
A Comparison Study of Modern Heuristics for Solving
the Partitioning Problem in Distributed Virtual

Environment Systems

P. Morillo�, M. Fernández� and J. M. Ordu˜na�

� Instituto de Rob´otica. Universidad de Valencia. SPAIN.
� Departamento de Inform´atica. Universidad de Valencia. SPAIN

Pedro.Morillo@uv.es, Juan.Orduna@uv.es

Abstract. Fast Internet connections and the widespread use of high performance
graphic cards are making Distributed Virtual Environment (DVE) systems very
common nowadays. However, there are several key issues in these systems that
should still be improved in order to design a scalable and cost-effective system.
One of these key issues is the partitioning problem. This problem consists of
efficiently assigning clients (3-D avatars) to the servers in the system.
In this paper, we present a comparison study of different modern heuristics for
solving the partitioning problem in DVE systems, as an alternative to the ad-
hoc heuristic proposed in the literature. Performance evaluation results show that
some of the heuristic methods can greatly improve the performance of the parti-
tioning method, particularly for large DVE systems. In this way, efficiency and
scalability of DVE systems can be significantly improved.

1 Introduction

The widespread use of both fast Internet connections and also high performance graphic
cards have made possible the current growth of Distributed Virtual Environment (DVE)
systems. These systems allow multiple users, working on different computers that are
interconnected through different networks (and even through Internet) to interact in a
shared virtual world. This is achieved by rendering images of the environment as if they
were perceived by the user. Each user is represented in the shared virtual environment by
an entity calledavatar, whose state is controlled by the user input. Since DVE systems
support visual interactions between multiple avatars, every change in each avatar must
be propagated to the rest of the avatars in the shared virtual environment.

DVE systems are currently used in different applications [17], such as collaborative
design [16], civil and military distributed training [14], e-learning [15] or multi-player
games [11]. Due to their different requirements, communication rate of avatars may
significantly differ among these different applications. One of the key issues in the de-
sign of a scalable DVE system is thepartitioning problem [12]. It consists of efficiently
assigning the workload (avatars) among different servers in the system. The partitio-
ning problem may seriously affect the overall performance of the DVE system, since
it determines not only the workload each server is assigned to, but also the inter-server
communication requirements (and therefore the network traffic). Some methods for sol-
ving the partitioning problems have been already proposed [12, 13, 17]. These methods



provide efficient solutions even for large scale DVE systems. However, there are still
some features in the proposed methods that can be improved. For example, different
heuristic search methods can be used for finding the best assignment of clients to ser-
vers, instead of using ad-hoc heuristics.

In this paper, we present a comparison study of several heuristics for solving the
partitioning problem in DVE systems. We have implemented five different heuristics,
ranging over most of the current taxonomy of heuristics: Genetic Algorithms (GA)
[8], two different implementations of Simulated Annealing [10], Ant Colony Systems
(ACS) [4], and Greedy Randomized Adaptive Search (GRASP) [3]. Performance eva-
luation results show that the execution cost of the partitioning algorithm (in terms of
execution times) can be dramatically reduced, while providing similar or even better
solutions than the current best solutions, provided by the ad-hoc heuristic proposed in
[13]. We plan to use these results to improve the efficiency and scalability of our DVE
system, a collaborative driving simulator [7].

The rest of the paper is organized as follows: Section 2 describes the partitioning
problem and the existing proposals for solving it. Section 3 describes the proposed
implementations of the heuristics considered for this study. Next, Section 4 presents
the performance evaluation of the proposed heuristics. Finally, Section 5 presents some
concluding remarks.

2 The Partitioning Problem in DVE Systems

Architectures based on networked servers are becoming a de-facto standard for DVE
systems [17, 12]. In these architectures, the control of the simulation relies on several in-
terconnected servers. Multi-platform client computers must be attached to one of these
servers. When a client modifies an avatar, it also sends an updating message to its ser-
ver, that in turn must propagate this message to other servers and clients. Servers must
render different 3D models, perform positional updates of avatars and transfer control
information among different clients. Thus, each new avatar represents an increasing in
both the computational requirements of the application and also in the amount of net-
work traffic. When the number of connected clients increases, the number of updating
messages must be limited in order to avoid avoid a message outburst. In this sense, con-
cepts like areas of influence (AOI) [17], locales [1] or auras [9] have been proposed for
limiting the number of neighboring avatars that a given avatar must communicate with.

Depending on their origin and destination avatars, messages in a DVE system can
be intra-server or inter-server messages. In order to design a scalable DVE systems,
the number of intra-server messages must be maximized. Effectively, when clients send
intra-server messages they only concern a single server. Therefore, they are minimizing
the computing, storage and communication requirements for maintaining a consistent
state of the avatars in a DVE system. Lui and Chan have shown the key role of finding
a good assignment of clients to servers in order to ensure both a good frame rate and a
minimum network traffic in DVE systems [12, 13]. They propose a quality function, de-
noted as��, for evaluating each assignment of clients to servers. This quality function
takes into account two parameters. One of them consists of the computing workload
generated by clients in the DVE system, denoted as��

� . In order to minimize this pa-



rameter, the computing workload should be proportionally shared among all the servers
in the DVE system, according to the computing resources of each server. The other
parameter of the quality function consists of the overall inter-server communication
cost, denoted as��� . In order to minimize this parameter, avatars sharing the same AOI
should be assigned to the same server. Quality function�� is defined as

�� ��� �
�
� ��� �

�
� (1)

where�� � �� � �. �� and�� are two coefficients that weight the relative
importance of the computational and communication workload, respectively. These co-
efficients should be tuned according to the specific features of each DVE system. Using
this quality function (and assuming�� ��� � ���) Lui and Chan propose a partitio-
ning algorithm that re-assigns clients to servers [13]. The partitioning algorithm should
be periodically executed for adapting the partition to the current state of the DVE sy-
stem as it evolves (avatars can join or leave the DVE system at any time, and they can
also move everywhere within the simulated virtual world). Lui and Chan also have pro-
posed a testing platform for the performance evaluation of DVE systems, as well as a
parallelization of the partitioning algorithm [13].

Some other approaches for solving the partitioning problem have been also pro-
posed. One of them groups avatars following regular distributions [2]. In order to en-
sure good performance, this algorithm generate a number of regular distributions equal
to the number of servers in the DVE system. However, this proposal does not obtain
good performance when avatars are located following a non-uniform distribution. Ano-
ther different approach rejects dynamic concepts associated to avatars like AOI, aura
or locale [18]. Although this approach provides a fast way of solving the partitioning
problem, the performance of the static partitioning is quite low when avatars show a
clustered distribution. In this case, the servers controlling the areas of the clusters are
overloaded, increasing the overall cost of the quality function.

The partitioning method proposed by Lui and Chan currently provides the best re-
sults for DVE systems. However, it uses an ad-hoc heuristic. We propose a comparative
study of several heuristics, ranging over most of the current taxonomy of heuristics, in
order to determine which one provides the best performance when applied to the par-
titioning problem. In this study we will follow the same approach of Lui-Chan: using
the same quality function, we will obtain an initial partition (assignment) of avatars to
servers, and then we will test the implementation of each heuristic to provide a near
optimal assignment.

3 Heuristic descriptions

In this section, we present five implementations of different heuristics for solving the
partitioning problem in DVE systems. Following the approach presented by Lui and
Chan [13] (and using the same quality function��), the idea is dynamically applying a
heuristic search method that provides a good assignment of clients to servers as the state
of the DVE system changes. In this section, we describe the implementation of each
heuristic search method and the tuning of its parameters for solving the partitioning
problem.



All of the implemented heuristics start from an initial partition (assignment) of avat-
ars. We tested several clustering algorithms for obtaining this initial partition. Although
they are not shown here due to space limitations, we obtained the best results for a
density-based algorithm (DBA) [5]. This algorithm divides the virtual 3D scene in
square sections. Each section is labeled with the number of avatars that it contains (��),
and all the sections are sorted (using Quick-sort algorithm) by their�� value. The first
� sections in the sorted list are then selected and assigned to a given server, where� is
the number of servers in the DVE system. That is, all the avatars in a selected region are
assigned to a single server. The next step consists of computing the mass-center (��)
of the avatars assigned to each server. Using a round-robin scheme, the algorithm then
chooses the closest free avatar to the�� of each server, assigning that avatar to that ser-
ver, until all avatars are assigned. Since the assignment of avatars follows a round-robin
scheme, this algorithm provides a good balancing of the computing workload (the num-
ber of avatars assigned to each server does not differ in more than one). On other hand,
avatars that are grouped in a small region and close to the mass-center of a server will be
assigned to that server by the density-based algorithm. However, since these avatars are
located so closely, they will probably will share the same AOI. Therefore, the density-
based algorithm also provides an initial partition with low inter-server communication
requirements for those avatars.

However, the assignment of avatars equidistant or located far away from the mass-
centers is critical for obtaining a partition with minimum inter-server communication
requirements (minimum values of the quality function� �), particularly for large virtual
worlds with only a few servers. Density-based algorithm inherently provides good assi-
gnments for clustered avatars, but it does not properly focus on the assignment of these
critical avatars. Each of the following heuristic methods should be used at this point to
search a near optimal assignment that properly re-assigns these avatars.

Simulated Annealing (SA) This heuristic search method is based on a thermodyna-
mic theory establishing that the minimum energy state in a system can be found if the
temperature decreasing is performed slowly enough. Simulated Annealing (SA) is a
heuristic search method that always accepts better solutions than the current solutions,
and also accepts worse solutions according to a probability system based on the system
temperature.

SA starts with a high system temperature (a high probability of accepting a wor-
sening movement), and in each iteration system temperature is decreased. Thus, SA
can leave local minima by accepting worsening movements at intermediate stages. The
search method ends when system temperature is so low that worsening movements are
practically impossible. Since the method cannot leave local minima, it can not find
better solutions, neither (the algorithm ends when certain amount of iterations	 are
performed without finding better solutions).

Each iteration consists of randomly select two different critical avatars assigned to
different servers. Then, the servers that two critical avatars are assigned to are exchan-
ged. If the resulting value of the quality function� � is higher than the previous one
plus a threshold
 , that change is rejected. Otherwise, it is accepted (the search method
must decrease the value of the quality function�� associated with each assignment).



The threshold
 used in each iteration� of the search depends on the rate of temperature
decreasing�, and it is defined as


 � ��

�
�� �

	

�
(2)

where	 determines the finishing condition of the search. When	 iterations are
performed without decreasing the quality function� �, then the search finishes.

As literature shows [10], the two key issues for properly tuning this heuristic search
method are the number of iterations	 and the temperature decreasing rate�. Alt-
hough they are not shown here due to space limitations, we obtained the best results for
SA method with	=3000 iterations. Performing more iterations increased the required
execution times and it did not provide better values of��. Regarding to the rate of
temperature decreasing, it did not have an effect on the required execution time of the
algorithm. However, we obtained the best�� values with�=1.25.

Random Search (RS) We have also implemented a simpler heuristic based on SA.
We have denoted it as random search (RS), and it consists of the SA method when
eliminating the system temperature. That is, in each iteration the threshold
 is not
considered, and if the resulting�� is higher than the current minimum value, then that
change is simply rejected. In this case, the only parameter to be tuned is the number of
iterations	 that determines the finishing condition. As in the SA case, the best results
were obtained for	 = 3000 iterations.

Ant Colony System (ACS) This heuristic search method is derived from the behavior
of ant colonies when searching for food [4]. Each ant adds an hormone calledphero-
mone to the path she follows, and the ants behind her will select their path depending
on the pheromone each path contains (positive feedback). On other hand, pheromone
evaporates at a given rate. Therefore, the associated pheromone for every path decreases
if that path is not used during certain period of time (negative feedback). Evaporation
rate determine the ability of the system for escaping from local minima.

The first step in the ACS method is to select the subset of border avatars from the
set of all the avatars in the system. A given avatar is selected as a border avatar if it is
assigned to a certain server� in the initial partition and any of the avatars in its AOI is
assigned to a server different from�. For each of the border avatars, a list of candidate
servers is constructed, and a certain level of pheromone is associated to all the elements
in the list. This list contains all of the different servers that the avatars in the same AOI
are assigned to (including the server that the avatar is currently assigned).

ACS method consists of a population ofants. Each ant consists of performing a
search through the solutions space, providing a given assignment of the border avatars
to servers. The number of ants	 is a key parameter of the ACS method that should
be tuned for a good performance of the algorithm. Each iteration of the ACS method
consists of computing	 different ants (assignments of the border avatars). When
each ant is completed, if the resulting assignment of the border avatars produces a
lower value of the quality function��, then this assignment is considered as a partial
solution, and a certain amount of pheromone is added to the servers that the border



avatars are assigned to in this assignment (each ant adds pheromone to the search path
she follows). Otherwise, the ant (assignment) is discarded. When each iteration finishes
(the	 ants have been computed), the pheromone level is then equally decreased in
all the candidate servers of all of the border avatars, according to the evaporation rate
(the pheromone evaporates at a given rate). ACS method finishes when all the iterations
have been performed.

In the process described above, each ant must assign each border avatar to one of
the candidate servers for that avatar. Thus, aselection value is computed for each of the
candidate servers. The selection value�� is defined as

�� � �� ��������� � � � �� (3)

where��������� is the current pheromone level associated to that server,� � is
the resulting value of the quality function when the border avatar is assigned to that
server instead of the current server, and� and� are weighting coefficients that must
be also tuned. The server with the highest selection value will be chosen by that ant for
that border avatar.

On other hand, when a partial solution is found then the pheromone level must be
increased in those servers where the border avatars are assigned to in that solution. The
pheromone level is increased using the following formula:

��������� � ��������� � ��
�

��
(4)

We have performed empirical studies in order to obtain the best values for�, � and
� coefficients. Although the results are not shown here due to space limitations, we
have obtained the best behavior of the ACS method for� � ���, � � ��� and� �

����. Additionally, we have tuned the values for the number of ants	 , the pheromone
evaporation rate and the number of iterations that ACS method must perform to obtain a
near optimal partition. We obtained the best results for	=25 iterations, an evaporation
rate of 1% and a population of 100 ants.

Genetic Algorithms (GA) This heuristic consists of a search method based on the con-
cept of evolution by natural selection [8]. GA starts of an initial population (the initial
partition) and then it evolves a certain number ofgenerations (iterations), providing an
evolved population (final solution).

The proposed implementation for solving the partitioning problem starts with a po-
pulation composed of a set of elements calledgenomes or chromosomes. The number of
chromosomes is the number of partial solutions that each iteration must provide. Each
chromosome is defined by a descriptor vector containing a given assignment of avatars
to servers.

Starting from the initial population, each generation (iteration) is found by exchan-
ging some elements of the population, in such a way that in each of the	 chromosomes
two border avatars assigned to different servers are randomly chosen and exchanged.
Thus, an iteration performed on a population of	 chromosomes will produce a new
population of�	 . From these�	 chromosomes, the	 elements with the lower value
of �� will be chosen.



GA is also capable of escaping from local minima due to themutation process. In
each iteration, a mutation consists of randomly changing the server assigned to one of
the elements (chromosomes) of the population.

The main parameters to be tuned in GA search method are the population size� ,
the number of iterations	 and the mutation rate� . Although they are not shown here
due to space limitations, we obtained the best results for�=15 individuals,	= 300
iterations and�= 1%.

Greedy Randomized Adaptive Search (GRASP) This search method is a construc-
tive technique designed as a multi-start heuristic for combinatorial problems [6]. In this
case, the initial partition does not provide any assignment for the border avatars, and
the GRASP method is used to make these assignments.

Each iteration consists of two steps: construction and local search. The construction
phase builds a feasible solution choosing one border avatar by iteration, and the local
search also provides a server allocation for the AOI of that border avatar in the same
iteration, following the next procedure: First, the resulting cost� � of adding each non-
assigned border avatar to the current (initial) partition is computed. Since each border
avatar can be assigned to different servers, the cost for assigning each border avatar
to each server is computed, forming thelist of candidates (LC) (each element in this
list has the form (non-assigned border avatar, server, resulting cost). This list is sorted
(using Quick-sort algorithm) by the resulting cost�� in descendent order, and then is
reduced to its top quartile. One element of this reduced list of candidates (RLC) is then
randomly chosen (construction phase). Next, an extensive search is performed in the
AOI of that selected avatar. That is, all the possible assignments of the avatars in the
AOI of the selected avatars are computed, and the assignment with the lowest� � is
kept.

The quality of the solution provided by GRASP search method depends on the
quality of the elements in the RLC, and the range of solutions depends on the length
of the RLC. Thus, the main parameter to be tuned in this case is the number ofnon-
assigned avatars 	 that the initial partition must leave. Although they are not shown
here due to space limitations, we obtained the best performance for	=5 in the case of
small virtual worlds and	=20 in the case of large virtual worlds (a detailed description
of both a small and also a large virtual world is shown in the next section).

4 Performance Evaluation

In this section, we present the performance evaluation of the heuristics described in
the previous section when they are used for solving the partitioning problem in DVE
systems. Following the evaluation methodology shown in [13], we have empirically
tested these heuristics in two examples of a DVE system: a small world, composed by
13 avatars and 3 servers, and a large world, composed by 2500 avatars and 8 servers. We
have considered two parameters: the value of the quality function� � for the partition
provided by the search method and also the computational cost, in terms of execution
time, required by the search method in order to provide that partition. For comparison
purposes, we have also implemented thelinear optimization technique (LOT) [13]. This



method currently provides the best results for the partitioning problem in DVE systems.
In the case of small worlds we have also performed an exhaustive search through the
solution space, obtaining the best partition as possible. The hardware platform used for
the evaluation has been a 1.7 GHz Pentium IV with 256 Mbytes of RAM.

Since the performance of the heuristic search methods may heavily depend on the
location of the avatars, we have considered three different distributions of avatars: uni-
form, skewed, and clustered distribution. Figure 1 shows the 2D spatial location of
avatars in each of these distributions.

Fig. 1. Different avatar distributions in a DVE: (a) uniform, (b) skewed, and c) clustered

Table 1 shows the�� values corresponding to the final partitions provided by each
heuristic search method for a small virtual world, as well as the execution times requi-
red for each heuristic search method to obtain that final partition. It can be seen that
all of the heuristics provide better (lower)�� values than the LOT search method for
a uniform distribution of avatars. For the skewed and clustered distributions, most of
the heuristics also provides better�� values than the LOT search method, and some
of them (GA and SA methods) even provide the minimum value. However, the execu-
tion times required by most of the heuristics are longer than the ones required by the
LOT method. Only GRASP method provides worse�� values than the LOT method,
but it requires much shorter execution times. Although these results does not clearly
show which heuristic provides the best performance, they validate any of the proposed
heuristics as an alternative to the LOT search method.

Uniform distrib. Skewed distrib. Clustered distrib.
Time (s.) �� Time (s.) �� Time (s.) ��

Exhaustive search 3.411 6.54 3.843 7.04 4.783 7.91
Linear opt. method 0.0009 6.56 0.001 8.41 0.0011 8.89
Simul. Annealing 0.004 6.82 0.005 7.46 0.005 7.91
Random Search 0.002 7.37 0.005 8.06 0.006 8.35

Ant Colony System 0.0007 6.59 0.003 7.61 0.0024 8.76
Genetic Algorithms 0.002 6.54 0.003 7.04 0.005 7.91

GRASP 0.0002 7.42 0.0002 8.63 0.0003 11.88

Table 1. Results for a small DVE system



However, in order to design a scalable DVE system the partitioning method must
provide good performance when the number of avatars in the system increases. That is,
it must provide a good performance specially for large virtual worlds. Table 2 shows
the required execution times and the�� values obtained by each heuristic search for a
large virtual world. In this case, all of the heuristics provides similar values of� � than
the LOT heuristic for the uniform distribution, while requiring much shorter execution
times. When non-uniform distributions of avatars are considered, then all of the heuri-
stics provide much better�� values than the LOT method and they also require much
shorter execution times than the LOT method. In particular, ACS method provides the
best�� values for the non-uniform distributions, requiring also the shortest execution
time in the case of a clustered distribution.

Uniform distrib. Skewed distrib. Clustered distrib.
Time (s.) �� Time (s.) �� Time (s.) ��

Linear opt. method 30.939 1637.04 32.176 3460.52 43.314 5903.80
Simul. Annealing 6.35 1707.62 13.789 2628.46 29.62 4697.61
Random Search 8.90 1687.55 13.826 2685.62 28.792 4676.22

Ant Colony System 5.484 1674.08 14.05 2286.16 23.213 3736.69
Genetic Algorithms 6.598 1832.21 14.593 2825.64 29.198 4905.93

GRASP 6.622 1879.76 13.535 2883.84 26.704 5306.24

Table 2. Results for a large DVE system

These results show that the performance of the partitioning algorithm can be signi-
ficantly improved by simply using any of the proposed heuristics instead of the LOT
method, thus increasing the scalability of DVE systems. In particular, ACS method pro-
vides the best performance as a partitioning algorithm.

5 Conclusions

In this paper, we have proposed a comparison study of modern heuristics for solving
the partitioning problem in DVE systems. This problem is the key issue that allows to
design scalable and efficient DVE systems. We have evaluated the implementation of
different heuristics, ranging over most of the current taxonomy of modern heuristics. We
have tested the proposed heuristics when applied for both small and large DVE systems,
with different distributions of the existing avatars in the system. We have compared
these results with the ones provided by the Linear Optimization Technique (LOT), the
partitioning method that currently provides the best solutions for DVE systems.

For small virtual worlds, we can conclude that in general terms any of the imple-
mented heuristics provides similar values of the quality function� �, but the execution
times required by the implemented heuristics are longer than the time required by the
LOT search method. Although SA and GA methods provide the minimum value of the
quality function, only GRASP method provides execution times shorter than the ones



required by the LOT method for all the avatar distributions. These results validates any
of the proposed heuristics as an alternative to the LOT search method when considering
small DVE systems. However, for large virtual worlds any of the proposed heuristics
provides better�� values and requires shorter execution times than the LOT method
for non-uniform distributions of avatars. In particular, ACS method provides the best
results. Since a scalable DVE system must be able to manage large amounts of avatars,
we can conclude that these results validates ACS search method as the best heuristic
method for solving the partitioning problem in DVE systems.

References

1. D.B.Anderson, J.W.Barrus, J.H.Howard, “Building multi-user interactive multimedia envi-
ronments at MERL”, inIEEE Multimedia, 2(4), pp.77-82, Winter 1995.

2. P. Barham, T.Paul, “Exploiting Reality with Multicast Groups”, inIEEE Computer Graphics
& Applications, pp.38-45, September 1995.

3. H. Delmaire, J.A. D´ıaz, E. Fern´andez, and M. Ortega, “Comparing new heuristics for the
pure integer capacitated plant location problem”, Technical Report DR97/10, Department of
Statistics and Operations Research, Universitat Politecnica de Catalunya, Spain, 1997.

4. M. Dorigo and L. Gambardella, “Ant colony system: A Cooperative Learning Approach to
the Traveling Salesman Problem”, inIEEE Trans. Evolut. Comput. ,1997.

5. R.Duda, P.Hart, D.Stork, “Pattern Classification”,Ed.Wiley Intescience, 2000, pp. 567-580.
6. Thomas A. Feo, Mauricio G.C, “Greedy Randomized Adaptive Search Procedures”,Resende

Journal of Global Optimization, 1995.
7. M. Fernández, I. Coma, G. Mart´ın and S. Bayarri, “An Architecture for Optimal Management

of the Traffic Simulation Complexity in a Driving Simulator”,Lecture Notes in Control and
Information Sciences, Springer-Verlag, Vol. 243, 1999. ISBN 1-85233-123-2.

8. Randy L. Haupt, Sue Ellen Haupt, “Practical Genetic Algorithms”,Ed. Willey, 1997.
9. J.C.Hu, I.Pyarali, D.C.Schmidt, “Measuring the Impact of Event Dispatching and Concur-

rency Models on Web Server Performance Over High-Speed Networks”,Proc. of the 2nd.
IEEE Global Internet Conference, November.1997.

10. P.V. Laarhoven and E. Aarts, “Simulated annealing: Theory and applications”,Reidel Pub.,
Dordrecht, Holland, 1987.

11. Michael Lewis and Jeffrey Jacboson, “Game Engines in Scientific Research”, inCommuni-
cations of the ACM, Vol 45. No.1, January 2002.

12. John C.S. Lui, M.F.Chan, Oldfield K.Y, “Dynamic Partitioning for a Distributed Virtual En-
vironment”,Department of Computer Science, Chinese University of Hong Kong, 1998.

13. Jonh C.S. Lui, M.F. Chan, “An Efficient Partitioning Algorithm for Distributed Virtual Envi-
ronment Systems”,IEEE Trans. Parallel and Distributed Systems, Vol. 13, March 2002

14. D.C.Miller, J.A. Thorpe, “SIMNET: The advent of simulator networking”, inProceedings of
the IEEE, 83(8), pp. 1114-1123. August, 1995.

15. Tohei Nitta, Kazuhiro Fujita, Sachio Cono, “An Application Of Distributed Virtual Environ-
ment To Foreign Language”, inIEEE Education Society, October 2000.

16. J.M.Salles Dias, Ricardo Galli, A. C. Almeida et al. “mWorld: A Multiuser 3D Virtual Envi-
ronment”, inIEEE Computer Graphics, Vol. 17, No. 2, March-April 1997.

17. S.Singhal, and M.Zyda, “Networked Virtual Environments”,ACM Press, New York, 1999.
18. P.T.Tam, “Communication Cost Optimization and Analysis in Distributed Virtual Environ-

ment”, M. Phil second term paper, Technical report RM1026-TR98-0412. Department of
Computer Science & Engineering.The Chinese University of Hong Kong. 1998.


