Workload Characterization in Multiplayer
Online Games*

P. Morillo?, J.M. Orduifia®, and M. Fernandez?

! Universidad de Valencia, Departamento de Informaética,
Avda. Vicent Andrés Estellés, s/n
46100 - Burjassot (Valencia), Spain
Juan.0OrdunaG@uv.es
2 Universidad de Valencia, Instituto de Robética,
Poligono de la Coma s/n
46980 - Paterna (Valencia), Spain

Abstract. In recent years, distributed virtual environments (DVEs)
have become a major trend in distributed applications, mainly due to
the enormous popularity of multiplayer online games in the entertain-
ment industry. Although the workload generated by avatars in a DVE
system has already been characterized, the special features of multiplayer
online games make these applications to require a particular workload
characterization.

This paper presents the workload characterization of multiplayer online
games. This characterization is based on real traces, and it shows that the
movement patterns of avatars used to develop optimization techniques
for DVE systems can be extrapolated to First Person Shooting networked
games. However, the workload that each avatar adds to the game server
is higher than the one proposed in the literature.

1 Introduction

The enormous popularity that multiplayer online games have acquired nowa-
days has allowed a huge expansion of Distributed Virtual Environments (DVEs).
These highly interactive systems simulate a 3-D virtual world where multiple
users share the same scenario. Each user is represented in the shared virtual
environment by an entity called avatar, whose state is controlled by the user
through the client computer. The system renders the images of the virtual world
that each user would see if he was located at that point in the virtual environ-
ment. Hundreds and even thousands of client computers can be simultaneously
connected to the DVE system through different networks, and even through the
Internet. Although DVE systems are currently used in many different applica-
tions such as civil and military distributed training [1], collaborative design [2]
or e-learning [3], the most extended example of DVE systems are commercial,
multiplayer online game (MOG) environments [4-7].

* This paper is supported by the Spanish MEC under grant TIC2003-08154-C06-04

Different architectures have been proposed in order to efficiently support
multiplayer online games: centralized-server architectures [5, 7], networked server
architectures [8,9] and peer-to-peer architectures [10,11]. Figure 1 shows an
example of each one of these architectures. In this example, the virtual world is
two-dimensional and avatars are represented as dots. The area of interest (AOT)
of a given avatar is represented as a circumference.

Fig. 1. Different architectures for DVE systems: a) Centralized b) Peer-to-peer c)
Networked-server

Regardless of the system architecture, some key issues add complexity to the
design of an efficient and scalable DVE system. Some of the following ones have
become nowadays an open research topic:

— View Consistency: This problem has been already defined in other computer
science fields such as database management [12]. In DVE systems, this prob-
lem consists of ensuring that all avatars sharing a virtual space with common
objects have the same local vision of them [13-15]. Some proposals have been
made to provide consistency [16,17,11].

— Message Traffic Reduction: Keeping a low amount of messages allows DVE
systems to efficiently scale with the number of avatars in the system. Tradi-
tionally, techniques like dead-reckoning described in [8] offered some level of
independence to the avatars. With network support, broadcast or multicast
solutions [18,11] decrease the number of messages used to keep a consistent
state of the system.

— Partitioning scheme: In networked-server architectures, the problem of ef-
ficiently distributing the workload (avatars) among different servers in the
system determines the throughput and the quality of service (QoS) provided
to users [19, 20].

A common feature in all these research topics is the need of characterizing
the user behavior, in order to determine the workload generated to the DVE
system (both in terms of computational and communication requirements). This
characterization must be performed in two aspects:

— High-level abstraction of the application. This item determines, for example,
the user behavior in networked games, in terms of mobility and user actions.
In this sense, several models have been proposed [21, 22].

— Low-level measurements of system workload. These measurements deter-
mines the workload generated by each user (avatar) to the system, in terms
of computational and communication requirements. Typical examples of this
kind of measurements are number of messages generated per second, aver-
age number of neighbor avatars inside the AOI of a given avatar, average
movement rate of avatars, etc. Some characterization of these aspects have
been already proposed [23, 24|

Nevertheless, multiplayer online games (which are the most popular real-time
applications, making up around half the top 25 types of non traditional traffic
for some Internet links [25]) have special requirements, due to their real-time
characteristics [26]. Despite the video game market is currently divided in more
than ten types of sub genres (fighting games, role-playing games, simulation
games, etc.) [27], first person shooter games (FPS) have focused the attention
of the research community. The reason for such interest is due to the fact that
FPS games impose the most restrictive requirements on both network traffic
and QoS, because of their fast-paced nature [21]. In FPS games, the game is
visualized in a first person perspective by users, who are located in a 3D virtual
scene (called map) holding a gun or similar weapon [27].

Therefore, both a high-level and a low-level workload characterization are
required to determine the actual workload that users in these system generate.
This characterization is essential to develop efficient optimization techniques
for these systems and also to design methods for providing Quality of Service.
Last years several proposals have been made about characterizing the high-level
abstraction of networked games [26, 21, 22]. These studies have shown that mul-
tiplayer online games have distinctive features in terms of the effects of latency
on users and user behavior. Nevertheless, to our knowledge no proposal has been
still made about low-level workload characterization in networked games.

The purpose of this paper is to perform a low-level characterization of net-
worked games, starting from real traffic obtained from real games. The char-
acterization study shows that, unlike the case of high-level workload, the low-
level workload generated in networked games do not significantly differ from the
workload generated in other DVE systems. Therefore, the workload models used
in optimization and QoS techniques can also be applied to multiplayer online
games.

The rest of the paper is organized as follows: section 2 describes the char-
acterization setup for obtaining real traces from real networked games. Next,
section 3 shows the characterization study performed on the obtained traces.
Finally, section 4 shows some conclusions and future work to be done.

2 Characterization Setup

Unreal Tournament (UT) is a popular first-person action game from Epic Games
[5]. In recent years, this multiplayer game has become an important testbed for

performance evaluation in fields like DVE systems [28], Human Computer Inter-
action (HCI) [29] and autonomous agents systems [30]. We have used a special
version of this multiplayer game, called UT Game of the Year (GOTY), to ob-
tain real traces of a networked game. The low-level analysis of such traces allows
the workload characterization of networked games. The considered version of the
multiplayer game not only includes an improved graphical engine and a impor-
tant set of game modes (DeathMatch, Capture-The-Flag, Domination), but it
also allows control avatars by using a high level language called UnrealScript.
From the system architecture’s point of view [8], Unreal Tournament is based
on a client/server model, where a single monolithic server of the game performs
constant game updates, denoted as server ticks. In each server tick, server se-
quentially computes the current state of the simulation and sends game state
information to each client. This technique is known as Frequent State Regenera-
tion (FSR) [8], and data packets contain information about the position, speed
and even the model of each avatar.

Despite Unreal Tournament includes different game modes, we have selected
the opposite modes (called ”DeathMatch” (DM) and ” Capture-The-Flag” (CFT))
in terms of both interactivity and behavior of users. In DM mode, the purpose
of the game consists of killing as many opponents as possible whilst avoiding
being killed. In this mode, players are independent and spend the simulation
time moving and jumping around the virtual scene to kill the rest of players by
shooting or strafing them. However, in CFT mode both the goal and the user
behavior are completely different. In this case, players are organized in two dif-
ferent teams (read and blue) which are represented by a flag. The flags of the
teams are located in two different zones of the scene called bases. The purpose of
the game consists of those players belonging to the same team to collaboratively
finding the enemy base and carry enemy flag to the team base. Unlike other
mode games, DM and CTF mode games are strongly recommended when the
number of players in UT is high (UT dedicated servers support games of up to
16 players).

A UT Lan Party was organized at our laboratories in early September 2005.
In this experiment, a selected set of students of our university were invited to
play in a session of two hours of duration. The 16 players were playing UT-GOTY
version 4.3.6. on a dedicated server. The hardware platforms used as computer
clients as well as the server were PC’s with Pentium IV processor running at 1.7
GHz, 256 Mbytes of RAM and NVidia MX-400 graphic cards. All of them have
installed Windows Xp and shared a 10 Mbps Ethernet as the interconnection
network. Unlike other older FPS games as Quake [31], it was not necessary
to patch or modify the source code of the game server in order to obtain the
traces of played games in our experiments. In this case, we used UnrealScript
to define custom monitors inside of the game map. Once the monitored maps
were loaded in the current game, they forced UT engine to write the position
of all the simulation clients in each server tick. In order to define comfortable
maps for the UT Lan Party, where 16 players can comfortably enjoy the game,
the largest four maps were properly monitored. These maps correspond to maps

called “DM-Deck16” and “DM-Shrapnel” for “DeathMatch” game mode, and
“CTF-Darjil6” and “CTF-HallOfGiants” for “Capture-The-Flag” game mode.
All of them are well-known in the UT player community and can be found in
any of the existing commercial version of this popular multiplayer game.

We have obtained five different trace files of UT game played by 16 players.
Three of them correspond to three DM mode games, and we have denoted them
as DTH1A, DTH1B and DTH2A. DTH1A and DTHI1B traces correspond to
two traces of the game played with the same map (Deck16). The idea is to check
if the results show significant changes in different instances of the same game.
The other two trace files correspond to CFT mode-games, and we have denoted
them as FLAG1 and FLAG2. The simulation times required for obtaining each
trace file were 2,25 minutes for DTH1A, 4 minutes for DTH1B, 5 minutes for
DTH2A, 4 minutes for FLAG1 and 16 minutes for FLAG2.

3 Workload Characterization

The first stage in the characterization study is to check if the movement patterns
followed by avatars correspond to those used in the literature [19, 24, 32, 33]. We
have depicted the successive locations of each of the avatars in the environment
at every simulation time, according to the traces. Figure 2 graphically shows the
results obtained for two of the traces. Although the other three are not shown
here for the sake of shortness, they are very similar. Figures 2 A) and B) respec-
tively show the location of avatars in trail mode (the lines represent the locations
visited by each avatar) for one of the DM traces and one of the CTF trace files.
Figure 2 C) is a snapshot of the location of avatars in a given instant for the
same CTF trace file. Using this tool to visually check the movement patterns, we
can conclude that all of the traces show a random movement pattern. In terms
of workload, this pattern is equivalent to CCP [24] movement pattern.

Fig. 2. Locations of avatars in different traces: A) DM mode of DTH1A trace file B)
DM mode of FLAG2 trace file C) CFT mode of FLAG2 trace file

The next step in our analysis has been the detailed study of the timestamps
and locations of avatars. A previous experiment was performed (before obtaining

the file traces) in order to empirically measuring the vision range (the AOI size)
of avatars. In this experiment (performed in a diaphanous map), we progressively
moved away two close avatars while measuring the distance to each other, until
they could not see each other. Such distance was measured as 100 m. in the
virtual world. It must be noticed that although two avatars cannot see each other
at a given moment (due to the map geometry, including walls, corridors and/or
corners) avatars must exactly know the location of all the neighbor avatars in
their AOI, since they can become visible at any moment. Therefore, using 100m.
as the AOI, we analyzed the obtained trace files. Although we have analyzed the
values in the trace files for each of the avatars, in this paper we will only show
the average and the standard deviation values obtained for the sixteen avatars,
due to space limitations.

Table 1 shows the analysis of DTH trace files. This table shows in the first row
the average values obtained for the sixteen avatars, while it shows the standard
deviation in the next row. The average number of avatars in the AOI of each
avatars were 15 in all of the DTH traces. That is, the AOI of avatars in UT
reaches the whole virtual world for these maps. The most-left column shows
the number of events generated in each trace (number of packets sent by each
avatars). The the next column shows the number of useful events (notice that
avatars send a packet at each server ticks, even though they remain stopped
and have no change to report about) to compute movement rates and speeds.
The column labeled with ”Dist” shows the linear distance (in meters) traversed
by the avatars during the game. Next, column labeled with ”Speed” shows the
average movement rate of avatars (in kilometers/hour) during the game. Finally,
the column labeled with ”Ev/sec” shows the rate of useful packets per second
sent by avatars (that is, the communication workload).

Table 1. Empirical results for DTH traces

DTHI1A
Events|Useful Ev.|Dist.|Speed|Ev/sec
Average | 4330 1295 382 | 10 10
Std. Dev.| 167 779 181 5 6

DTH1B
Events|Useful Ev.|Dist.|Speed|Ev/sec
Average | 10721 2732 749 | 12 12
Std. Dev.| 548 1285 273 | 4 6

DTH2A
Events|Useful Ev.|Dist.|Speed|Ev/sec
Average | 11373 4354 893 | 12 16
Std. Dev.| 2937 2291 336 | 4 8

The results show in table 1 show that only around one third of the events
are useful (that is, they include information about a new location of the avatar).

This result indicates that avatars remains stopped most of the simulation time, as
indicated in the DVE literature [34]. Another important result is that the useful
event rate generated by avatars is no lower than 10 events per second in any case.
These rates are higher than the ones of assumed as typical in previous studies
focused on DVEs. This movement rate was assumed as 2 movements/second
[35], 5 events/second [18,36], or 10 events/second in the case of games [37]. If
useless events are considered (as FSR scheme [8] does), then the event rate is
even higher. This is the reason for games using FSR scheme [8] to limit the
number of players to 16.

Table 2 shows the analysis of FLAG trace files. The average AOI of avatars
in FLAG1 and FLAG?2 trace files are 10 and 11, respectively. That is, these
maps are bigger than DTH maps, allowing some avatars to remain most of the
time out of the AOI of other avatars. Although in this version of the game
the percentage of useful events are similar to the percentages shown in table 1,
the rate of useful events per second significantly increases, showing that avatars
move more often in this game mode. These results indicate that avatars in FPSs
show higher movement rates than in typical DVEs, and therefore they generate
a higher workload [23].

Table 2. Empirical results for FLAG traces

FLAG1
Events|Useful Ev.|Dist.|Speed|Ev/sec
Average | 11961 4782 710 | 10 18
Std. Dev.| 4291 2559 340 | 5 10

FLAG2
Events|Useful Ev.|Dist.|Speed|Ev/sec
Average | 34575 | 23968 |4028| 15 25
Std. Dev.| 1820 6527 | 825| 3 7

Additionally, we have measured the distances among the avatars during the
simulations, in order to monitor how clustered they are in the virtual world
and how these clusters vary during the simulations. Figures 3 and 4 show this
measurements in a graphical way. This figures show on the x-axis the normalized
simulation time (since each trace files contains different simulation times, this
magnitude must be normalized in order to compare the different trace files). On
the y-axis, these figures show the average value of the average distances from
each avatars to all of its neighbors.

Both figures show that the average inter-avatar distance do not significantly
increase as the simulation time grows. That is, avatars do not tend to head
for certain points in the virtual world, as HPN [33] or HPA [32] movement
patterns assume. Instead, the inter-avatar distance keeps a flat slope during the
simulation. Therefore, the number of neighbors inside the AOI of avatars remains
practically constant. Since the same behavior can be seen in both figures, we can

Average of inter-avatar distance {m.)

1 5 9 13 17 21 25 29 33 37 4 45
Normalized Simulation Time (%)

Fig. 3. Average inter-avatar distance for DTH file traces

conclude that the most adequate movement pattern for FPS games is CCP [24],
since this pattern generates a constant workload during all the simulation. The
existence of some peaks in the plots suggests that although HPN pattern could
appear during certain periods, avatars do not follow HPA pattern at all.

©
=1

=)
=1

-
=3

@
=1

@
=1

IS
=3

w
=1

Average of inter-avatar distance (m.)
)
=

=

—— FLAGT —&-FLAGZ

o

1 5 9 1317 25 29 33 37 41 45 49 53 57 61 65
Normalized Simulation Time (%)

Fig. 4. Average inter-avatar distance for FLAG file traces

When comparing the two figures, we can see that the only difference between
figure 3 and figure 4 is the different levels of inter-avatar distances. This difference
is due to the nature of the different game modes. However, all of the plots in
each figure show a flat slope.

4 Conclusions

In this paper, we have proposed the workload characterization of multiplayer
networked games by obtaining real traces and analyzing the low-level measure-

ments of system workload. In order to analyze the obtained traces, we have
performed both a visual and an statistical analysis.

The results show that the movement patterns followed by avatars are very
similar (in terms of system workload) to some of the movement patterns propose
din the literature for DVE systems. However, due to the fast-paced nature of
FPS games, the movement rate of avatars are higher than the movement rates
proposed for DVE systems. Therefore, we can conclude that the workload gen-
erated by multiplayer networked games follow some movement patterns already
proposed, but moving faster than other DVE applications.

References

1. Miller, D., Thorpe, J.: Simnet: The advent of simulator networking. IEEE TPDS
13 (2002)

2. Salles, J., Galli, R., et al., A.C.A.: mworld: A multiuser 3d virtual environment.
IEEE Computer Graphics 17(2) (1997)

3. Bouras, C., Fotakis, D., Philopoulos, A.: A distributed virtual learning centre in

cyberspace. In: Proc. of Int. Conf. on Virtual Systems and Multimedia (VSMM’98).

(1998)

(Everquest: http://everquest.station.sony.com/)

(Unreal Tournament: http://www.unrealtournament.com/)

(Lineage: http://www.lineage.com)

(Quake: http://www.idsoftware.com/games/quake/quake/)

Singhal, S., Zyda, M.: Networked Virtual Environments. ACM Press (1999)

Lui, J.C., Chan, M.: An efficient partitioning algorithm for distributed virtual

environment systems. IEEE Trans. Parallel and Distributed Systems 13 (2002)

10. Mooney, S., Games, B.: Battlezone: Official Strategy Guide. BradyGame Publisher
(1998)

11. Gautier, L., Diot, C.: Design and evaluation of mimaze, a multi-player game on
the internet. In: Proceedings of IEEE Multimedia Systems Conference. (1998)

12. Berstein, P.A., V.Hadzilacos, N.Goodman: Concurrency, Control and Recovery in
Database Systems. Addison Wesley-Longman (1997)

13. Zhou, S., Cai, W., Lee, B., Turner, S.J.: Time-space consistency in large-scale
distributed virtual environments. ACM Transactions on Modeling and Computer
Simulation 14(1) (2004) 31-47

14. Fujimoto, R.M., Weatherly, R.: Time management in the dod high level archi-
tecture. In: Proceedings tenth Workshop on Parallel and Distributed Simulation.
(1996) 60-67

15. Roberts, D., Wolff, R.: Controlling consistency within collaborative virtual en-
vironments. In: Proceedings of IEEE Symposium on Distributed Simulation and
Real-Time Applications (DSRT’04). (2004) 46-52

16. Kawahara, Y., Aoyama, T., Morikawa, H.: A peer-to-peer message exchange
scheme for large scale networked virtual environments. Telecommunication Sys-
tems 25(3) (2004) 353-370

17. Hu, S.Y., Liao, G.M.: Scalable peer-to-peer networked virtual environment. In:
Proceedings ACM SIGCOMM 2004 workshops on NetGames ’04. (2004) 129-133

18. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-peer support for massively
multiplayer games. In: Proceedings of IEEE InfoCom’04. (2004)

© XN o

10

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Morillo, P., Orduna, J.M., Fernandez, M., Duato, J.: Improving the performance
of distributed virtual environment systems. IEEE Transactions on Parallel and
Distributed Systems 16(7) (2005) 637-649

Morillo, P., Orduna, J.M., Fernandez, M., Duato, J.: A method for providing qos
in distributed virtual environments. In: Euromicro Conf. on Parallel, Distributed
and Network-based Processing (PDP’05), IEEE Computer Society (2005)

Tan, S.A., Lau, W., Loh, A.: Networked game mobility model for first-person-
shooter games. In: Proceedings of the 2nd workshop on Network and system
support for games (NetGames’05). (2005)

Henderson, T., Bhatti, S.: Modelling user behaviour in networked games. In:
MULTIMEDIA ’01: Proceedings of the ninth ACM international conference on
Multimedia, New York, NY, USA, ACM Press (2001) 212-220

Morillo, P., Orduna, J.M., Fernandez, M., Duato, J.: On the characterization of
avatars in distributed virtual worlds. In: EUROGRAPHICS’ 2003 Workshops, The
Eurographics Association (2003) 215-220

Beatrice, N., Antonio, S., Rynson, L., Frederick, L.: A multiserver architecture
for distributed virtual walkthrough. In: Proceedings of ACM VRST’02. (2002)
163-170

McCreary, S., Claffy, K.: Trends in wide area ip traffic patterns - a view from
ames internet exchange. In: Proceedings of ITC Specialist Seminar, Cooperative
Association for Internet Data Analysis - CAIDA (2000)

N. Sheldon, a.E.G., Borg, S., Claypool, M., Agu, E.: The effect of latency on user
performance in warcraft iii. In: Proc. of 2nd workshop on Network and system
support for games (NetGames’03), ACM Press New York, NY, USA (2003) 3-14
Wolf, M., Perron, B.: The Video Game Theory Reader. Routledge Publisher (2003)
Wray, R.: Thinking on its feet: Using soar to model combatants in urban environ-
ments. In: 22nd North American Soar Workshop Proceedings. (2002)

Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E., Claypool, M.: The
effects of loss and latency on user performance in unreal tournament. In: Proc. of
ACM Network and System Support for Games Workshop (NetGames). (2004)
Lozano, M., Cavazza, M., Meada, S., Charles, F.: Search based planning for charac-
ter animation. In: 2nd International Conference on Application and Development
of Computer Games. (2003)

Steed, A., Angus, C.: Supporting scalable peer to peer virtual environments using
frontier sets. In: Proc. of IEEE Virtual Reality, IEEE Computer Society (2005)
Greenhalgh, F.C.: Analysing movement and world transitions in virtual reality tele-
conferencing. In: Proceedings of 5th European Conference on Computer Supported
Cooperative Work (ECSCW’97). (1997)

Matijasevic, M., Valavanis, K.P., Gracanin, D., Lovrek, I.: Application of a multi-
user distributed virtual environment framework to mobile robot teleoperation over
the internet. Machine Intelligence & Robotic Control 1(1) (1999) 11-26
Greenhalgh, C.: Understanding the Network Requirements of Collaborative Virtual
Environments. In: Collaborative Virtual Environments. Springer-Verlag (2001)
Min, P.,; Funkhouser, T.: Priority-driven acoustic modeling for virtual environ-
ments. Computer Graphics Forum 19(3) (2000)

Anthes, C., Haffegee, A., Heinzlreiter, P., Volkert, J.: A scalable network architec-
ture for closely coupled collaboration. Computing and Informatics 21(1) (2005)
31-51

Dickey, C.G., Lo, V., Zappala, D.: Using n-trees for scalable event ordering in peer-
to-peer games. In: Proc. of Intntl. workshop on Network and operating systems
support for digital audio and video (NOSSDAV’05), ACM Press (2005) 87-92

