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Abstract: Collaborative Augmented Reality (CAR) systems allow multiple users to sharea real world environment
including computer-generated images in real time. The hardware features of most current mobile phones
include wireless network capabilities that offer a natural platform for CARsystems. However, the potential
number of clients in CAR systems based on mobile phones is much larger than on CAR systems based on
other kind of mobile devices, requiring a system design that takes into account scalability issues. This paper
presents the experimental comparison of different CAR systems based on mobile phones with different server
implementations. The performance evaluation results show that the best implementation is the one based on
UDP messages instead of classical TCP connections, in order to improvethe system throughput. The UDP-
based implementation provides a significant improvement in system throughput, at the cost of loosing a very
small percentage of updating messages. However, the effects of these small quantities of dropped messages
cannot expand beyond some jitter (bounded within a short period of time)in a reduced number of clients of
the CAR application. These results validate the proposed UDP-based implementation as the best option for
large-scale CAR systems based on mobile phones.

1 INTRODUCTION

Augmented Reality (AR) systems are nowadays
widely used in applications such as medical proce-
dures, scientific visualization, manufacturing automa-
tion, cultural heritage and military applications. The
term Augmented Reality (AR) refers to computer
graphic procedures or applications where the real-
world view is superimposed by computer-generated
objects in real-time (Azuma, 1997; Azuma et al.,
2001; Cawood and Fiala, 2008). From the begin-
ning of AR systems, the potential of collaborative
AR (CAR) systems was exploited for different activ-
ities such as Collaborative Computing (Billinghurst
et al., 2000) or Teleconferencing (Billinghurst and
Kato, 1999). Wearable devices were used to provide
CAR systems, where a wearable AR user could col-
laborate with a remote user at a desktop computer
(Hallerer et al., 1999; Piekarski and Thomas, 2002).

On other hand, a lot of different mobile and/or
wereable devices comprising a computing embedded
system pervade our daily life, and they have been used
for CAR systems. Mobile phones have become the
most extended example of these devices (Henrysson
and Ollila, 2004; Mahring et al., 2004). They have

become an ideal platform for CAR systems, due to
the multimedia hardware they include, like full color
displays, integrated cameras, fast processors and even
dedicated 3D graphics chips (Henrysson et al., 2005).

As an example, Figure 1 shows a CAR system de-
veloped for collaborative training in industrial elec-
tricity. In this case, the CAR systems show the electri-
cal technicians how the circuit-breakers should be re-
placed in the electric general panelboards at the con-
struction sites. The figure shows on the left image
the execution of the CAR tool on a Samsung Galaxy
NOTE mobile phone. The image on the center shows
a real image of the the panelboard where technicians
collaboratively operate, and the right image shows the
execution of the CAR tool on a HTC Nexus One mo-
bile phone.

Nevertheless, the wide variety of current mobile
phones, with different graphic and processing capa-
bilites, and different operating systems, can have sig-
nificant effects on the performance of a large-scale
CAR system, in terms of system latency, frames per
second or number of supported clients with certain
latency levels. These effects should be taken into
account when implementing CAR systems based on
mobile phones, in order to avoid a performance degra-



Figure 1: Example of a CAR application developed for
training in industrial electricity.

dation in terms of both system latency and through-
put.

In previous works, we have characterized the be-
havior of different mobile phones when used in Col-
laborative Augmented Reality applications, (Bauset
et al., 2011). Also, we have carried out a performance
characterization from the server side, measuring the
system response time and system throughput when
varying different systems parameters like the num-
ber of clients in the system, the number of clients
in the work space (i.e., the number of neighbors to
which messages should be sent), and the cycle time
of clients (Bauset et al., 2012). The characterization
results shows that the system saturation point depends
on the overall percentage of CPU utilization in the
computer platform acting as the system server. Al-
though the CPU threshold is not a fixed value, it is in-
versely related to the number of processor cores. The
results also showed that the CAR systems throughput
heavily depends on the kind of client devices, but for
certain kind of devices, the system bottleneck is the
server I/O.

In this paper, we propose a comparative study of
different implementations of the CAR server, in order
to improve the performance of CAR systems based
on mobile phones. The performance evaluation re-
sults show that the implementation providing the best
performance is the one based on UDP messages. The
UDP-based implementation provides a significant im-
provement in system throughput with respect to other
implementations based on TCP, at the cost of loosing
a very small percentage of updating messages. How-
ever, the effects of these small quantities of dropped
messages cannot expand beyond some jitter (bounded
within a short period of time) in a reduced number of
clients of the CAR application. These results validate
the proposed UDP-based implementation as the best
option for large-scale CAR systems based on mobile
phones.

The rest of the paper is organized as follows: Sec-
tion 2 shows some related work about CAR applica-
tions on mobile phones. Section 3 describes the dif-
ferent CAR implementations considered for compar-

ison purposes, and Section 4 shows the performance
evaluation results. Finally, Section 5 presents some
conclusion remarks and the future work to be done.

2 RELATED WORK

Augmented Reality superimposes multimedia
content - 3D object, text, sound, etc - to real world
through a display or screen. In order to locate digital
contents on a specific image of the real world point,
some references within the image is needed. These
references are known as markers, and two methods
are usually used: natural feature tracking and fidu-
cial marker tracking. The former method uses inter-
est point detectors and matching schemes to associate
2D locations on the video with 3D locations (Wagner
et al., 2008). This process can be grouped in three big
phases: interest point detection, creation of descrip-
tor vectors for these interest points, and comparison
of vectors with the database (Lee et al., 2009). The
latter method uses fiducial markers to find a specific
position of real world. This process can be divided in
three phases: edge detection, rejection of quadrangles
that are too large or too small, and checking against
the set of known patterns (Wagner et al., 2008).

Any CAR application needs a device equipped
with an on-board camera, CPU and display. The
most common devices used for CAR applications are
Tablet-PCs or mobile phones. We will focus on mo-
bile phones, because they are more suitable for CAR
applications (Henrysson et al., 2005; Thomas, 2007).

There are few solutions based on fiducial marker
tracking over mobile phones. In 2003, ArToolKit
(Kato, 2011), one of the most well-known software
libraries for developing Augmented Reality (AR) ap-
plication, was released for Windows CE, and the first
self-contained application was developed for mobile
phones (Wagner and Schmalstieg, 2003). This soft-
ware evolved later as the ArToolKitPlus tracking li-
brary (Wagner et al., 2008). A tracking solution for
mobile phones that works with 3D color-coded marks
was developed (Mahring et al., 2004), and a version
of ArToolKit for Symbian OS was developed, par-
tially based on the ArToolKitPlus source code (Hen-
rysson et al., 2005). The research teams behind these
works have worked on fiducial marker tracking, but
not from the collaborative point of view. Also, there
are many other works that focus on natural feature
tracking (Wagner et al., 2008; Srinivasan et al., 2009;
Wagner et al., 2010; Wagner et al., 2009).

Although real-time natural feature tracking over
mobile devices has been currently achieved (Wagner
et al., 2008), fiducial marker tracking is more widely



used, because it allows simultaneous computational
robustness and efficiency. A large number of loca-
tions and objects can be efficiently labeled by encod-
ing unique identifiers on the markers. Additionally,
the markers can be detected with angles near to 90
degrees (Wagner et al., 2008).

The first CAR applications improved the confer-
ence system highlights, giving the feeling of real pres-
ence to remote collaborators (Billinghurst and Kato,
1999). The Rekimoto’s Transvision system showed
how to share virtual objects through handheld dis-
plays (Rekimoto, 1996). Also, Schmalstieg created
a software architecture to develop CAR applications
(Szalavri et al., 1998).

3 SERVER IMPLEMENTATIONS

In order to analyze the behavior of CAR systems
based on mobile devices, we have developed a multi-
threaded CAR server that supports simulated clients
(simulated mobile devices) with the behavior mea-
sured in our previous work (Bauset et al., 2011). We
have time-stamped every message generated within
this CAR system, in order to measure the performance
of every device. The system configuration will con-
sist of one server, and a certain amount of mobile de-
vices that are scanning the visual space of their video
camera looking for a marker that will be converted
into a 3D object in their display. The main perfor-
mance metrics in distributed systems are throughput
and latency (Duato et al., 1997). However, in order
to avoid clock skews when measuring the system la-
tency in distributed systems, the same device should
measure the initial and final time. Therefore, we con-
sider round-trip times instead of system latencies.

Since we are considering collaborative systems,
after each updating of the object location, the mobile
device will send a location update message (contain-
ing the new location) to each of its neighbor devices.
The neighbor devices are those who participates in the
same collaborative task, and we have denoted this set
of neighbor devices as aworking group. An impor-
tant parameter of the system configuration will be the
working group size, since it determines the amount of
location update messages to be exchanged in each cy-
cle). The messages are sent through the server (that is,
it sends the location update message to the server, and
then the server re-sends the message to the appropri-
ate clients). For performance evaluation purposes, the
destination clients return an acknowledgment mes-
sage (ACK) to the server, which, in turn, forwards it
to the source client. When the source client has re-
ceived the ACK messages corresponding to the loca-

tion update from all the clients in its working group,
then it computes the average system response for that
location update. Figure 2 illustrates the action cycle
that takes place for each of the mobile clients in the
system.

Figure 2: Stages of the action cycle in each mobile device.

Once the message with the location update is sent,
the action cycle performed by each client is composed
of the following steps: first, it performs one new im-
age acquisition followed by a marker detection stages.
Then, the client waits until the cycle period (deter-
mined by the action frequency, a system parameter)
finishes. Next, if the acknowledgments from all the
neighbors have been received, a new message with
the new marker location is sent. If not all the ac-
knowledgments have been received, then it waits un-
til a maximum threshold of 20 seconds, and then a
new round of messages (with the latest marker lo-
cation) are sent to the neighbors through the server.
The neighbors simply returns an ACK message to the
sender device through the server. The server simply
forwards the messages to the corresponding destina-
tion clients. It must be noticed that the mobile devices
will not send a new round of messages with a new
location update until it has received the acknowledg-
ment message from all its neighbors, even although
new marker detection stages have been completed in
the device.

This characterization setup considers that all the
required static content in the scene has been loaded.
According to recent works (Kantonen, 2009), in these
cases the network bandwidth required is less than 50
kbps for performing this information exchange. Since
we are using a Gigabit Ethernet, we ensure that net-
work bandwidth does not become a system bottle-
neck.

The system latency provided for each location up-
date is computed by recording a timestamp when the
first message is sent to the server. Next, a second



timestamp is recorded with the last ACK message for
that location update received from the server. The sys-
tem response time is computed by subtracting these
two timestamps. The server response time is com-
puted by timestamping both each message forwarded
from each client and the reception of the correspond-
ing ACK message from the destination client. Also,
the percentage of CPU utilization is measured both in
the server and the mobile devices every half second.

On other hand, each client process simulates 50
mobile devices, using two threads per simulated de-
vice. We have uniformly distributed the number of
the required client processes for each system con-
figuration. Since we have 10 desktop computers
available for hosting the clients, the configuration for
1000 clients consists of 10 computers hosting 5 client
processes each (100 threads per computer hosting
clients). We have experimentally ensured that none
of the computers hosting clients is close to saturation
by measuring the average time required for answering
the messages sent to the clients hosted in each com-
puter.

The previous work showed that Google phone
HTC Nexus One was the fastest device, with a pe-
riod cycle of 167.11 milliseconds, while the Motorola
Milestone was the slowest one, with a period cycle
of 698.34 milliseconds(Bauset et al., 2011). We have
considered these values as the limits for characteri-
zation purposes. Also, we have considered four dif-
ferent values for the working group size: 5, 10, 20,
and 25 neighbor clients. Finally, we have considered
a number of clients in the system ranging from 100 to
1000. It must be noticed that usually, actual CAR ap-
plications do not contain more than a hundred clients
(for example, more than a hundred persons within
the same lounge using collaborative Augmented Re-
ality for studying art masterpieces), due to the size of
the augmented models. Thus, reaching thousands of
clients clearly exceed the worst case for this kind of
applications.

We have implemented a multithreaded server,
where each server thread manages a group of clients
within a given working group (i.e., the people in-
volved in the same collaborative task). Thus, for
example, with a system configuration of 500 mo-
bile clients and an working group size of 10 clients,
we have 50 server threads (50 working groups of 10
people each), and each thread supports 10 clients.
We have considered a maximum configuration of
1000 clients, resulting in 100 server threads. For
comparison purposes, we have considered a single
server. Nevertheless, the system performance greatly
depends on the server implementation, and we have
considered three different server implementations:

3.1 TCP Implementation

The simulator starts generating aServer Process, and
for every 50 clients it generates aClient Process. Fig-
ure 3 illustrates the general scheme of the Server Pro-
cess. This process starts listening connections, and
for each connection it generate a new array ofX TCP
sockets, whereX is the number of clients that will be
within a given working group. When all the clients
have connected to the Server Process (the population
size is a simulation parameter) then the Server Process
generates as manyServer Threadsas needed. Each
Server Thread is in charge of managing all the clients
within a working group. Concretely, it starts the simu-
lation by sending a welcome message to all the client
sockets. When the simulation finishes, it collects
statistics from all the clients in its working group. But
the most important task performed by server threads is
the generation of two threads for each of the clients in
the working group: theServer Receiver Thread (SRT)
and theServer Processor Thread (SPT). The SRT as-
sociated to clienti receives the location update mes-
sages from the clienti, it computes the correct desti-
nation clients (the neighbor clients, that is, the clients
within the same working group) and it generates mes-
sages that will be stored in the queues of the Server
threads managing these neighbor clients. The SPT as-
sociated to clienti extracts the queued messages that
the SRTs associated to other clients may have gener-
ated for clienti, and it sends them to this client. Addi-
tionally, the server process collects and processes the
statistics generated by the server threads, and it also
measures the percentage of CPU utilization.

Figure 3: General scheme of the server process in the TCP
implementation.

Figure 4 illustrates the general scheme of the
Client Process. This process generates 50 client
threads (we have assumed a maximum population
size of 1000 client devices), and it also computes
the percentage of CPU utilization, client latencies,
etc.. Each Client Thread generates two threads for



each client: theClient Receiver Thread (CRT)and
the Client Processor Thread (CPT), and when the
welcome message from the Server Thread arrives to
the associated socket, then the Client Thread starts
the simulation, that consists of sending a given num-
ber of position update messages and receiving the
corresponding acknowledgments from the neighbor
clients. The frequency of the location update mes-
sages is a simulation parameter (it determines the ac-
tuation rate of clients to be simulated). In each simu-
lation cycle (that can be much shorter than the client
actuation cycle), the Client Thread checks if a new lo-
cation update message should be sent. If so, it then
checks if all the acknowledgments of the previous
message have arrived from the neighbors clients. If
not, then it waits for them until a maximum time-
out of 20 seconds. The value for this timeout has
been empirically obtained. Although it is not shown
here for the sake of shortness, we have performed ex-
periments with the simulator, concluding that unless
the system reaches deep saturation and collapses, the
maximum latency for obtaining all the acks from the
neighbors have been 20 seconds. After this timeout,
the new location update is send. The CRT is contin-
uously checking the client queue. When a location
update message arrives to this queue, it sends back an
acknowledgment to the corresponding server thread.
If an acknowledgment of a previous message arrives
to this queue, this acknowledgment is computed.

Figure 4: General scheme of the client process in the TCP
implementation.

3.2 TCP-Select Implementation

One of the potential limitations of the TCP implemen-
tation is the server overhead due to the huge number
of threads, for those cases when the population size
increases. In order to reduce this overhead, we have
carried out a different server implementation that, al-
though it is also based on TCP connections, it uses the

Select function of BSD sockets (Jones, 2003).
In this server implementation, each Server Thread

has a single SRT and a single SPT for managing all
the clients in each working group, instead of one SRT
and one SPT for each client. Using theSelect func-
tion, the SRT receives messages from all the clients
and it processes them. We have tested different op-
tions regarding the best number of SPTs for manag-
ing all the clients in each working group. Although
they are not shown here for the sake of shortness, the
experimental results showed that no significant im-
provements were achieved when using more than a
single SPT for managing, in terms of the obtained la-
tencies.

3.3 UDP Implementation

Finally, we have considered a connectionless oriented
implementation for the CAR system, in order to study
the effectiveness of TCP connections in a distributed
environment like a CAR system. The motivation of
this study are both the short message size (usually
carry a position update consisting of a bunch of bytes)
and the huge amount of the messages generated by
CAR systems. For this kind of frequent but short
network traffic, usually connectionless oriented proto-
cols show a better network performance (Duato et al.,
1997). Although the UDP protocol can loose mes-
sages and the effects and size of these losses should
be studied, we have also considered this implementa-
tion for comparison purposes.

The UDP implementation is very similar to the
TCP-Select implementation. The only difference is
that in this implementation we have used UDP sock-
ets. Since this implementation can drop messages, it
also counts the number of dropped or lost messages
(since both the number of iterations and the number
of clients in each working group is known, each client
can compute the number of message that should ar-
rive).

4 PERFORMANCE EVALUATION

This section shows the performance evaluation of
the implementations described in the previous sec-
tion. We have performed different measurements on
different simulated systems using these implementa-
tions. Like other distributed systems, the most impor-
tant performance measurements in CAR systems are
latency and throughput (Duato et al., 1997). Since
we are focusing on large scale CAR systems, we
have performed simulations with different number of



clients and we have measured the response time pro-
vided to these clients (the round-trip delay for each
updating message sent by a given client to the clients
in its working group). In this way, we can study the
maximum number of clients that the system can sup-
port while providing a response time below a given
threshold value. In order to define an acceptable be-
havior for the system, we have considered 250 ms. as
the threshold value, since it is considered as the limit
for providing realistic effects to users in DVEs (Hen-
derson and Bhatti, 2003).

In order to evaluate the performance provided by
each of the proposed implementations, we have car-
ried out simulations and we have measured the aver-
age system response for all the location updates send
by all the clients in the system. In this sense, we have
considered the system response time (in milliseconds)
for each updating message sent by a given client to
its neighbor clients as the time required for receiv-
ing the acknowledgments from all the clients in the
working group of this given client. In order to mea-
sure the dispersion of this metric, we have measured
the standard deviation for all the updating messages
sent, as well. Also, we have computed the response
time in the server (in milliseconds) as the time re-
quired by the destination clients to answer the server
messages. We have measured both the average and
the maximum values measured in the server for each
simulation. Additionally, we have computed the per-
centage of the CPU utilization in the system server,
since it can easily become the system bottleneck. The
computer platform hosting the system server is a In-
tel Core 2 Duo E8400 CPU running at 3.00 GHz with
4 Gbytes of RAM, executing an Ubuntu Linux dis-
tribution with the 3.0.0-14-generic x86 64 operating
system kernel.

In order to study the system behavior for differ-
ent levels of workload, we have repeated simulations
with working group sizes of 10,15,20 and 25 clients.
Although not all of them are shown here for the sake
of shortness, we show the result for the smallest (5
clients in each working group) and the biggest sizes
(25 clients in each working group).

Table 1 shows the results for a CAR system whose
client devices are all of them Nexus One, and where
the working group size for each client is of five neigh-
bor clients. This table shows the results for the three
considered implementations, organized as three sub-
tables with ten rows each, and labeled with the name
of the implementation (TCP, TCP-Select and UDP).
The most-left column in these subtables shows the
number of clients in the system, that is, the popula-
tion size. The values in this column range from 100
to 1000 clients in the system. The next two columns

show the average value of the response times (in mil-
liseconds) provided by the system to all the clients
(labeled as ”RT”), as well as the corresponding stan-
dard deviation values (column labeled as ”Dev”). The
fourth column (labeled as ”CPU”) shows the percent-
age of the CPU utilization in the server. Finally,
the fifth and sixth columns (labeled as ”RTS” and
”RT SM”, respectively) show the average and maxi-
mum values (in milliseconds) of the response time in
the server for all the messages exchanged during the
simulation.

TCP implementation
Size RT Dev CPU RTS RT SM
100 62.37 22.68 9.9 19.36 20.9
200 63.77 22.21 15 20.12 22.43
300 66.71 22.66 22 25.15 28.28
400 68.68 22.5 32.7 27.14 29.56
500 71.04 23.56 45 27.14 30.9
600 71.5 24.18 48.6 26.58 31.95
700 72.37 25.01 59 27.17 35.42
800 72.85 26.01 68 27.87 34.54
900 75.01 28.98 79.2 28.61 35.89
1000 147.33 101.71 85 43.95 48.66

TCP-Select implementation
Size RT Dev CPU RTS RT SM
100 65.77 21.56 8 20.44 24.96
200 67.12 22.71 11.2 21.5 23.54
300 67.52 22.6 19.8 23.67 26.62
400 67.64 22.88 28 23.21 27.28
500 69.12 23.23 31 25.31 29.34
600 69.14 23 39.6 25.28 28.74
700 69.37 23.45 47 24.53 30.72
800 75.75 26.63 54.5 26.96 35.16
900 70.24 24.81 59.6 24.02 31.87
1000 71.05 27.53 67 22.64 35.04

UDP implementation
Size RT Dev CPU RTS RT SM
100 4.80 7.06 38.40 1.95 3.22
200 3.76 4.95 34.70 1.57 2.84
300 9.57 9.74 26.00 4.44 10.97
400 3.60 5.18 33.70 1.46 3.16
500 4.59 6.41 41.60 1.81 3.77
600 7.34 13.17 47.00 3.23 17.16
700 5.28 8.24 53.00 2.11 7.76
800 7.10 18.52 84.10 2.65 16.53
900 5.85 11.69 66.30 2.61 12.05
1000 7.15 15.47 69.50 2.87 15.18

Table 1: Results for a working group size of 5 neighbors

Table 1 that none of the values in the RT col-
umn reaches the threshold value of 250 milliseconds
in any of the considered implementations, showing
that the system can efficiently support up to one thou-
sand clients while interactively displaying the Aug-
mented Reality. Nevertheless, there are significant
differences in this column among the considered im-
plementations. Thus, the TCP implementation shows



a huge rise in the response time when the system
reaches one thousand clients, passing from around 75
milliseconds to more than 147 milliseconds as an av-
erage. The standard deviation of this values is also
more than three times the value shown for nine hun-
dred clients. These values show that for that popu-
lation size the system is approaching saturation. On
the contrary, the TCP-Select implementation does not
show an increase in neither the column RT nor the
column Dev for a population of one thousand clients.
Moreover, the UDP implementation shows RT values
that are one order of magnitude lower than the ones
shown by the other two implementations.

The third column in table oneAOI5 shows that the
CPU utilization increases as the number of clients in
the system increases. In the case of the TCP imple-
mentation, the system approaches saturation when the
server reaches 85% of CPU utilization. For lower
percentages of CPU utilization the response times do
not significantly increase. It is worth mention than
the UDP implementation provides RT values of one
order of magnitude lower even for CPU utilization
of around 70%. These values show that the latency
provided by CAR systems greatly depends on the
connection or connectionless scheme followed by the
system to exchange information with the clients.

Finally, the columns RTS and RTSM show that
most of the response time provided to clients is due
to processing in the server. Thus, for example, the re-
sults for the TCP implementation and a system size
of 900 clients show that as an average each client has
to wait 75.01 milliseconds for receiving the acknowl-
edgments from all the clients in its working group,
but as an average the server must wait only 28.61
milliseconds to receive answers from clients. This
difference highly increases for the case of one thou-
sand clients, where the response time obtained by the
server from clients is around 44 milliseconds but the
average response time provided to clients is 147.33,
around three times higher. It is also worth mention
that the ratio between the RTS and the RT columns
do not significantly vary among the three implemen-
tations. Finally, the RTSM column shows that the
maximum values in the RTS parameter do not exceed
the value in the RT column for both TCP implemen-
tation, and they do not exceed twice the value in the
RT column of the UDP implementation. Therefore,
we can conclude that most of the time required to ac-
knowledge each client update is due to the processing
of the updates and acknowledgments in the server.

These results show that the best latencies when
the system is far from saturation are provided with
the UDP implementation. However, UDP is a
connectionless-oriented protocol, and as such, it may

drop messages when the system approach saturation.
In order to study these effects, as well as the gen-
eral behavior of the system for a high workload, ta-
ble 2 shows the results for a working group size of 25
clients. In this table, the column labeled as ”RTSM”
has been removed, since the results were similar to
those shown in table 1. Instead, we have added a new
column, labeled as ”% loss”, that shows the percent-
age of messages dropped by the system. It has been
computed by subtracting the number of messages re-
ceived by all the clients in a simulation (measured
in the simulation itself) from the theoretical number
of messages that clients should exchange for a given
population size.

TCP implementation
Size RT Dev CPU RTS % loss
100 96.03 25.91 60.4 24.26 0.00
200 103.19 38.71 83 30.98 0.00
300 167.58 50.19 86.1 40.24 0.00
400 250.53 77.68 85 49.89 0.00
500 357.13 126.19 92 74.41 0.00
600 496.62 218.79 94.1 96.25 0.00
700 480.87 156.16 85.3 93.42 0.00
800 531.93 210.02 86 97.47 0.00
900 505.89 300.11 89 93.45 0.00
1000 524.96 372.62 87.1 82.39 0.00

TCP-Select implementation
Size RT Dev CPU RTS % loss
100 90.8 24.7 23.2 19.35 0.00
200 89.95 21.13 47 33.4 0.00
300 123.95 32.36 72 54.7 0.00
400 209.2 35.88 87.2 85.55 0.00
500 268.17 44.44 86 112.07 0.00
600 331.41 50.55 87 143.62 0.00
700 383.96 70.6 93.1 151.56 0.00
800 454.57 125.21 90.1 151.56 0.00
900 491.59 106.18 91 147.56 0.00
1000 566.44 133.33 93.1 166.79 0.00

UDP implementation
Size RT Dev CPU RTS % loss
100 9.86 6.78 72.50 4.06 0.83
200 21.70 14.73 82.00 9.84 1.18
300 26.01 21.91 79.60 11.61 0.69
400 39.41 30.66 81.90 18.26 0.83
500 48.68 39.68 83.80 22.84 0.74
600 62.83 45.16 83.80 28.96 0.74
700 79.70 97.87 85.10 37.26 0.76
800 87.18 200.95 84.00 40.20 1.04
900 93.64 66.36 83.90 40.71 0.93
1000 122.37 85.35 85.00 44.98 0.90

Table 2: Results for a working group size of 25 neighbors

Table 2 shows that for this level of workload the
system enters saturation in the two TCP-based im-
plementations. Effectively, the RT column shows
that the TCP implementation reaches the maximum
threshold value of 250 ms. with 400 clients. From



that population size up, the response time provided to
clients is unacceptable. The TCP-Select implementa-
tion reaches (and exceeds) this threshold value for a
population of 500 clients. However, the UDP imple-
mentation does not reach even half of this value for
the maximum population size considered, one thou-
sand clients.

It is worth mention that for those cases when the
system reaches saturation, the percentage of CPU uti-
lization in the server is 85% or higher. The gap be-
tween 85% and 98% of CPU utilization for reaching
the saturation point can be explained by the shared
memory architecture of current multicore processors
(the dual core processor in the computer platform
used as simulation server), as shown in (Bauset et al.,
2012). The synchronization of the kernel calls, to-
gether with the synchronization among threads in the
application, prevent the CAR system from fully ex-
ploiting the computational power of all the processing
cores at the same time, reaching saturation for a lower
overall percentage of CPU utilization. The more pro-
cessor cores in the processor, the higher percentage of
CPU utilization ”wasted” in synchronization.

The ”% loss” column shows that for the UDP im-
plementation the percentage of lost messages is not
higher than 1.2%. The effects of loosing some mes-
sages will consists of delaying the location update of
the artificial artifacts in the display of the destination
clients, that is, they will produce some jitter in the dis-
play of the clients. However, these percentage values
ensure a reasonable quality in the visualization of the
CAR system. Therefore, we can state that the UDP
implementation provides the highest throughput and
the best latency for large scale CAR applications, at
the cost of a very limited effects on the visualization
in some clients.

In order to ensure that the effects of the UDP im-
plementation in terms of dropped messages are con-
sistent for all the workload levels considered, figure 5
shows the average number of packets dropped for
each working group size considered.

Figure 5: Number of packets lost in the UDP implementa-
tion.

Figure 5 shows that for working group sizes of
5 and 10 neighbor clients there are no packet losses.
For a working group size of 20 neighbors, the amount
of lost packets reaches 8581 for a theoretical total of
packets sent of 1.9 million packets. Analogously, for
a working group size of 25 neighbors, the amount of
lost packets reaches 21593 out of 2.4 million packets
sent. Therefore, in the worst case the number of lost
packets only represent a 1’18 % of the total amount
of packets sent. This represents only a small image
flicker on some clients, and in very limited periods
of time. As the information is sent more than once
per second - remember the action cycle of the Nexus
One is 167.11 ms - this can be considered insignifi-
cant flickering.

Although they are not here for the shake of short-
ness, we repeated the same tests shown in this sec-
tion here using a different client device, the Motorola
Milestone, and we obtained analogous results. Those
results were less interesting because of the bigger ac-
tion cycle of the Milestone (698.34 ms). With that
action frequency the system saturation point was not
reached even in the worst case of a working group size
of 25 neighbors and a population of 1000 clients. We
have shown here the results for the Nexus One as the
worst case for the server implementation.

5 CONCLUSIONS

This paper has proposed the experimental compar-
ison of different large-scale CAR systems based on
mobile phones with different server implementations.
The performance evaluation results show that the best
implementation is the one based on UDP messages,
instead of classical TCP connections, in order to im-
prove the system thoughput. The UDP-based imple-
mentation provides a significant improvement in both
system throughput and system response time, at the
cost of loosing a very small percentage of updating
messages. However, the effects of these small quanti-
ties of dropped messages cannot expand beyond some
jitter (bounded within a short period of time) in a
reduced number of clients of the CAR application.
These results validate the proposed UDP-based im-
plementation as the best option for large-scale CAR
systems based on mobile phones.
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