
A Scalable Synchronization Technique for Distributed Virtual Environments
Based on Networked-Server Architectures∗

P. Morillo, J.M. Orduña
Departamento de Informática

Universidad de Valencia
SPAIN

Email: juan.orduna@uv.es

J. Duato
DISCA

Universidad Politécnica de Valencia
SPAIN

Email: jduato@gap.upv.es

Abstract

In recent years, large scale distributed virtual environ-
ments have become a major trend in distributed appli-
cations, mainly due to the enormous popularity of multi-
player online games in the entertainment industry. Thus,
scalability has become an essential issue for these highly
interactive systems. In this paper, we propose a new syn-
chronization technique for those distributed virtual envi-
ronments that are based on networked-server architectures.
Unlike other methods described in the literature, the pro-
posed technique takes into account the updating messages
exchanged by avatars, thus releasing the servers from up-
dating the location of such avatars when synchronizing the
state of the system. As a result, the communications requi-
red for synchronization are greatly reduced, and this me-
thod results more scalable. Also, these communications are
distributed along the whole synchronization period, in order
to reduce workload peaks. Performance evaluation results
show that the proposed approach significantly reduces the
percentage of CPU utilization in the servers when compared
with other existing methods, therefore supporting a higher
number of avatars. Additionally, the system response time
is reduced accordingly.

1. Introduction

In recent years, large scale distributed virtual environ-
ments (DVEs) have become a major trend in distributed ap-
plications, mainly due to the enormous popularity of multi-
player online games in the entertainment industry. These hi-
ghly interactive systems simulate a 3-D virtual world where
multiple users share the same scenario. Each user is re-
presented in the shared virtual environment by an entity

∗This paper is supported by the Spanish MEC under Grant TIC2003-
08154-C06-04

called avatar, whose state is controlled by the user through
a client computer. The system renders the images of the vir-
tual world that each user would see if he was located at that
point in the virtual environment. Hundreds and even thou-
sands of client computers can be simultaneously connected
to the DVE through different networks, and even through
Internet.

Architectures based on networked servers have been
during last years the major standard for DVE systems
[23, 13, 28, 14, 8]. In these architectures, the control of the
simulation relies on several interconnected servers. Client
computers are assigned to one of the servers in the system.
In these architectures, when a client computer modifies the
state (usually the position) of an avatar, it also sends an up-
dating message to its server, which in turn must propagate
this message to other servers and clients. However, servers
in the DVE system must schedule the sending of informa-
tion related to the geometry of the scene, perform positional
updates of avatars, and transfer control information among
different clients. Therefore, each new avatar represents an
increase not only in the computational requirements of the
application but also in the amount of network traffic. Due
to this increase, scalability is an essential issue when desi-
gning DVE systems based on networked-server architectu-
res, particularly if they should support multi-player online
games (MOGs). For example, when the number of connec-
ted clients increases, the number of update messages ex-
changed by avatars must be limited in order to avoid a mes-
sage outburst. In this sense, concepts like areas of influence
(AOI) [23], locales [1] or auras [9] have been proposed for
limiting the number of neighboring avatars that a given ava-
tar must communicate with. All these concepts define a nei-
ghborhood area for avatars, in such a way that a given client
computer controlling a given avatar i must notify all the mo-
vements of i (by sending an updating message) only to the
client computers that control the avatars located in the neig-
hborhood of avatar i. The avatars in the AOI of avatar i are



denoted as neighbor avatars of avatar i. Figure 1 shows an
example of a DVE system whose architecture is based on
networked servers. In this example, the AOI of each avatar
is represented as a circumference.

Figure 1. Example of a DVE based on networ-
ked servers

In order to provide scalability and allowing large scale
DVE systems, alternative schemes like peer-to-peer (P2P)
architectures have been proposed. Several online games ba-
sed on P2P architectures have been designed [17, 16, 6].
Nevertheless, P2P architectures must face the awareness
problem. This problem consists of ensuring that each avatar
is aware of all the avatars in its neighborhood [25]. Solving
the awareness problem is a necessary condition to provide
a consistent view of the environment to each participant.
Effectively, if two neighbor avatars are not aware of such
neighborhood, they will not exchange messages about their
movements and/or changes, and therefore they will not have
the same vision of the shared environment. Thus, providing
awareness to all the avatars is a necessary condition to pro-
vide consistency (as defined in [30, 4, 22, 24]). However, it
is not a sufficient condition. Even when using a awareness
method that determines at each moment which other ava-
tars must each avatar exchange messages with, time-space
inconsistencies can arise among different avatars because of
clock drifts and/or network delays [30]. Awareness is cru-
cial for MOGs, since otherwise abnormal situations could
happen. For example, a user provided with a non-coherent
view of the virtual world could be shooting something that
he can see although it is not actually there. Also, it could
happen that an avatar not provided with a coherent view is
killed by another avatar that it cannot see.

In networked-server DVEs, the awareness problem has
been efficiently solved by using a synchronization techni-
que [23]. It consists of the existing servers periodically ex-
changing information among them about the location of all
avatars. Each avatar reports about its movements (by sen-
ding a message) to the server where it is assigned to, and
the server can easily decide which avatars should be the de-

stinations of that message by using a criterion of distance.
However, the synchronization technique generates a signi-
ficant overhead, since all servers must report to the rest of
the servers about the location of avatars assigned to them.
If the synchronization technique could be implemented in a
more scalable way, DVE systems based on networked ser-
vers could support a larger number of avatars, improving
their scalability.

In this paper, we propose a new, scalable synchronization
technique for networked-server DVE systems. Unlike other
methods described in the literature, the proposed method ta-
kes into account the updating messages exchanged by ava-
tars, thus releasing the servers from updating the location
of such avatars at the moment of synchronizing the state of
the system. As a result, the communications required for
synchronizing the servers are greatly reduced, and this me-
thod results more scalable. Performance evaluation results
show that the proposed approach significantly reduces the
percentage of CPU utilization in the servers when compared
with other existing methods, therefore supporting a higher
number of avatars. Also, we propose to distribute the avatar
updates in different messages along the whole synchroniza-
tion period, in order to avoid instantaneous CPU saturations
of the servers in the system.

The rest of the paper is organized as follows: Section 2
analyzes the existing synchronization techniques for DVE
systems based on networked-server architectures. Section 3
describes the proposed technique and how it improves the
weaknesses of the existing proposals. Next, Section 4 pre-
sents the performance evaluation of the proposed method.
Finally, Section 5 presents some concluding remarks.

2. Background

One of the key issues in DVEs has been time-space-
consistency [30, 4, 22, 24]. Although providing a total
time-space consistency seems impossible due to the inhe-
rently distributed nature of DVEs, the awareness problem
[25] must be fully solved in order to warranty a coherent
ordering of events for avatars. The awareness problem can
be easily solved in DVE systems based on networked ser-
vers, provided that a synchronization technique allows all
the servers to exchange the information about the location
of those avatars assigned to them. Once each server knows
the location of all avatars, it can compute which neighbors
must each avatar exchange messages with (that is, it can
compute the awareness of each avatar).

Several different synchronization techniques and approa-
ches have been proposed for providing awareness in DVE
systems based on networked servers. Some of these pro-
posals are based on conservative algorithms [5, 6]. In this
kind of techniques, avatars are not allowed to advance their
simulation clock until all avatars have finished their com-

2



putations for the current time period. However, these con-
servative algorithms perform poorly in fast-paced games,
that are latency sensitive applications where frequent upda-
tes are important for avatars to achieve their goals. Other
synchronization techniques are based on optimistic algori-
thms [26, 27, 2]. In these techniques avatars can optimisti-
cally generate new events before they ensure that no earlier
events could arrive. However, when such situation occurs
then events must be backtracked until inconsistencies are re-
paired. Last years, different approaches using region-based
assignments of avatars to the existing servers have appea-
red [29, 21]. In these approaches, avatars are assigned to
the server managing the region of the virtual world where
these avatars are located. Therefore, a given server mana-
ging a given region knows the location of all the avatars in
this region, and it does not need to know the location of the
avatars located in the other regions. Avatars located near the
border between two regions must report to the servers con-
trolling both regions (shadow objects [29] or neighborhood
regions [21]). In this way, both servers can compute at every
moment the awareness of such avatars. Although these ap-
proaches do not need a synchronization technique, they lack
a proper workload balancing scheme that greatly limits the
throughput (the number of avatars that the system can si-
multaneously support while offering a reasonable response
time). Therefore, these systems provide limited scalability,
particularly when avatars move following non-uniform mo-
vement patterns [20, 18]. Therefore, region-based approa-
ches do not provide the scalability needed for online mul-
tiuser games.

3. A New Synchronization Technique

We propose a new synchronization technique for
networked-server DVE systems. In order to achieve a scala-
ble technique, both the communication and the computation
requirements of such method should be reduced. Therefore,
the idea is to take advantage of the messages exchanged by
avatars when moving to reduce the amount of information in
the messages generated by the synchronization technique.
Since the information in these messages must be processed
at a given time by a single server, less information means
less computation requirements. As next section shows, re-
ducing the amount of this information avoids momentary
saturations of the servers, as well as the impact of such sa-
turations on the whole system [19, 20].

The synchronization technique proposed in [23] consists
of each server periodically propagating to the rest of the ser-
vers the location updates of all the avatars assigned to that
server. Let s be the number of existing servers in the system
and a the number of existing avatars in the system. Every
T milliseconds, this synchronization technique generates N
updates, where

N = s
a

s
(s − 1) = a(s − 1)

Regardless of the format and encapsulation of such up-
dates in messages of different sizes, in order to improve the
scalability of the synchronization technique N must be re-
duced as much as possible.

In our synchronization technique the servers monitor all
the messages sent by any avatar and traversing them, and
they use these messages for updating the location of the sen-
ding avatars between the synchronization intervals. Each
server si maintains a counter associated to each avatar a
in the virtual world not assigned to si. This counter is set
to 0 at the beginning of the simulation and each time that
a message sent by a arrives or traverses si. The proposed
technique consists of the synchronization technique descri-
bed in [23], but now adding a process that wakes up every
Tc ms. and increments all the counters (Tc < T ). When
the interval T finishes, each server si only asks the other
servers to update (by sending back a message) the location
of those avatars whose associated counter in si is greater
than a greater value (MAXTICK). It is important to no-
tice that T must not be too high when tuning the values for
T , Tc and MAXTICK , in order to avoid time-space in-
consistencies. On other hand, Tc × MAXTICK must be
lower than T , in order to properly detect which are the ava-
tars whose information has not been updated. Additionally,
2 × Tc × MAXTICK must be greater than T , in order to
avoid the sending of duplicated messages to avatars whose
information is not updated. Taking into account these con-
ditions, the formula shown above becomes an upper limit in
the proposed method. The actual value for N will depend
on the number of avatars not assigned to si whose messages
traverses si.

Additionally, the proposed technique avoids the momen-
tary saturation of servers due to the processing of huge mes-
sages. Instead of each server sending a huge message to the
rest of the servers containing the location updates of all its
avatars, in our technique each server iteratively sends seve-
ral smaller messages with the location updates of different
avatars. This uniform distribution of messages over time
avoids momentary CPU saturations in any server, keeping
the response time to avatars within acceptable limits [20]
all the time.

4. Performance Evaluation

In this section, we present the performance evaluation of
the synchronization technique described above, evaluating
different DVE systems in order to measure the actual im-
provement that the proposed method can provide.

We propose the evaluation of generic DVE systems by
simulation. The evaluation methodology used is based on

3



the main standards for modeling collaborative virtual envi-
ronments, such as FIPA [3], DIS [10] and HLA [11]. We
have developed a simulation tool that models the behavior
of a generic DVE system composed of several interconnec-
ted servers, and we have performed experimental studies to
evaluate the performance of the proposed technique. Fol-
lowing the approach specified in FIPA and HLA standards,
one of the servers acts as the main server (called Agent
Name Service [3] or Federation Manager [11]) and mana-
ges the whole system. The main server also maintains a
partitioning file for assigning a given server to each new
avatar. In this way, once we set the network address and
the port number where the main server is listening, avatars
can join the simulation through this main server, that assi-
gns each new avatar to one of the servers in the system. At
this point, the new avatar must connect with the assigned
server in order to start the simulation.

In each simulation, all avatars sharing the same AOI
must communicate among themselves to communicate both
their position in the 3D virtual world and also any change in
the state of the elements in that AOI. For evaluation purpo-
ses, each client only simulates a given rate of avatar move-
ments through the virtual world, and assumes that no chan-
ges are produced in any element of the AOI. This simpli-
fying assumption reduces the system workload, but does
not change the behavior of the system. The message struc-
ture used for communicating avatar movements is the Ava-
tar Data Unit (ADU) specified by DIS [10]. A simulation
consists of each avatar performing 100 movements, at a rate
of one movement every 2 seconds. An iteration consists of
all the avatars performing one movement (that is, one itera-
tion is performed every two seconds). Each time an avatar
performs a movement, it (the client computer controlling
that avatar) communicates that movement to its server by
sending a message with a timestamp. That server must then
propagate that message to all the avatars (to the correspon-
ding client computers) in the same AOI of the sender avatar.
When that notification arrives to these avatars, they return
an ACK message to the sending avatar. When all the ACK
messages corresponding to a given message m arrives to
the sender avatar i of that message, then avatar i can com-
pute the average round-trip delay for message m. In this
way, clock skewing is avoided when computing system la-
tency (since an ACK message arrives at the client computer
that controls the sending avatar, the same clock is used for
both the initial and final timestamp). This is the main rea-
son for measuring round-trip delays instead of latencies in a
distributed system. When a simulation finishes, each avatar
can compute the average round-trip delay for all its messa-
ges. We denote this average value for a given avatar i as
asri, for the average system response for avatar i. Additio-
nally, we have implemented the synchronization technique
described in the previous section, in such a way that servers

also exchange messages. Since the simulation of a DVE
system can be considered as a stochastic procedures, each
numerical value in the tables shown in this section has been
computed as the average value of 100 different simulations
under identical conditions. The standard deviation of the
different values has not been higher than 20% of the value
shown in the table in any case.

In order to evaluate the performance of a DVE sy-
stem, usually three different avatar distributions in the vir-
tual world have been suggested in the literature: uniform,
skewed and clustered [12]. The reason for using different
distributions is that they generate a different workload. Fi-
gure 2 shows an example of these avatar distributions in
a 2-D virtual world. In this figure, the virtual world is a
square and avatars are represented as black dots. For all
the distributions, the movement pattern of avatars used in
the simulations has been Changing Circular Pattern (CCP)
[21]. CCP considers that all avatars in the virtual world
move randomly around the virtual scene following circular
trajectories. Therefore, when simulation finishes avatars are
located in the virtual world following the same distribution
they had at the beginning of the simulation.

Figure 2. Distributions of avatars in a 2-D vir-
tual world: a) Uniform b) Skewed c) Cluste-
red.

For comparison purposes, we have simulated the syn-
chronization technique proposed in the previous section,
and the synchronization technique proposed in [23]. In or-
der to measure the performance of the proposed technique
regardless of the message size (each message can contain
either the location updates of all the avatars assigned to a
server or only a portion of such updates), we have measured
the number of updates that servers have performed during a
simulation when using both awareness techniques. In all
the results shown in this section, we have denoted T 1 to the
synchronization technique proposed in [23], and T 2 to the
synchronization technique proposed in this paper. Accor-
ding to practical observations on the evaluated DVE system,
we have set the the T 2 parameters to the following values:
Tc = 750ms., T = 5000ms. and MAXTICK = 5.

Table 1 shows the number of updates performed in each
technique for the three considered distributions of avatars

4



in the virtual world, and for different DVE configurations.
Each column shows the number of updates for a different
distribution of avatars in the virtual world. The table con-
tains four subtables, one for each DVE configuration. In
each subtable, the first row shows the number of both ava-
tars and servers composing that configuration. The second
row shows the considered distributions of avatars in the vir-
tual world, and the last two rows show the number of upda-
tes obtained with each of the considered techniques.

Table 1. Number of updates performed by the
awareness methods

350 Avatars, 5 Servers
Uniform Skewed Clustered

T1 1400 1400 1400
T2 1144 794 914

600 Avatars, 5 Servers
Uniform Skewed Clustered

T1 2400 2400 2400
T2 2042 1282 1428

600 Avatars, 9 Servers
Uniform Skewed Clustered

T1 4800 4800 4800
T2 4125 2740 3381

900 Avatars, 9 Servers
Uniform Skewed Clustered

T1 7200 7200 7200
T2 6142 4070 4488

Table 1 shows that the synchronization technique pro-
posed in [23] requires the same number of updates for a
given DVE configuration, regardless of the distribution of
avatars in the virtual world. Effectively, the four rows for
the T 1 results show the same value in all the columns. The
reason for this behavior is that, since this method does not
use the updating messages exchanged by avatars between
two consecutive synchronization periods, it always genera-
tes the same number of updates (updates for all the avatars).
Thus, the number of updates in this technique exclusively
depends on the number of avatars in the DVE configuration.
On the contrary, the number of updates generated by T 2 te-
chnique significantly varies with the distribution of avatars
in the virtual world. Depending on the grouping of avatars
in the virtual world, a different number of updates are ex-
changed by avatars between synchronization periods (there
are more avatars in each AOI as more grouped they are).
Therefore, this technique provides different results for dif-
ferent distributions of avatars. Thus, T 2 technique provi-
des the best results for the skewed distribution of avatars,
and the worst ones for the uniform distribution of avatars.
Moreover, these results suggest that if non-uniform move-

ment patterns of avatars like Hot-Points-ALL (HPA) [7] or
Hot-Point-Near (HPN) [15] had been used, the performance
differences between the two considered techniques would
have been even greater, since in these patterns avatars tend
to head for certain ”hot points” of the virtual world (they
tend to group as the simulation proceeds). It can be clearly
seen that even for the worst case (uniform distribution of
avatars) T 2 technique generates a significantly lower num-
ber of updates.

Although the results shown in Table 1 show a good per-
formance of the proposed technique, it does not prove that
it can have an effect on the system response time offered to
the client computers. In order to prove that, we have simu-
lated different DVE configurations and we have measured
both the percentage of CPU utilization in each server and
the average system response time offered to avatars (as de-
fined in [20]). We have simulated the same four DVE confi-
gurations under the three distributions of avatars. However,
since the purpose of the proposed technique is to add sca-
lability to the DVE system, we only show below the results
for the two DVE configurations supporting more avatars per
server, for the sake of shortness.

Table 2 shows the results for the DVE configuration of
600 avatars and 5 servers. This table is composed of th-
ree subtables, one for each of the considered distributions
of avatars. In each subtable, the first four rows show the
average percentage CPU utilization of a given server in the
DVE system, and also the average system response (ASR)
in milliseconds for the avatars assigned to that server when
using both awareness techniques T 1 and T 2. The last row
in each sub-table shows the average values for the whole
DVE system.

Table 2 shows that for the uniform distribution of avatars
the workload generated in the simulation is relatively small,
and therefore the average CPU utilization is around 50%.
Even under these low workload conditions, the effects of
proposed technique are significative. However, the propo-
sed technique provides the best results for the other two di-
stributions (the ones generating the highest workload). Ef-
fectively, for the clustered distribution of avatars the pro-
posed technique is able to reduce the average value of the
ASR in a 10% with respect to the value obtained with T 1
technique. The reason for this improvement is that when the
DVE system is close to saturation (an average CPU utiliza-
tion of 91%) the CPU saving allowed by T 2 (less updates
in the synchronization technique mean a lower CPU work-
load, and therefore a lower CPU utilization) avoids reaching
saturation, reducing the average ASR accordingly [20].

In order to show the improvement that the proposed te-
chnique can achieve in a larger DVE configuration, Table 3
shows the results for a configuration of 900 avatars and 9
servers. Again, each row shows the results obtained in each
server and the last row shows the average results for all the

5



Table 2. Results for a medium-sized DVE
Uniform T1 T2

CPU % ASR CPU % ASR
S0 52 275 46 271
S1 48 239 40 261
S2 53 295 49 258
S3 50 261 51 256
S4 51 264 39 231
Av. 51 267 45 255

Skewed T1 T2
CPU % ASR CPU % ASR

S0 80 331 68 306
S1 84 338 72 284
S2 86 320 75 321
S3 79 327 66 345
S4 88 279 71 237
Av. 83 319 70 298

Clustered T1 T2
CPU % ASR CPU % ASR

S0 91 312 71 308
S1 98 406 68 351
S2 88 317 82 290
S3 90 321 70 261
S4 86 341 66 308
Av. 91 339 71 303

servers. These results shows that the proposed technique
can achieve the best performance improvements for the di-
stributions of avatars generating the highest workload, since
in these cases the proposed technique helps to avoid the sy-
stem saturation. Concretely, for the case of the clustered
distribution T 2 technique manage to reduce the percentage
of CPU utilization from 89% to 72%, and it reduces the ave-
rage ASR from 336 to 283. That is, T 2 technique reduces
the CPU utilization, becoming more scalable than T 1 te-
chnique (supporting more avatars without reaching system
saturation) and providing lower latencies than T 1 technique
accordingly.

When comparing Table 2 and Table 3 we can see that the
larger performance differences between T 1 and T 2 techni-
ques are obtained for the DVE configuration of 900 avatars
and 5 servers. Therefore, these results suggest that the lar-
ger the DVE system is, the larger performance improvement
provides the proposed technique. That is, they suggest that
the proposed technique properly scales with the size of the
DVE system, validating it as a scalable synchronization te-
chnique for DVE systems based on networked server archi-
tectures.

Additionally, we have measured the effect of distributing
the updates generated by the synchronization technique in a
uniform way. Concretely, we have sent a message for each
avatar update. However, we have uniformly distributed the

Table 3. Results for a large DVE
Uniform T1 T2

CPU % ASR CPU % ASR
S0 48 284 51 245
S1 54 246 49 256
S2 56 261 36 236
S3 53 238 42 210
S4 46 248 38 281
S5 42 260 40 253
S6 50 239 44 237
S7 48 258 33 249
S8 48 298 39 217
Av. 49 259 41 236

Skewed T1 T2
CPU % ASR CPU % ASR

S0 79 331 76 298
S1 81 325 75 305
S2 85 309 59 261
S3 86 387 65 253
S4 77 368 66 259
S5 75 296 70 261
S6 85 274 66 294
S7 80 254 59 284
S8 84 265 72 321
Av. 81 312 68 281

Clustered T1 T2
CPU % ASR CPU % ASR

S0 90 312 82 317
S1 95 321 86 301
S2 88 299 66 274
S3 86 335 63 261
S4 94 421 71 291
S5 92 396 66 269
S6 88 331 69 274
S7 84 299 86 256
S8 86 312 61 306

Av. 89 336 72 283

sending of these messages along the synchronization period
T . In this way, we have eliminated workload peaks due to
the synchronization technique. Figures 3 and 4 show the
results (in term of instantaneous percentage of CPU utiliza-
tion) for a given server (S0), although the results for the rest
of the servers were very similar. These results correspond
to a DVE configuration of 900 avatars and 9 servers when
using T 1 technique. That is, each server must process 800
avatar updates in each synchronization period (5000 ms.).
Concretely, Figure 3 shows the CPU utilization along the
simulation time when all servers send their updates encap-
sulated in a single message to the rest of the servers. Fi-
gure 4 shows the CPU utilization when servers uniformly
distribute their updates in different, short messages along
the whole synchronization period.

6



Figure 3. Instantaneous CPU utilization when
grouping updates in a single message

Figure 3 shows that the CPU utilization alternates pe-
riods of saturation with periods of relatively low load. The
saturation periods are due to the simultaneous processing of
several, huge messages from the rest of the servers. These
messages contain the updates of all the avatars assigned to
each server (we are considering T 1 technique in both figu-
res). Since all the servers send their messages at the be-
ginning of the synchronization period, the receiving of such
messages also overlaps in time. This overlapping produces
the periodical, instantaneous saturations (utilization peaks)
shown in Figure 3.

Figure 4. Instantaneous CPU utilization when
distributing updates in different messages

Figure 4 also shows a plot with a sawtooth shape. Howe-
ver, the peaks in this plot only reach a percentage of CPU

utilization around 75%. That is, the servers do not reach
saturation at any time. Therefore, these results show how
the same workload supported by servers can be easily made
uniform if each avatar update is encapsulated in a single,
short message, and these messages are distributed along the
synchronization period. Since this temporal distributions of
messages can totally avoid the CPU saturation periods, it
can provide significant reductions in the response time pro-
vided to avatars [20].

It could be thought that the sparse sending of the diffe-
rent updates could have a negative effect on the graphical re-
presentation of those avatars whose updates are sent in last
places. However, this potential effect can be easily avoided
by sending the updates in the same order during subsequent
synchronization periods. In this way, the negative effects
of this temporal distribution are limited to the first synchro-
nization period, and the same T period is provided for all
avatars in subsequent periods.

5. Conclusions

In this paper, we have proposed a scalable synchroniza-
tion technique for networked-servers DVE systems. Unlike
the currently existing techniques, the proposed method ta-
kes into account the updating messages exchanged by ava-
tars, thus releasing the servers from updating the location
of such avatars when synchronizing the state of the system.
As a result, the communications required for synchroniza-
tion are greatly reduced.

Performance evaluation results show that the proposed
technique significantly reduces the number of avatar upda-
tes in regard to similar existing techniques. Moreover, the
results shows that the proposed technique provides larger
reductions when avatars move following non-uniform mo-
vement patterns, becoming more efficient as the workload
generated by avatars increases.

Results also show that the reduction in the number of
updates has a significant effect on the CPU utilization of
the servers in the system, in such a way that a DVE sy-
stem using the proposed technique supports more avatars
and provides lower latencies than the same DVE system
using the existing techniques. The performance improve-
ment achieved by the proposed technique increases as the
greater workload is generated by avatars, since it proportio-
nal reduces the number of updates. Therefore, these results
validate the proposed technique as a scalable one.

Additionally, we have proposed the encapsulation of
each avatar update in single message, and the temporal di-
stribution of such messages along the whole synchroniza-
tion period. Such distribution makes uniform the workload
generated by the synchronization technique, therefore avoi-
ding instantaneous saturations of the server CPU(s) and re-
ducing system latency accordingly.

7



References

[1] D. Anderson, J. Barrus, and J. Howard. Building multi-user
interactive multimedia environments at merl. IEEE Multi-
media, 2(4), 1995.

[2] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An effi-
cient synchronization mechanism for mirrored game archi-
tectures. Kluwer Multimedia Tools and Applications, 23(1),
2004.

[3] FIPA. Fipa agent management specification, 2000. Availa-
ble at http://www.fipa.org/specs/fipa00023/.

[4] R. M. Fujimoto and R. Weatherly. Time management in the
dod high level architecture. In Proceedings tenth Workshop
on Parallel and Distributed Simulation, pages 60–67, 1996.

[5] T. Funkhouser. Network topologies for scalable multi-user
virtual environments. In Proc. IEEE Virtual Reality Annual
International Symposium, pages 222–228, 1996.

[6] L. Gautier and C. Diot. Design and evaluation of mimaze, a
multi-player game on the internet. In Proceedings of IEEE
Multimedia Systems Conference, 1998.

[7] C. Greenhalgh. Analysing movement and world transitions
in virtual reality tele-conferencing. In European Conference
on Computer Supported Cooperative Work (ECSCW 97),
page 313, 1997.

[8] C. Greenhalgh, A. Bullock, E. Fr¿on, D. Llyod, and
A. Steed. Making networked virtual environments
work. Presence: Teleoperators and Virtual Environments,
10(2):142–159, 2001.

[9] F. C. Greenhlagh. Awareness-based communication mana-
gement in massive systems. Distributed Systems Enginee-
ring, 5(3):129, 1998.

[10] IEEE. 1278.1 IEEE Standard for Distributed Interactive
Simulation-Application Protocols (ANSI), 1997.

[11] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Compu-
ter Simulation Systems: An Introduction to the High Level
Architecture. Prentice-Hall PTR, 1999.

[12] J. C. Lui and M. Chan. An efficient partitioning algorithm
for distributed virtual environment systems. IEEE Trans.
Parallel and Distributed Systems, 13, 2002.

[13] J. C. Lui, M. Chan, and K. Oldfield. Dynamic partitioning
for a distributed virtual environment. Technical report, De-
partment of Computer Science. Chinese University of Hong
Kong, 1998.

[14] M. R. Macedonia. A taxonomy for networked virtual envi-
ronments. IEEE Multimedia, 4(1):48–56, 1997.

[15] M. Matijasevic, K. P. Valavanis, D. Gracanin, and I. Lovrek.
Application of a multi-user distributed virtual environment
framework to mobile robot teleoperation over the internet.
Machine Intelligence & Robotic Control, 1(1):11–26, 1999.

[16] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. Technical report, Technical Report HPL-2002-
57, HP Laboratories, Palo Alto, 2002.

[17] S. Mooney and B. Games. Battlezone: Official Strategy
Guide. BradyGame Publisher, 1998.

[18] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. A
fine-grain method for solving the partitioning problem in
distributed virtual environment systems. In Proc. of Intl.
Conf. on Parallel and Distributed Computing and Systems

(PDCS’04), pages 292–297. IASTED, ACTA Press, 2004.
Best paper award in the area of load balancing.

[19] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato.
On the characterization of distributed virtual environment
systems. In Euro-Par’ 2003 - Lecture Notes in Compu-
ter Science 2790, pages 1190–1198. ACM, Springer-Verlag,
2003.

[20] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. Im-
proving the performance of distributed virtual environment
systems. IEEE Transactions on Parallel and Distributed Sy-
stems, 16(7):637–649, 2005.

[21] B. Ng, A. Si, R. W. Lau, and F. W. Li. A multi-server ar-
chitecture for distributed virtual walkthrough. In VRST ’02:
Proceedings of the ACM symposium on Virtual reality sof-
tware and technology, pages 163–170, New York, NY, USA,
2002. ACM Press.

[22] D. Roberts and R. Wolff. Controlling consistency within
collaborative virtual environments. In Proceedings of IEEE
Symposium on Distributed Simulation and Real-Time Appli-
cations (DSRT’04), pages 46–52, 2004.

[23] S. Singhal and M. Zyda. Networked Virtual Environments.
ACM Press, 1999.

[24] J. Smed, T. Kaukoranta, and H. Hakonen. A review on ne-
tworking and multiplayer computer games. Technical re-
port, Turku Centre for Computer Science. Tech Report 454.,
2002.

[25] R. B. Smith, R. Hixon, and B. Horan. Collaborative Vir-
tual Environments, chapter Supporting Flexible Roles in a
Shared Space. Springer-Verlag, 2001.

[26] J. S. Steinman, R. Bagrodia, and D. Jeerson. Breathign time
warp. In Proceedings of Workshop on Parallel and Distri-
buted Simulation, pages 109–118, 1993.

[27] J. S. Steinman, J. W. Wallace, D. Davani, and D. Elizan-
dro. Scalable distributed military simulation using the spee-
des object-oriented simulation framework. In Proceedings
of Object-Oriented Simulation Conference (OOS’98), pages
3–23, 1998.

[28] P. Tam. Communication cost optimization and analysis in di-
stributed virtual environment. Technical report, Department
of Computer Science. Chinese University of Hong Kong,
1998.

[29] J. yao Huang, Y. chang Du, and C.-M. Wang. Design of
the server cluster to support avatar migration. In VR, pages
7–14, 2003.

[30] S. Zhou, W. Cai, B. Lee, and S. J. Turner. Time-space
consistency in large-scale distributed virtual environments.
ACM Transactions on Modeling and Computer Simulation,
14(1):31–47, 2004.

8


