
Performance Characterization on Mobile Phones for Collaborative
Augmented Reality (CAR) Applications

Vı́ctor Fernández, Juan M. Orduña, Pedro Morillo∗

Dept. Informática - Universidad de Valencia - SPAIN

ABSTRACT

Collaborative Augmented Reality (CAR) systems allow multi-
ple users to share a real work environment including computer-
generated images in real time. Currently, the hardware features
of most mobile phones not only provide excellent multimedia ser-
vices, but it also includes wireless network capabilities that pro-
vides a natural platform for CAR systems. However, the wide va-
riety of these hardware features can have important effects on the
performance of the mobile CAR applications.

This paper presents the experimental characterization of CAR
applications for mobile phones in regard to well-known perfor-
mance metrics in distributed systems. Characterization results show
that the most time consuming stage in a CAR application is the
marker detection stage. Moreover, the rendering stage is decoupled
on some devices, depending on the operative system used. This de-
coupling process allows avoiding low refresh rate, facilitating the
collaborative work. These results can be used as the basis for an
efficient design of CAR systems and applications.

Keywords: Collaborative Augmented Reality, Mobile Phones,
Performance Evaluation

1 INTRODUCTION

Since the beginning of AR systems, the potential of collaborative
AR (CAR) systems was exploited for different activities like Col-
laborative Computing or Teleconferencing [3]. Wearable devices
were used to provide CAR systems where a wearable AR user could
collaborate with a remote user at a desktop computer [9].

On other hand, a lot of devices comprising a computing embed-
ded system pervade our daily life, and they have been used for CAR
systems. One of these devices are mobile phones [5]. Effectively,
current mobile phones have full color displays, integrated cameras,
fast processors and even dedicated 3D graphics chips, and they have
become an ideal platform for CAR systems. However, the wide
variety of current mobile phones, with different graphic and pro-
cessing capabilites, and different operating systems, can have sig-
nificant effects on the performance of the CAR application. The
design of an efficient CAR application must take into account these
effects in order to fulfil the required specifications.

In this paper, we propose the characterization of different mo-
bile phones for collaborative augmented reality applications. We
have implemented a simple CAR application on a real system and
we have measured the performance achieved with different mobile
phones, considering operating systems (OS): Android OS and iOS.
The results show that the most time consuming stage in a CAR ap-
plication is the marker detection stage. Therefore, any improvement
of the CAR applications (categorized from the obtained results as
CPU-intensive but not memory-intensive) should be addressed to
improve the image acquisition process. Regarding the operating
systems, the results show that the rendering stage is decoupled on

∗e-mail: {Juan.Orduna, Pedro.Morillo}@uv.es

devices using the Android OS, in such a way that it is executed with
the other stages concurrently. The results also show that some re-
cent mobile phones like IPhone 4 only works with high resolution
images. As a result, these mobile devices need a lot of time for
detecting the markers in the camera image plane.

2 CAR APPLICATIONS ON MOBILE PHONES

There are different kinds of mobile phones, with different operative
systems (OS) and capabilities. The most extended OSs for mo-
bile phones are Nokia Symbian, Google Android OS (commonly
referred as Android), RIM/Blackberry, Apple iOS, Microsoft Win-
dows Mobile/Phone 7 and Samsung Bada [1]. In this work, we are
focusing on two of them, Android and iOS, because they share the
vast majority of the current market [4].

CAR applications can be split into four stages: The first stage
is denoted as image acquisition state and consists of obtaining an
image from the camera’s flow. In the second stage, markers are de-
tected from the image obtained before. With the position of this
markers, the third stage consists of drawing a 3D object on the im-
age. Finally, in the fourth phase this information (for example, the
position(s) of the mark(s)) is sent to the other application nodes
through some kind of broadcast.

The first three phases are similar on any AR application [10],
but the last one can be performed by using different technologies
such as WiFi, 3G or Bluetooth . Although there are some classic
CAR applications that uses Bluetooth as the AK-Phone project [2],
usually the first two ones are used, because the use of Bluetooth
severely limits the spatial range of transmission.

3 CHARACTERIZATION SETUP

We have tested two different mobile phones using Android and an-
other two mobile phones using iOS operating system. For the An-
droid we have considered the Motorola Milestone, with 550 MHz
of CPU frequency, and Nexus One, with almost double CPU fre-
quency (998 MHz). For the iOS operating system, we have consid-
ered the iPhone 3G, with 412 MHz of CPU frequency, and iPhone
4, with double CPU frequency (800 MHz). All have 5 MPixels of
camera resolution, except iPhone 3G, which only has 2 MPixels.

On internet there are some implementations for Android and iOS
OSs that are open source. We have used them as a starting point to
obtain a CAR application. For the case of the implementation for
Android we have used NyARToolKit[8]. NyARToolKit is a com-
plete version of ARToolkit[6] that was exclusively written in Java.
This makes it slower in execution than the original, but it also makes
it completely independent of the processor architecture. As the
original, NyARToolKit is a library of functions visual interpretation
and integration of VR data into physical environments, including
real-time camera vision functionality and 3D rendering of virtual
objects. On the other hand, our iOS implementation has been based
on the version developed by Benjamin Loulier [7], which in turn is
based on ARToolKitPlus [10].

After getting the application, we did the same procedure as in
the Android version: analyzing its stages, putting time marks and
adding the sending stage, also with TCP sockets. In this case, we
are showed an apple each time we found the mark. In contrast to
Android, iOS only provides two camera resolutions: full or half. In



Table 1: Throughput (in terms of FPS) and RTT for each smartphone

FPS RTT (ms)
Milestone 1,43 14,14

Nexus One 5,98 5,54
iPhone 3G 2,51 15,42

iPhone 4 1,91 7,06

Table 2: Execution times (ms) for each considered mobile phone

Stages(ms) Acq. Detect Render Send Total
Milestone 248,64 288,53 30,42 14,14 698,34

Nexus One 40,25 78,08 13,23 5,54 167,11
iPhone 3G 33,29 58,07 28,26 15,42 398,00

iPhone 4 17,66 182,17 23,34 7,06 523,26

half resolution it obtains the same resolution that in full resolution,
but it only analyzes one of every two pixels. In order to make that
fairest comparisons as possible, we used half of the resolution, with
a resolution of 400x304 on iPhone 3G and a resolution of 1280x720
on iPhone 4.

4 PERFORMANCE EVALUATION

We have measured the system throughput, in terms of frames per
second (FPS), and system latency, in terms of the round-trip-time
(RTT) for each message sent to the server. Table 1 shows the perfor-
mance evaluation, in terms of the average number of FPS achieved
by each mobile phone, and the latency for the transmission stage of
the application.

Table 1 shows that the Milestone is the handheld device with
the poorest throughput, and the Nexus One is the one with the best
throughput. Although the iPhone 3G provides better throughput
than the iPhone 4G, this behavior is due to the fact that the iPhone
3G has to analyze much less amount of data than the iPhone 4,
since the size of its image is much smaller. The right column in
this table shows that the latency is quite similar in all the mobile
phones considered, as it could be expected, because it depends on
network features more than the computing capabilities of the con-
sidered mobile phone.

Table 2 shows the decomposition of the results shown in table 1.
Concretely, the first four columns show the average duration of each
stage per cycle for each device, and the rightmost column shows the
total aggregated cycle time. The inverse of these times result in the
number of frames per second shown for each device in table 1.

Each row in Table 2 shows the number of milliseconds that each
stage needs to finish on each device. The Motorola Milestone pro-
vides the worst throughput because it is six times slower in obtain-
ing images and almost twice slower in detecting a mark, than the
other devices. Regarding the rendering and sending stages, there
are also significant differences with other devices.

On Another hand, the behavior of iOS-based devices for AR pur-
poses is different than the behavior of another mobile phone. In this
sense, the image acquisition process is twice faster on a iPhone 4
than the same process performed on an iPhone 3G. However, the
marker detection stage in an iPhone 4 is three times slower than in
the iPhone 3G. Although the CPU of an Iphone 4 is twice as power-
ful as the CPU included in an Iphone 3G, the reason for this result
is that the images processed in an iPhone 4 are six times bigger
than the images processed by an iPhone 3G. When Android-based
devices are compared to Apple’s mobile phones in the analysis of
the marker detection stage, Table 2 shows that the Android devices

are faster than iOs phones because the images captured from the
on-board cameras equipped in the Android devices are four times
smaller than the images captured by an iPhone 4. I

Table 2 shows that if total execution time (included in the last
column) is compared to the reciprocal value of the throughput (FPS
in Table 1) both Android devices have almost a perfect matching.
On the contrary, iOS smartphones need twice times to complete the
cycle. These results seem to indicate that the Android devices ren-
der the final augmented reality scenes more often than the iOS de-
vices. In order to confirm this result, we have measured the number
of completed rendering stages compared to the rest of the threads
of the CAR framework. The obtained averaged values are 6.28 ren-
derings per cycle in HTC Milestone and 5.55 renderings per cycle
in the case of the HTC Nexus One.

Additionally, we have measured the CPU and the memory uti-
lization for the considered mobiles phones in the experiment. The
obtained results show that all the considered smartphones are close
to reach the saturation point, in terms of CPU usage since (100%
CPU usage), when the CAR application was executed. CAR appli-
cations (as an enhanced type of AR applications) can be considered
as CPU-intensive since they demand the maximum microprocessor
resources available in a coupled (iOS) or a decoupled (Android)
mode of operation. On the other hand, the results obtained with
the considered smartphones show that Android-based smartphones
need more memory than the iOS-based mobile phones when the
same CAR application is executed on them. The reason of this
memory overhead is that the management of the memory in An-
droid smartphones is transparent to the application developers and
is based on a Virtual Machine (VM).

5 CONCLUSIONS

In this paper, we have proposed a performance characterization of
mobile phones oriented to the provide a robust and an efficient
design of for Collaborative Augmented Reality (CAR) Applica-
tions. The results show that when the same CAR application is
executed on different mobile phones, the best throughput, measured
in frames per second (FPS), is obtained for smartphones based on
Android operative platforms.

The results show that the most time-consuming stage in a CAR
application is the marker detection stage, followed by the image
acquisition stage, the rendering stage and finally, the transmission
stage. Therefore, any improvement of the CAR applications should
be oriented to enhance the image acquisition process. Regarding
the execution of CAR applications on mobile phones in different
operating systems, the results show that the rendering stage is de-
coupled on devices using the Android OS, in such a way that it is
executed with the rest of the stages concurrently. However, this
stage can be programmed to work as in iOS operating system in
ad-hoc implementations.

Finally, the results also show that some recent mobile phones like
IPhone 4 only work with high resolution images. As a result, these
mobile devices achieves the most visual quality at the expense of
needing a lot of time for detecting the markers in the camera image
plane.

ACKNOWLEDGEMENTS

This work has been jointly supported by the Spanish MICINN and
the European Commission FEDER funds under grants Consolider-
Ingenio CSD2006-00046 and TIN2009-14475-C04-04.

REFERENCES

[1] T. Ahonen. T.A. Phone Book 2010. T.A. Consulting, 2010.
[2] M. Assad, D. J. Carmichael, D. Cutting, and A. Hudson. Ar phone:

Accessible augmented reality in the intelligent environment. In In
OZCHI2003, pages 26–28, 2003.



[3] M. Billinghurst and H. Kato. Real world teleconferencing. In Proc.
of the conference on Human Factors in Computing Systems (CHI 99),
1999.

[4] S. P. Hall and E. Anderson. Operating systems for mobile computing.
J. Comput. Small Coll., 25:64–71, December 2009.

[5] A. Henrysson and M. Ollila. Umar: Ubiquitous mobile augmented
reality. In Proceedings of the 3rd international conference on Mobile
and ubiquitous multimedia, MUM ’04, pages 41–45, New York, NY,
USA, 2004. ACM.

[6] D. H. Kato. Artoolkit, 2011. Available at
http://www.hitl.washington.edu/artoolkit/.

[7] B. Loulier. Augmented reality on iphone using artoolkitplus, 2011.
Available at http://www.benjaminloulier.com/.

[8] Nyatla. Nyartoolkit:artoolkit class library for java/c#/android, 2011.
Available at http://nyatla.jp/nyartoolkit/.

[9] W. Piekarski and B. H. Thomas. Tinmith-hand: Unified user interface
technology for mobile outdoor augmented reality and indoor virtual
reality, 2002.

[10] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg. Pose tracking from natural features on mobile phones. In Pro-
ceedings of the 7th IEEE/ACM International Symposium on Mixed
and Augmented Reality, ISMAR ’08, pages 125–134, Washington,
DC, USA, 2008. IEEE Computer Society.


