
search. Communications of the ACM, 45(1), 2002.

[10] J. C. Lui and M. Chan. An efficient partitioning algorithm
for distributed virtual environment systems. IEEE Trans.
Parallel and Distributed Systems, 13, 2002.

[11] J. C. Lui, M. Chan, and K. Oldfield. Dynamic partitioning
for a distributed virtual environment. Technical report, De-
partment of Computer Science. Chinese University of Hong
Kong, 1998.

[12] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer, 1994.

[13] D. Miller and J. Thorpe. Simnet: The advent of simulator
networking. IEEE TPDS, 13, 2002.

[14] P. Morillo, J. M. Orduna, M. Fernández, and J. Duato. On
the characterization of distributed virtual environment sys-
tems. In Euro-Par’ 2003 - Lecture Notes in Computer Sci-
ence 2790, pages 1190–1198. ACM, Springer-Verlag, 2003.

[15] P. Morillo, J. M. Orduña, and M. Fernández. An acs-based
partitioning method for distributed virtual environment sys-
tems. In Proc. of 2003 Int. Parallel and Distributed Process-
ing Symposium Workshops (IPDPS’ 2003). IEEE Computer
Society, 2003.

[16] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. An
adaptive load balancing technique for distributed virtual en-
vironment systems. In Proc. of Intl. Conf. on Parallel and
Distributed Computing and Systems (PDCS’03), pages 256–
261. IASTED, ACTA Press, 2003.

[17] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. A
comparison study of metaheuristic techniques for providing
qos to avatars in dve systems. In ICCSA’ 2004 - Lecture
Notes in Computer Science 3044, pages 661–670. Springer-
Verlag, 2004.

[18] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. A
fine-grain method for solving the partitioning problem in
distributed virtual environment systems. In Proc. of 16th.
Intl. Conf. on Parallel and Distributed Computing and Sys-
tems (PDCS’04). IASTED, ACTA Press, 2004.

[19] T. Nitta, K. Fujita, and S. Cono. An application of dis-
tributed virtual environment to foreign language. IEEE Ed-
ucation Society, 2000.

[20] S. Singhal and M. Zyda. Networked Virtual Environments.
ACM Press, 1999.

[21] P. Tam. Communication cost optimization and analysis in
distributed virtual environment. Technical report, Depart-
ment of Computer Science. Chinese University of Hong
Kong, 1998.

[22] X. Yuan. Heuristic algorithms for multi-constrained qual-
ity of service routing. IEEE Transactions on Networking,
10(2):244–256, 2002.

8

