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Abstract.  Emerging  applications  in  the  area  of  Emergency  Response  and 
Disaster  Management  are  increasingly  demanding  interactive  capabilities  to 
allow for the quick understanding of a critical situation, in particular in urban 
environments.  A key  component  of  these  interactive  simulations  is  how to 
recreate  the  behavior  of  a  crowd  in  real-  time  while  supporting  individual 
behaviors.  Crowds  can  often  be  unpredictable  and  present  mixed  behaviors 
such as panic or aggression, that can very rapidly change based on unexpected 
new elements introduced into the environment. We present preliminary research 
specifically  oriented  towards  the  simulation  of  large  crowds  for  emergency 
response and rescue planning situations. Our approach uses a highly scalable 
architecture  integrated  with  an  efficient  rendering  architecture  and  an 
immersive visualization environment for interaction. In this environment, users 
can  specify  complex  scenarios,  “plug-in”  crowd  behavior  algorithms,  and 
interactively steer  the simulation to analyze and evaluate  multiple “what  if” 
situations.

1   Introduction

In less than a decade, the world has experienced a significant series of both man-made 
and  natural  disasters  of  unprecedented  proportions,  causing  tremendous  losses  in 
terms of humans lives, as well as causing tremendous financial losses. The processes 
of responding, maintaining, and recovering from these disasters have made evident 
the strong needs to have better ways to train emergency responders,  as well as to 
develop,  analyze,  and evaluate new effective  approaches  to  incident  management. 
Most of these incidents require well-coordinated and well-planned actions among all 
the different forces of emergency response within severe time constraints.



Furthermore, most of these incidents involve the population of the area in distress, 
requiring that the responders and government officials understand the impact of their 
actions on that population. Therefore, the ability of simulate the behavior of a crowd 
under different situations: stress, panic, danger, evacuation, as well as the ability to 
visualize it in the context it is being evaluated in is critical to develop a strong set of 
tools for emergency response. We propose a highly scalable distributed architecture 
integrated  with  an  efficient  rendering  and  immersive  interactive  space  that  can 
support  large  crowds  with  behaviors  ranging  from  a  single  “mob  mentality”  to 
individualized behaviors  for  each  member  of  the  crowd.  The key element  of  our 
architecture  is  the  ability  of  handling  the  crowd  control  model  and  the  realistic 
simulation all integrated in a real-time environment.

2 Background

Training  emergency  responders  to  effectively manage  the  kinds  of  large-scale 
disasters  we  face today  needs  to  be  approached  through  advanced computer 
simulations, visualizations and interactive environments. Traditional real-life training 
through mock-ups and actors [20] cannot provide a close reproduction of the complex 
interrelations among response forces, local, state, and federal officials, volunteers, and 
the  affected  population.  The  scale  and  extent  of the  situation  lends  itself  to  the 
application of virtual  environments  and simulation. A critical  component of  these 
environments is the ability of  simulate large numbers of people within urban and 
transportation systems,  with both crowd behavior  as well  as  individual behaviors. 
However,  there  are  several conflicting  objectives  involved  in  the  real-time 
simulations of Emergency Reponses, especially when they are designed to study the 
behavior of citizens evacuating cities. On the one hand, this type of simulations must 
focus on rendering not only animated characters of humanoid appearance, but also the 
entire urban scenarios where they are located. On the other hand, these simulation 
systems should offer  a wide rich variety of group and autonomous behaviors and 
actions associated with pedestrians in urban environments such as wandering, fleeing, 
panic, etc.
 Crowd simulations have been used extensively in the entertainment industry to create 
realistic scenes containing large numbers of individuals. These techniques have been 
used to create crowd scenes in different movies, although the crowd models used in 
the  entertainment  industry  are  primarily  concerned  with  creating  visual  realism, 
without regard to enabling robust behavior at the level of individuals. While these 
systems can create strikingly beautiful images, the level of behavioral realism is too 
low to be used for our purposes, and the simulations are far from interactive.

One traditional method of crowd simulation involves the use of a modified particle 
system,  wherein  each  agent  is  represented  by  a  single  particle  whose  action  is 
determined  by  a  system  of  interaction  rules  [26].  This  system  is  well  suited  to 
animating large crowds;  however,  the interaction rules are generally  quite  simple, 
limiting the complexity of behavior at the level of individuals.

There  is  typically  a  trade-off  between  maximum  crowd  size  and  behavioral 
richness, as increasing either rapidly increases the computational complexity of the 
simulation. Many crowd models, which are designed to accommodate large crowds, 
do away with individual behavior and instead focus on collective behavior of a crowd. 



Crowds have  been divided  at  different  levels  in  order  to  attempt  to  decrease  the 
computational  complexity  of  simulations.  For  example,  the  ViCrowd system [19] 
divides  the  simulation  at  the  level  of  crowds,  groups,  and  individuals.  Modern 
variants  of  these  crowd-oriented  simulations  use  continuum  dynamics  to  reach 
interactive  simulation  speeds  for  thousands  of  characters  [32].  Although  these 
approaches  can  display  very  populated  and  interactive  scenes,  their  usability  for 
emergency response plans is questionable as the higher-level behaviors are not based 
on individual behavior.

There have been efforts on developing smaller- scale systems that provide support 
for  sufficiently  advanced  behavior.  Consideration  of  crowd  behavior  can  be 
incorporated into the design of buildings and public places [24], as well as be used to 
train emergency personnel in a variety of realistic environments, even the specific 
environment they will be working in. However, these models, although they provide a 
good  crowd  simulation  for  smaller  areas,  do  not  scale  well  when  hundreds  of 
thousands or even millions of characters are needed. For example, the United States 
military  already  uses  a  wide  variety  of  simulation  systems  for  training  [8,24], 
however, these simulations lack a satisfactory crowd models [22] that reflect both 
mob behavior and individual behaviors.

In the area of virtual environments, we have not yet fully explored effective ways 
to produce crowd simulations. Several efforts are driven by extending the particle 
system approach with different level of details [3,30] in order to reduce the rendering 
and computational  cost.  Although these  methods can handle  crowd dynamics  and 
display  populated  interactive scenes  (10000 virtual  humans),  they  are  not  able  to 
produce  complex  autonomous  behaviors  for  the  individual  virtual  humans.  Other 
approaches  focus  on  providing  efficient  and  autonomous  behaviors  to  crowd 
simulations  [4,9,21,23,27].  However,  they  are  based  on  a  centralized  system 
architecture, and they can only control a few hundreds of autonomous agents with 
different  skills  (pedestrians  with  navigation  and/or  social  behaviors  for 
urban/evacuation contexts).

Although some scalable, complex multi-agent systems have been proposed [31], 
most efforts focus on the software architecture, forgetting the underlying computer 
architecture and graphics system. As a result,  important features like inter-process 
communications,  workload balancing,  network latencies,  or  graphics optimizations 
are  not  taken  into  account.  When  we  are  considering  Emergency  Response 
simulations, we are looking at how to balance the cost of providing rich behaviors, 
rendering quality, and scalability in a fairly complex integrated system. This balance 
is strongly dependent on what we call system throughput, defined as the maximum 
number  of  characters  that  the  integrated  system can  handle  in  real  time  without 
reaching the saturation point.

In order to provide a high system throughput, we propose a distributed framework 
based on a hybrid architecture model. This framework consists of a networked-server 
distributed environment to manage the inter-awareness among the crowd members, 
and  among  the  crowd  and  the  environment.  In  addition,  in  order  to  support 
consistency and autonomous behaviors for each character, we propose a centralized 
software architecture. The results presented in later sections of the paper that were 
obtained  in  the  performance evaluation show that  this  architecture  can  efficiently 
manage thousands of autonomous agents.



3  Architectures for Distributed Environments and Crowds

From  the  area  of  distributed  systems,  we  know  three  basic  architectures  are: 
centralized-server  architectures  [25,33],  networked-server  architectures [12,13] and 
peer-to-peer architectures [15]. Figure 1(top-left), shows an example of a centralized- 
server architecture. In the context of crowd simulation, we can consider the virtual 
world as a plane and the avatars as dots in the plane. In this architecture there is only 
a single server and all the client computers are connected to this server. The server 
has a complete image of the world and all the avatars, and the clients simply report 
the local changes to the server. In this way, everything is easily synchronized and 
controlled. However, the centralized server limits the scalability of the system.

Fig. 1. Architectures for supporting DVE systems.

Figure  1(right)  shows  an  example  of  a  networked-server  architecture.  In  this 
scheme, there are several servers and each client is exclusively connected to one of 
these servers. Again, in the context of crowd simulation, this can be thought of as the 
large  virtual  space  being  partitioned  across  several  servers  and  the  clients  are 
distributed according to the avatars that are populating each one of the areas. This 
scheme is more distributed than the client-server scheme, and since there are several 
servers, it considerably improves the scalability compared to the client-server scheme. 
Figure  1  (bottom-left)  shows  an  example  of  a  peer-to-peer  architecture.  In  this 
scheme, each client computer is also a server. This scheme provides the highest level 
of  load  distribution.  Although  the  earlier  distributed  architectures  were  based  on 
centralized architectures, during the last few years architectures based on networked 
servers have been the main standard for distributed systems. However, in problems 
related  to  crowd  simulation,  each  new  avatar  introduced  in  a  distributed  system 
represents an increase not only in the computational requirements of the application 
but also in the amount of network traffic [16,17]. Due to this increase, networked-
server architectures struggle to scale with the number of clients, particularly for the 
case  of  MMOGs  [1],  due  to  the  high  degree  of  interactivity  shown  by  these 
applications.  As a result,  Peer-to-Peer  (P2P) architectures  have been proposed for 
massively  multi-player  online  games  [7,15].  One  of  the  challenges  of  P2P 
architectures for crowd simulation is making avatars aware of other avatars in their 
surroundings [28]. Providing awareness to all the avatars is a necessary condition to 



provide time-space consistency. Awareness is crucial for our framework to maintain a 
coherent and consistent crowd model in the virtual space.

In a networked-server architectures, the awareness problem is easily solved by the 
existing servers,  since they periodically  synchronize their  state  and therefore they 
know the  location of  all  avatars  at  all  times.  Each  avatar  reports  its  changes (by 
sending a message) to the server that it is assigned to, and the server can easily decide 
which avatars should be the destinations of  that  message (by using a criterion of 
distance). There is no need for a method to determine the neighborhood of avatars, 
since servers know that neighborhood every instant.

4   Architecture for Crowd Simulation

From the discussion above it seems that the more physical servers the DVE relies on, 
the more scalable it is. On the contrary, features like the awareness and/or consistency 
are more difficult to be provided as the underlying architecture is more distributed 
(peer-to-peer architecture). Therefore, we propose a networked-server scheme as the 
computer system architecture for crowd simulation. On top of this networked-server 
architecture,  a  software  architecture  must  be  designed  to  manage  a  crowd  of 
autonomous agents. In order to easily maintain the coherence of the virtual world, a 
centralized  semantic  information  system  is  needed.  In  this  sense,  it  seems  very 
difficult to maintain the coherence of the semantic information system if it follows a 
peer-to-peer scheme, where hundred or even thousand of computers support each one 
a small number of actors and a copy of the semantic database. Therefore, on top of the 
networked-server computer system architecture, we propose the software architecture 
as shown in Figure 2. This architecture has been designed to distribute the agents of 
the  crowd in  different  server  computers  (the  networked-servers).  This  centralized 
software architecture is composed of two elements: the  Action Server (AS) and the 
Client Processes (CP). 

The Action Server. The Action Server corresponds to the Action Engine [10,11], 
and it can be viewed as the world manager, since it controls and properly modifies all 
the information the crowd can perceive. The Action Server is fully dedicated to verify 
and execute the actions required by the agents,  since they are the main source of 
changes in the virtual environment.   Additionally, another important parameter for 
interactive crowd simulations is the server main frequency. This parameter represents 
how fast the world can change. Ideally, in a fully reactive system all the agents send 
their action requests to the server, which processes them in a single cycle. In order to 
provide realistic effects, the server cycle must not be greater than the threshold used 
to provide quality of service to users in DVEs [6,18].  Therefore,  we have set the 
maximum server cycle to 250 ms.  Basically, the AS consists of two modules: the 
Semantic  Data  Base  and  the  Action  Execution  Module.  The  SDB represents  the 
global  knowledge  about  the  interactive  world  that  the  agents  should  be  able  to 
manage, and it contains the necessary functionalities to handle interactions between 
agents and objects. The semantic information managed can be symbolic (eg: object i 

free true, objecti on objectk,  ...) and numeric (eg: objecti position, objecti bounding 
volume, ..), since it has been designed to be useful for different types of agents. 



Fig. 2. The proposed software architecture

In order to manage the high number of changes produced, the AEM puts all the 
action effects in a vector (vUpdates) which reflects the local changes produced by 
each actuation (e.g.: an agent changes its position). Finally, when the server cycle has 
finished, this vector is sent to both, the clients and the SDB, which will update their 
correspondent environmental states (Figure 2).

The Clients. Each process in a client computer manages an independent group of 
autonomous agents (a subset of the crowd), and it is executed in a single computer as 
a  single  process.  This  process  has  an  interface for  receiving  and  updating  the 
information from the server, and a finite number of threads (each thread for an agent). 
Using this interface, a client initially connects to the Action Server and downloads a 
complete copy of the SDB. From that instant, agents can think locally and in parallel 
with the server, so they can asynchronously send their actions to the server, which 
will process them as efficiently as possible (since each agent is a process thread, it can 
separately access to the socket connected to the server). When a server cycle finishes 
(every 250 ms.), the accepted changes are submitted to all the clients interfaces, that 
will update their SDB copies. The proposed multi-threading approach is independent 
of the agent architecture (the AI formalism driving the agent behavior), that is out of 
the  scope  of  this  paper.  However,  the  proposed  action  scheme  guarantees  the 
awareness for all agents [28], since all the environmental changes are checked in a 
central  server  and  then  broadcasted  to  the  agents.  Although  time-space 
inconsistencies can appear due to agent asynchronies and network latencies, all these 
inconsistencies are kept below the limit of the server period.

A classical complex behavior required by many crowd systems is pathfinding (eg: 
evacuations). In our system, a Cellular Automata (CA) [2] is included as a part of the 
SDB, and each cell has precomputed the k-best paths of length l to achieve the exit 
cells. To calculate all the paths (k paths per cell; cell = 1m side square), we are using 
a variation of the A* algorithm. Our algorithm starts from each goal cell,  and by 
inundation,  we can select  the  k best  paths  that  arrive to  each cell.  This  let  us  to 



manage  large  environments  and  to  reduce  the  correspondent  memory  problems. 
Furthermore, the calculation of complete paths is not interesting generally, as agents 
can only evaluate the k-first steps before deciding its next cell.

During the simulation time, each agent can access to its cell and decide the next 
one according to this information, and the set of heuristics defined (eg: waiting time, 
path  congestion).  As  an  example,  Figure  4  shows  7  snapshots  captured  from  2 
different  simulations  of  the  system running  an  evacuation  with  8000 agents  in  a 
(200mx200m) area.  Both simulations start  from the same intial  state  (left),  which 
corresponds to a normal random distribution of the crowd. In the first case (Figure 
4a), we have placed 4 exits in each side of the simulated area, so the crowd try to 
escape through them. In the other case (figure 4b) there are 20 exit cells  located on 
the top of the maze, and we can easily recognize them by following the different 
crowd flows. The figure 4 also shows  both crowd situations at cycle 50,150 and 300, 
where several congestions has already produced due to the design of the environment 
(a maze with narrow doors). 

Fig. 4. Evacuation test with 8000 agents.

On other hand, it is important to ensure that the system can render good images of 
the virtual world in real time. Our architecture allows for the rendering processes to 
become one of the clients. In this way, all the information about the position and 
changes in each individual avatar is available to the rendering system in the same 
timeframe  as  it  is  available  to  the  computational  clients.  This  allows  us  for  the 
synchronized  rendering  of  the  crowd  as  well  as  to  apply  rendering  optimization 
approaches based on the viewpoint.

5   Performance Test

In order to evaluated actual performance, we have performed measurements on a real 
system with this architecture. Performance evaluation is based on wandering agents, 
since this type of agents is the one that generate the highest workload to the AS (they 
simply move). As cited previously, the AS cycle has been set to 250ms. First, we 



have focused on system throughput (the maximum number of agents that the system 
can efficiently support), which in our architecture is limited by the AS throughput. 
Concretely,  we  have  measured  the  AS  throughput  when  it  is  fully  dedicated  to 
collision detection tasks. The rationale of this test is to evaluate the number of actions 
that the server is able to carry out in a single cycle, since this could be a plausible 
bottleneck. When an action is requested by an agent, the server basically must access 
its cell and then it must compute a set of simple distance checking against the agents 
which are sharing the same cell, as figure 5-right shows. If no collisions are produced, 
then this process continues until the 8 neighbor cells pass the same test.

Fig. 5. Server Performance on Collision Test.

Figure 5-left shows the results obtained in a collision detection test performed in a 
single server where 10.000 agents demand a random position as soon as they can, in 
order to saturate the server. The purpose of this experiment is to know how fast the 
server can run, in terms of the average of actions that it is able to process in a single 
cycle. As this value highly depends on the density of the crowd, we have represented 
this parameter as the percentage of finally executed actions (ACKs), since it is more 
informative  for  our  purposes.  Thus,  an  ACK  percentage  of  0%  occurs  when  no 
motion is allowed because the crowd is completely full and no one can move. On the 
other hand, when all the agents pass a full collision test, all the actions are allowed 
(100% of ACKs) and all the agents finally move. In these experiments, this case (94% 
of ACKs) represents the worst case because the server needs to access to 8 + 1 cells 
and compute a variable number of distance checks for each action. 

Figure 5-left shows that in the worst case (94% of ACKs) the server is able to 
process around 6000 actions in a single cycle (250 ms). However, when the density of 
the crowd increases  the percentage of  ACKs decreases  because  the probability  of 
collision increases in very dense worlds. This will allow the server to finish the cell 
checking without visiting all the neighbors cells. As a consequence, the server can 
process a higher number of actions requests per cycle (12000 actions for a percentage 
of 0% ACKS). It is also worth mention that for a medium case (48% ACKs), the 
system can manage around 8000 agents. 



5   Conclusions and Future Work

In this paper, we review the computer architectures used in the literature to support 
distributed environments and analyze how they can support the simulation of large 
crowds. Based on this analysis, we present a scalable hybrid distributed framework 
for large-scale crowd simulations. At the lowest level, the framework consists of a 
computer  system  based  on  a  networked-server  architecture,  in  order  to  achieve 
scalability while providing awareness and time-space consistency. At a higher level, 
our  framework  integrates  a  software  architecture  based  on  a  centralized  semantic 
information  system  that  can  easily  maintain  the  coherence  of  the  virtual  world 
through a single copy of the semantic database. Performance evaluation results show 
that  this  architecture  can  efficiently  manage thousands  of  individual,  autonomous 
agents at interactive rates. 

This  preliminary  work  has  assisted  us  to  define  the  next  steps.  We  plan  to 
distribute  the  action  server  in  multiple  machines  by  using  distributed  databases 
techniques in order to improve the scalability. In addition, we plan to characterize the 
requirements of different kinds of autonomous agents. The idea is to use each client 
for supporting one (or more) kind of agents, according to the computational power of 
the client and the requirements of the agents. Thus, by properly balancing the existing 
load among the clients we expect to improve the system throughput. Furthermore, in 
the rendering side, we are looking into the extension of our scene-graph to make use 
of largely distributed graphics systems to avoid the rendering bottleneck. By using 
distributed rendering methods like sort-last composition we can keep the data transfer 
overhead  minimal  and  use  local  graphics  hardware  in  the  servers  to  scale  to 
interactively displayed scenes with hundreds of thousands or millions of avatars.
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