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Terrain representation is a basic topic in the field of interactive graphics. The amount of data required for a good
quality of the terrain offers an important challenge to developers of such systems. For users of these applications,
the accuracy of geographical data is generally less important than its natural visual appearance. This makes it
possible to maintain a limited geographical database for the system and to extend it generating synthetic data.
The evaluation of the intrinsic properties of the terrain (i.e. fractal dimension, roughness, etc.) may be used as the
basis for generating extra data accomplishing the same patterns discovered in the actual information. However,
it is also interesting to point out that in most natural landscapes, it is usual to have human or natural changes in
the basic properties of some areas, i.e. a road or a river. This fact can make it more difficult for synthetic data
generation to be free of visual artifacts within these areas. In this paper we combine fractal and wavelet theories
to provide extra data which keeps the natural properties of actual information available. New levels of detail
for the terrain are obtained by applying an inverse Wavelet Transform to a set of values randomly generated,
thus maintaining the coherence of statistical properties with the original geographical data. Combined with this
approach, the use of energy reduction masks has been added in order to avoid undesired visual artifacts in those
special areas for which the general terrain properties are no longer valid.

Keywords: Fractal, Wavelets, Terrain mesh,
Synthetic extra resolution generation, Locally
constrained extra resolution.

1. Introduction.

Terrain representation is a basic topic in the
field of training simulators, in both military and
civil applications. It is obvious that, in these
representations, the amount of geographical data
provided to the subject is clearly related to the
feeling of visual immersion achieved by the sys-
tem. However, it is not so obvious that the ge-
ographical data accuracy is less important than
their natural visual appearance. Usually, ter-
rain representation is based on a digital elevation
model (DEM) plus a set of textures mapped on
the mesh. The viewer integrates this geographic
information without realizing the real source of
the data presented except for the natural appear-
ance of the final representation.

Another important topic in simulation and in-

teractive graphics is freedom of movement within
the synthetic environment, which should be as
similar as possible to the real world. Addition-
ally, it is expected to have an homogeneous visual
quality from every possible point of view. This in-
troduces an important drawback in most of the
current terrain representation models, which have
a limited resolution for the viewer. For instance,
a flight simulator offers a good quality terrain rep-
resentation appearance when observed from rela-
tive high elevations. However, for low height fly
missions, the visual quality of the representation
suffers from an important degradation, because
the original terrain model is not accurate enough
to increase the details of the representation.

A possible solution to this problem could be
to resize the definition of the geographical data
base by adding extra data for special purposes.
Nevertheless, there will always be some limita-
tions which come mainly from budget restrictions,
availability (it is not always possible to have ac-
cess to the data with the required accuracy), re-
sources consumption (storage space, computing,
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etc.). An approach to solve the resizing problem
could be adding extra resolution to real terrain
meshes by generating new synthetic data natu-
rally. In order to maintain the natural appearance
and the fidelity to the original terrain, these ex-
tra data should statistically follow the properties
extracted from the original data. To accomplish
this goal we propose a combination of fractal (in
particular 1/f processes) and wavelet theory.

The previous approach has however an impor-
tant drawback: most real situations include parts
of the terrain with areas naturally or artificially
modified from the general fractal pattern present
in the terrain (rivers, lakes, highways, villages,
etc). If those elements are not taken into account
in generating new data, visual artifacts may ap-
pear (i.e. an island that does not really exist in
the middle of a lake, a part of a road covered
by the terrain -see figure 12 top-, unnatural river
lines -see figure 13 top-, etc.). So, it is necessary
to modify the previous idea in order to avoid these
undesired visual artifacts.

The paper is organized as follows: in the next
section of this paper a short overview of the frac-
tal and wavelet theoretical bases used in this work
is presented. In the third section the general ap-
proach that does not include any specific consid-
eration for the special areas above indicated is
introduced. In the fourth section, the basic ap-
proach is modified in order to avoid visual arti-
facts in the special areas. Finally, the paper closes
with the conclusions and some future work.

2. Theoretical Background

2.1. Fractal and Multifactal Functions
Stochastic fractals, in particular the family of

1/f fractals, have been successfully used to model
a wide variety of natural phenomena and even
the sociological aspects of human behavior. Well
known examples are[15].: natural landscapes, dis-
tribution of flow of a river’s turbulent flow, the
evolution of the stocks in the markets, etc.

An important characteristic of the 1/f pro-
cesses is that its spectral density presents an ex-
ponential behavior. The spectral density follows
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Figure 1. Representation of the 1/fγ process
spectral density .

the equation:

S(f) ∼
1

fγ

where f is the frequency and γ is a constant.
This means that a log-log representation of this

density with respect to the frequency is a straight
line with a slope −γ (figure 1).

Fractional Brownian motion (fBm) is probably
the best known mathematical characterization of
the 1/f processes [7]. This theory has been fre-
quently studied because of its simplicity and the
wide range of natural phenomena that is able to
model.

The most interesting properties of fBm pro-
cesses are:

1. Statistically self-similarity, independently
from scale.

2. Nonstationary behavior, with high degree of
correlation. The Hurst parameter H mea-
sures autocorrelation and is directly related
to the γ index in the 1/f processes through
the equation:

γ = 2H + 1

3. Stationary variations of a function X(t) are
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characterized by the equation:

Var(X) ∝ τ2H

being τ = |X(t+ τ) −X(t)| .

Following [7-11], fractal objects can be repre-
sented by their fractal dimension. This param-
eter has an integer value for non-fractal objects
(value 1 for curves, value 2 surfaces, etc.), and
has a non-integer value that is bigger than its
topological dimension for fractal objects. Frac-
tal dimension can be used as a roughness indica-
tor. For instance, fractals with fractal dimension
close to two represent surfaces with a low rough-
ness appearance while objects with fractal dimen-
sion values close to three correspond to extremely
rough appearance. It is also possible to use this
qualitative relationship in the opposite way. We
can have a clue about the fractal dimension of an
object based on its roughness appearance.

FBm fractal functions are characterized by
having only one fractal dimension with an ho-
mogeneous distribution over the whole domain.
This type of fractal objects are usually known as
monofractals.

There are other kinds of fractals which exhibit
a variation of the fractal dimension along its do-
main; this family of fractals is usually referred
to as multifractals. Multifractals were firstly in-
troduced to model energy dissipation turbulence
[8,5]. They have been proved to be adequate
to model a wide range of non-homogeneous pro-
cesses [11,10].One important consequence of the
fractal dimension variability across the object is
that it is not longer possible to represent this ob-
ject by a unique fractal dimension value because
it changes in an erratic way along the object do-
main.

2.2. Wavelets on the Generation of fBm.
As previously pointed out, two of the most in-

teresting properties of the fBm noise are its non
stationary behavior, with stationary increments,
and its self-similarity at different scales. The
stationarity property requires a time-dependent
analysis, while self-similarity requires some scale-
dependent analysis. These two characteristics are

presented in the wavelet transform [6,2], which
makes this mathematical approach a powerful
tool for analysis and synthesis of fBm’s.

An orthonormal wavelet decomposition of a
function X(t) generates detail and coarse coef-
ficients recursively by using the equations:

cn,i =
∑

k cn+1,kh[−i+ 2k]
dn,i =

∑

k cn+1,kg[−i+ 2k]
(1)

being cn,i and dn,i the coarse and the detail co-
efficients, respectively and h[·] and g[·], the low
and high filter coefficients associated with the
wavelet base.

The statistical behavior of these coefficients
was previously analyzed by Faldrin [4], who draw
the following conclusions that can be applied to
this piece of research:

1. The sequence of the detail coefficients at
any given level is self-similar and station-
ary. The non-stationary behavior of fBm is
reflected only in the coarse coefficients.

2. The correlation amongst detail coefficients
at any given level is only function of the
distance between any two of them and de-
creases asymptotically.

3. The detail coefficients variance decreases
following a power law with respect to the
level:

Var [dn,i] = Vψ(H) 2−nγ

being Vψ(H) a function depending on H
and on the selected wavelet base. As a con-
sequence of this behavior, the variance loga-
rithm is a straight line with -γ slope (figure
2):

log2 (Var [dn,i]) = −nγ + const

4. Even though fBm functions have a high cor-
relation , specially those with H parameters
close to 1, the detail coefficients present a
low correlation degree.

Among the previous conclusions drawn from
Faldrin’s works, the most appealing for our pur-
poses is the fourth. As pointed out by Wornell in
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Figure 2. Influence of level in the variance of the
detail coefficients.

[16], this property allows the correlation amongst
the detail coefficients to be ignored in practical
applications. Therefore, it is possible to consider
these coefficients as a set of independent Gaussian
variables with variance:

σ2
n = Var [dn,k] = σ2 2−nγ (2)

The synthesized function obtained applying the
Inverse Wavelet Transform to this set of Gaus-
sian detail coefficients has an spectral density
quite similar to fBm. This represents quite a
simple procedure to synthesize nearly-fBm func-
tions. The similarity between the results ob-
tained through this method and those obtained
by means of a pure fBm is directly related to the
number of ”vanish moments” of the wavelet base
selected. In spite of this, it is not necessary to
use basis with high number of vanish moments.
In fact, the only important restriction is to select
wavelet bases with a regular MRA [15].

2.3. Terrain Representation Based on
fBm.

Natural landscapes are examples of self-similar
fractal phenomena where the geometrical struc-
ture is invariant when examined at different
scales. This qualitative characterization is the ba-
sis for most approaches to synthetic terrain gen-
eration [12,1].
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Figure 3. Spectral density of nearly-fBm func-
tions.

Several years ago Mandelbrot made the first at-
tempts at generating fractal landscapes [9]. Man-
delbrot realized the analogy between the Brow-
nian motion and mountain contours. From this
impression, he figured out that a generalization of
fBm to surfaces would result in a proper approx-
imation to the description of natural mountain
chains.

If we consider VH(x, y) a Brownian surface
with a Holder parameter H (0 < H < 1), ev-
ery section of this surface obtained by a verti-
cal plane generates a fBm curve with H parame-
ter. Based on this property, if we move a distance
∆r = ∆x2 + ∆y2 along the surface, the expected
value of the function variation is:

Var(VH) ∝ ∆r2H

The fractal dimension of this surface is bigger
than the topological dimension of the correspond-
ing non-fractal surface.

3. Approaches to Increasing the Resolu-
tion of a Terrain Mesh.

After the introduction of some basic concepts
about fractal functions and wavelets, we explain
our approaches based on principles given to in-
crease the resolution of a natural terrain mesh
by adding new levels of detail (LoD). The new
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synthetic LoDs preserve the statistical behavior
intrinsic to real data.

In the field of terrain representation two kinds
of meshes can be used: regular and irregular
meshes. Our approach is based on the use of
the Wavelet Transform. This transform performs
better when applied to a set of discrete regular
distributed values, so our work is restricted to
the use of regular terrain meshes.

3.1. Mesh Reconstruction From Wavelet
Coefficients.

In order to understand our approach, let us re-
view the way in which the meshes are generated
from the set of wavelets coefficients. The Inverse
Wavelet Transform (IWT) generates the original
surface fN (x, y) using the wavelet coarse and de-
tail coefficients by means of the following expres-
sion:

fN (x, y) =
N−1
∑

k=−∞

∑

i,j

3
∑

t=1

dtk,i,j ψ
2,t
k,i,j(x, y) (3)

where
{

ψ2,1, ψ2,2, ψ2,3
}

are the 2D wavelet
base functions (horizontal, vertical and diagonal)
and

{

d1, d2, d3
}

are the coefficients associated to
the base functions.

The reconstruction of the original function can
also be carried out by using a linear combination
of the 2D wavelet (ψ2,t) and scale (ϕ2) functions:

fN (x, y) =
∑

i,j c0,i,j ϕ
2
0,i,j(x, y)+

∑N−1
k=0

∑

i,j

∑3
t=1 d

t
k,i,j ψ

2,t
k,i,j(x, y)

=
∑

i,j cN−1,i,j ϕ
2
N−1,i,j(x, y)+

∑

i,j

∑3
t=1 d

t
N−1,i,j ψ

2,t
N−1,i,j(x, y)

(4)

In real time terrain representation, triangle
meshes are usually used. It is possible to consider
these meshes as linear discrete surfaces, described
by a set of vertices which define a set of adjacent
triangles. A particular kind of triangular meshes
are the ones where the vertices are distributed
over a regular grid.

When the Wavelet Transform (WT) is applied
to such regular meshes, what is really computed
is the values of the function fN (from equation
5) in the positions of the mesh vertices. This
means the coordinates (x, y) of vi,j vertex (where

index i, j are the relative position of each vertex in
the mesh). If we suppose a dyadic decomposition
of the original function, the function fN can be
associated to a square mesh of 2N × 2N vertices.

If we start from the previous mesh represen-
tation and we add the set of wavelet coefficient
belonging to the next level to the sum in equa-
tion 3 , the resolution of the associated mesh is
increased up to 2N+1 × 2N+1 vertices. The func-
tion including the new coefficients is:

fN+1(x, y) =
∑

i,j c0,i,j ϕ
2
0,i,j(x, y)+

∑N

k=0

∑

i,j

∑3
t=1 d

t
k,i,j ψ

2,t
k,i,j(x, y)

=
∑

i,j cN,i,j ϕ
2
N,i,j(x, y)+

∑

i,j

∑3
t=1 d

t
N,i,j ψ

2,t
N,i,j(x, y)

(5)

3.2. Global Scope Approach (GSA).
GSA is based on the generation of nearly-fBm

functions using the results of the statistical be-
havior analysis of the detail coefficients in pure
fBm [16]. As previously indicated, the fBm has
self-similarity at every scale. If we assume that
terrain meshes are fBm, or at least they are close
enough to it, the new LoDs generated using this
technique preserve the statistical properties of the
original natural mesh. The assumption implies
that the variance in detail coefficients follows a
decreasing power-law (equation 2).

Taking into account the bidimensional nature
of meshes for WT terrain representation , three
different types of coefficients will be generated:
horizontal (d1

n,i,j), vertical (d2
n,i,j) and diagonal

(d3
n,i,j). The variances of these coefficients (σ1,

σ2 and σ3 -equation 6-) are independent between
them. This implies that we should define three
different γ values: (γ1,γ2,γ3).

3.2.1. GSA Algorithm .
The algorithm consists of the following steps:

1. Evaluate the associated variances to the
wavelet coefficients in each of the levels and
for each of the bands (horizontal, vertical
and diagonal). It was assumed that these
values follow a Gaussian distribution cen-
tered at zero (µ = 0). The dispersion σ at
level n is obtained by using the following
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Figure 4. Application of GSA to an homogenous mesh. (left)original (16×16)mesh; (right) final (64×64)
mesh.

equations:

(

σtn
)2

= Var
[

dtn,i,j
]

(6)

2. Adjust the variances logarithm obtained in
the previous step to a straight line:

log2

(

Var
[

dtn,i,j
])

= −nγt + at (7)

The process has to be repeated for each of
the three kinds of coefficients. This step
generates three values: (γ1,γ2,γ3). A WT
dyadic decomposition is normally used, so
the low levels do not have a number of coef-
ficient values high enough to be considered
statistically significant. As a consequence,
we consider only variances from level 3 up,
where we have at least 16 coefficients.

3. Generate randomly the values of the coeffi-
cients for the new levels. The generated val-
ues follow a Gaussian distribution centered
at zero, with a dispersion obtained using
equation 6. This guarantees the same sta-
tistical behavior as the one for the original
levels.

4. Generate the terrain mesh new level by cal-
culating the inverse wavelet transform of
the coefficients obtained in step 3.

Figure 4 shows a visual example where the GSA
approach has been applied to generate a finer res-
olution (from 16 × 16 to 64 × 64 vertices) of a
natural terrain mesh. This approach offers good
results when the fractal dimension of the origi-
nal mesh is more or less homogenous across the
whole surface (this is presented in figure 4). How-
ever, most practical cases do not follow the previ-
ous conditions. For instance, landscapes includ-
ing rough mountains and smooth valleys have no
homogeneous fractal dimension (figure 5).

3.3. Local Scope Approach (LSA).
To overcome these deficiencies, we have intro-

duced the local scope approach that can be used
in common DEMs, and which are better repre-
sented as multifractal objects.

Even though multifractals have been exten-
sively studied, there are not too many real appli-
cations that use multifractal theory. A possible
reason is the mathematical complexity involved
in its use. Such remark is important because
one of our goals is to develop an algorithm effi-
cient enough to generate new LoDs dynamically.
To accomplish both objectives -good characteri-
zation of the fractal nature of DEMs and good
computational performance- we assume the fol-
lowing constraints:

1. The mesh is divided into regions. Each of
them has a more or less homogeneous frac-
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tal dimension.

2. The fractal dimension transition across
neighbouring regions is smooth.

The first assumption does not impose important
constraints because the fact that DEMs present
a locally monofractal behavior has been well es-
tablished in literature [1,9]. In fact, most anal-
ysis and synthesis algorithms related to terrain
meshes are based on fBm. The second condition
might be more difficult to accomplish in some
cases, but its influence in the final result is not
so critical since its partial infringement produces
meshes that are still good enough.

3.3.1. Local Fractal Dimension Estimation.
In LSA, we have a different γ parameter at each

location. The γ estimation is based on the use of
the variance of the WT detail coefficients. How-
ever, we only consider the coefficients which have
a spatial domain close to the location where we
are estimating the γ value.

Being X(x, y) a function (accomplishing the
previously stated conditions) to which we have
previously applied the WT, we can conclude that
around each point −→r = (x, y) there is a region
that satisfies equation 6 with a single value of the
γ parameter.

As in the GSA, our meshes are discrete func-
tions parametrized by two parameters. Then,
WT produces three different types of detail coeffi-
cients: horizontal (d1

n,i,j), vertical (d2
n,i,j) and di-

agonal (d3
n,i,j). The variances associated to each

type of coefficients are independent of each other
and can be derived from the equation:
(

σtn(
−→r )

)2
= Var

[

dtn,i,j
]

= At(−→r ) 2−n γ
t(−→r )

being At(−→r ) a constant through the different lev-
els n and γt(−→r ) the local γ parameter at point
−→r .

The next step specifies the spatial regions with
homogeneous fractal dimension. This determines
the particular sets of coefficients to be used. Solv-
ing it in a accurate way is not trivial. It implies an
additional computational cost that is incompati-
ble with our temporal restrictions. To overcome
this limitation we make an important simplifica-
tion: actual regions are not determined. Instead,

we suppose that the fractal dimension is more or
less homogeneous in a square window centered at
the current point, so only coefficients inside the
window are used to estimate the γt(−→r ) parame-
ters.

Once the window size has been selected, we al-
ways consider the same number of coefficients, no
matter the level we are working on to obtain the
local variance. The values ( γ1, γ2, γ3 ) are cal-
culated as the straight line slope represented by
the equation:

log2(Var
[

dtn,i,j
]

) = −nγt(−→r ) + at(−→r )

being (a1, a2, a3) the ordinates of the straight
line.

Due to the fact that the spatial domain cov-
ered by detail coefficients increase exponentially
when the level decreases, only the variance of the
coefficients at higher levels has been considered.

3.3.2. New LoDs Generation.
Once the set of γt(−→r ) and at(−→r ) values has

been evaluated, additional levels of detail are gen-
erated. To compute the vertices positions that
conform the new LoD mesh at level n, we use
the inverse wavelet transform applied to the syn-
thetic coefficients generated randomly. The ran-
dom generation is based on a Gaussian distribu-
tion centered at zero that has its dispersion ex-
pressed by the following equation:

(

σtn(
−→r )

)2
= 2a

t(−→r )2−nγ
t(−→r ) (8)

The process can be repeated as many times as
needed until we achieve the desired resolution in
the final terrain mesh. This process can not be
applied an unlimited number of times.

3.3.3. LSA Algorithm.
If we have m initial levels generated using ac-

tual data, and if k is the number of extra levels of
detail (the final number of levels is m+k), the al-
gorithm associated to LSA repeats the following
steps for each point at level m:

1. Evaluate the local variance of the detail co-
efficients at levels j < m (this process has
to be repeated for the three types of coeffi-
cients).
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2. Calculate the values of the slopes
( γ1(−→r ), γ2(−→r ), γ1(−→r ) ) and the ordi-
nate values ( a1(−→r ), a2(−→r ), a3(−→r ) ), using
equation 7.

3. Generate randomly, by using a Gaussian
distribution centered at zero and with the
dispersion obtained from equations 8, the
new detail coefficients for levels from m to
m+ k − 1 related to the current point −→r .

Once the previous algorithm has been applied to
every point at level m, the inverse wavelet trans-
form is computed for the new added coefficients,
obtaining the extra terrain levels of detail.

The quality of the results depends on three
main parameters: the approach selected (local or
global), the selected wavelet base and, in the case
of a local scope approach, the window size.

Figure 5 shows an example of a heterogeneous
mesh (a visual inspection of this mesh reveals dif-
ferent roughness areas along the surface), where
the LSA algorithm has been applied. The results
for different window sizes are shown in figure 6.
In all cases, the same spline-linear base has been
used. We can appreciate that the results for a
3 × 3 window size present a good visual quality.
A more complete analysis of the results, and some
considerations about performance and the influ-
ence of other wavelet bases, is described in [13,14].

4. Stochastic Locally Constrained LoD
Generation

The GSA and LSA are based on the statisti-
cal properties present in the wavelet coefficients
extracted from the real data to represent the ter-
rain. The only thing that has been taken into
account in both approaches is the wavelet coef-
ficients that define the original terrain. Never-
theless, most real situations include parts of the
terrain with areas naturally or artificially modi-
fied from the general fractal patterns present in
the terrain (rivers, lakes, highways, villages, etc).
If those elements are not taken into account in
the generation of new LoDs, visual artifacts may
appear (i.e. a nonexistent island in the middle
of a lake, part of a road covered by the terrain -
see figure 12 top- unnatural river lines -see figure

Figure 5. Example of heterogeneous mesh (16 ×
16) points.

13 top-, etc.). So, it is necessary to modify the
previous LoD’s generation algorithms in order to
include those considerations.

To overcome this problem, a local control over
some areas of the new generated LoDs has to be
considered. So, is introduced the concept of en-
ergy reduction masks. These masks absorb part
of the energy associated to the wavelet coefficients
generated when the GSA or LSA algorithms have
been applied. This avoids the artifacts produced
in the conflictive areas.

4.1. Locally Constrained Meshes Recon-
struction.

If we start from the idea expressed at the end
of point 3.1, and we assume that new coeffi-
cients values are zero, both surfaces extracted
from the functions of equations 4 and 5 are iden-
tical: fN+1(x, y) = fN (x, y). This does not
mean that the higher resolution mesh surface,
with 2N+1 × 2N+1 vertices, extracted from the
sampling of function fN+1(x, y), is identical to
the mesh surface containing 2N × 2Nvertices, ex-
tracted from the sampling of function fN (x, y).
In fact, the only way in which both surfaces match
is to use the biorthogonal spline-linear as wavelet
base function for the representation.

Using this base function, the vertices of the new
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Figure 6. Results after having applied LSA to heterogeneous mesh with window size: 1 × 1 (left-top),
3 × 3 (right-top), 5 × 5 (left-bottom), and 7 × 7 (right-bottom).

Figure 7. Left: Original Mesh. Middle: Extra resolution mesh generated with null values for extra detail
coefficients and with linear-spline base. Right: Extra resolution mesh with null values for extra detail
coefficients and with cubic-spline base.
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mesh (extracted from the sampling of fN+1, tak-
ing as zero the coefficients for the last level) are
located over the surface defined by the previous
level mesh (extracted from the sampling of fN ).
The vertices of the new mesh which correspond to
the same location of the vertices in the previous
level mesh have the same altitude value, while the
new elevation of the added vertices, which repre-
sent intermediate locations, correspond to the lin-
ear interpolation of its neighboring vertices (see
figure 7, center).

It is important to point out that in the gen-
eral case the vertices of the new mesh are not
placed exactly at the same location as the one
corresponding to the previous level mesh (see fig-
ure 7, right). This is accomplished only by spline-
linear base, because it generates a linear surface
similar to the one defined by a triangular mesh
(see figure 7, center).

In order to avoid visual artifacts in the new
surface at the areas modified by natural or arti-
ficial elements (rivers, roads, etc.), the approach
is based on preserving the original surface shape
for those parts of the terrain. To preserve the
shape, it is just needed to eliminate the energy
associated to the wavelet detail coefficients asso-
ciated to the conflictive areas. This result can be
accomplished with:

dtN,i,j = 0 if
〈

Ω(x, y) , ψtN,i,j (x, y)
〉

6= 0

where Ω (x, y) is a function which is evaluated as
1 when (x, y) is within the interest area and as 0
in the rest of the cases.

4.2. Mask Guided Reconstruction (MGR).
In order to eliminate the energy associated to

the wavelet coefficients in specific areas, energy
reduction masks are defined. These masks are
built as gray-scale images. The gray level indi-
cates the different areas on the terrain and the
degree of energy absorption in each part of the
original mesh (see figures 8 and 9). When the
gray level of a pixel in the mask corresponds to
white color, all the energy associated to the re-
lated wavelet coefficients is eliminated. In the
case of a gray level corresponding to black color,
all the energy is preserved. For intermediate gray

Figure 8. Left: Top view of the original road
mesh. Right: Energy reduction mask defined to
preserve the road area in this mesh.

Figure 9. Left: Top view of second test mesh con-
taining an applied texture with a river flow. The
gray level indicates the elevation of each point.
Right: Energy reduction mask to preserve the
river area.

levels, only the proportional part of the energy is
reduced.

We can summarize the algorithm in the follow-
ing steps:

• In the first step, the new wavelet coeffi-
cients are generated using the previously
mentioned algorithms (GSA or LSA). These
coefficients are the basis for the generation
of extra LoD’s for the terrain mesh.

• The second step uses the energy reduction
masks. In this step, for each pixel (k, l) in
the mask, with a gray level ck,l (normalized
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between zero and one), the related new co-
efficients are selected and modified using a
combination between the gray level in the
mask and the energy wavelet function at
this location. The relative change in the en-
ergy for each coefficient is calculated using
the following equation:

(

(

dtn,i,j
)2

−
(

df tn,i,j
)2

)

/
(

dtn,i,j
)2

=

ck,l
∥

∥ψtn,i,j(x, y)
∥

∥

(x,y)∈D(k,l)

(9)

From such equation it is possible to obtain:

(

df tn,i,j
)2

=
(

dtn,i,j
)2

(

1 − ck,l
∥

∥ψtn,i,j(x, y)
∥

∥

(x,y)∈D(k,l)

)

where df tn,i,j is the new value for
the wavelet coefficient dtn,i,j , and
∥

∥ψtn,i,j(x, y)
∥

∥

(x,y)∈D(k,l)
is the normalized

energy of the related wavelet function,
within the spatial domain of the pixel (k, l).

• The last step of the algorithm applies the
IWT to the whole set of wavelet coefficient
within the desired level, generating the new
LoD terrain mesh.

Usually, the wavelet functions are not directly
employed in these processes. Instead, it is eas-
ier to use a bank of associated filters [3], which
is really the same principle employed in the fast
wavelet transform (equation 1). In this case,
the idea is not to evaluate the energy of the
wavelet function, but to use the value of coeffi-
cients present in the associated filter at the points
of interest.

A finite filter (spline-linear) is used to perform
this representation. This keeps the algorithm cost
at order O (M), where M is the number of pixel
in the mask.

A detailed analysis of equation 9 reveals that
the energy is not only reduced for the wavelet co-
efficients directly related to a certain pixel of the
mask, but also to neighboring coefficients having
wavelet function with energy inside the domain of
the pixel. An important advantage of this fact is

that smooth transitions of energy absorption are
produced on the edges of conflictive areas. As a
consequence, this yields a better visual appear-
ance in the generated terrain meshes.

4.3. Results.
In order to have a qualitative evaluation of the

approach proposed, some tests using two differ-
ent terrain meshes have been carried out. The
first mesh consist of a mountain road in terrain.
The road is represented as a 3D object on top
of the terrain that has been modified to simplify
the road construction (see figure 10). The second
test mesh contains a natural terrain modification
produced by a river flow. In this case, the river
is a part of the texture used to improve the vi-
sual quality of the terrain representation (see fig-
ure 11). In both cases, the initial meshes have a
128× 128 resolution. Such resolution is increased
up to 256×256 vertices during the testing process.

For the first test,where the terrain has a more
or less homogeneous fractal dimension (except for
the conflictive areas modified by the path of the
road), the GSA algorithm has been used. In the
second test, which includes the river, the terrain
exhibit a non homogeneous roughness. So, in this
case the LSA algorithm, that performs better in
this situation (the window size is 3× 3) has been
used. In both tests, the wavelet base used is
the spline-linear, which has demonstrated good
performance in GSA and LSA algorithms [13,14].
Other important reason to use this base is the
fact that the location of vertices for new levels
will be preserved (or linearly interpolated) in the
conflictive areas.

Figures 12 and 13 correspond to the road mesh
test and the river mesh test, respectively.

5. Conclusions and Future Work.

We have introduced two algorithms to gener-
ate new detail levels of terrain meshes using the
fractal properties extracted from real data repre-
senting the terrain. The first algorithm, GSA,
is quite simple, but it is restricted to meshes
with an homogeneous fractal pattern only (figure
4). To overcome this limitation, the second algo-
rithm,LSA, introduces the local fractal estimation
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Figure 10. Left: Road terrain mesh (128 × 128 vertices resolution). Right: A close-up of the road area.

Figure 11. Left: A close-up of river terrain mesh (128 × 128 vertices resolution). Right: Same view of
the area with a texture mapped containing a river flow.
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Figure 12. Left-top: Extra resolution mesh with 256×256 vertices obtained applying the GSA algorithm
to the road test mesh without using MGR. Right-top: Details of the problems with extra vertices added
that cover the original road element. Left-bottom: Extra resolution mesh obtained using GSA combined
with MGR. Right-bottom: Details of the road where visual artifacts have disappeared.

which allows to apply synthetic LoDs generation
to a wide range of terrain, as observed in figure 6).
However, we have also indicated that general ter-
rains include some special features that are not
present in the fractal representation (figures 12
top and 13 top). To overcome the visual prob-
lem of artifacts we have introduced the energy re-
duction mask which complement GSA and LSA.
As we can see in the Figures 12-bottom and 13-
bottom, GSA and LSA including MGR are able
to solve the visual problems.

We have performed some tests in order to es-
timate the extra spatial and computational cost
produced by the introduction of MGR. Using this
information and the theoretical analysis of the al-
gorithms, we can conclude that the spatial and
the computational extra cost of the combined al-
gorithms (GSA+MGR or LSA+MGR) depend on
the mask size. A mask with a similar resolution
as the original mesh offers good results. In this
case, we have an extra spatial cost of around 20%,
while in the case of the computational cost we

have an increase that is around 15%. These re-
sults are still fully compatible with the temporal
and spatial constraints imposed by the previous
version of GSA and LSA [13,14].

From the previous conclusions, we can summa-
rize that the combined approach presented here
offers a general solution that can be employed to
improve the resolution of any variety of terrain
meshes.

At the beginning of this paper, and also in one
of the test examples used in this paper (the river
case), we pointed out the importance of texture
mapping to improve the appearance and detail in
terrain representation. The fractal nature of ter-
rain meshes is also present in real terrain textures.
This, combined with the fact that regular meshes
and texture images are both two-dimensional ar-
rays of data, indicates that a possible extension
of the study presented here could be the genera-
tion of finer resolution textures in realistic terrain
representations.
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Figure 13. Left-top: Extra resolution mesh (256 × 256) vertices obtained after having applyied LSA to
the second test mesh. Right-top: Details of the problems that arise on the river area. Left-Bottom:
Extra resolution mesh obtained with the combination of LSA and MGR. Right-bottom: Details of the
improvement in the visual appearance of the river area.
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