
A Genetic Approach for Adding QoS to Distributed Virtual

Environments

S. Rueda a, P. Morillo a, J. M. Orduña a,∗, J. Duato b

aDepartamento de Informática. Universidad de Valencia. SPAIN
bDISCA. Universidad Politécnica de Valencia. SPAIN

Abstract

Distributed Virtual Environment (DVE) systems have been designed last years as a set of distributed servers. These
systems allow a large number of remote users to share a single 3D virtual scene. In order to provide quality of service
in a DVE system, clients should be properly assigned to servers taking into account system throughput and system
latency. The latter one is composed of both network and computational delays. This highly complex problem is known
as the quality of service (QoS) problem. In this paper, we study the implementation of a genetic algorithm (GA) for
solving the QoS problem in DVE systems. Performance evaluation results show that, due to its ability of both finding
good search paths and keeping diversity, this nature inspired technique can provide significantly better solutions
than other heuristic methods while requiring shorter execution times. Therefore, the proposed implementation of GA
search method can actually improve the QoS offered by DVE systems.

Key words: Genetic algorithms, Distributed virtual environments, Quality of service

1. Introduction

The advent of affordable, high-bandwidth Inter-
net connections, together with the widespread use of
high performance graphic cards, have allowed a dra-
matic growth of Distributed Virtual Environment
(DVE) systems during last years. DVE systems al-
low multiple users, working on different client com-
puters that are interconnected through different ne-
tworks (and even through the Internet), to interact
in a shared virtual world. This is achieved by ren-
dering images of the environment as they would be
perceived by the user if he was located at that point
in the virtual world. Each user is represented in the
shared virtual environment by an entity called ava-

∗ Corresponding author. Tel +34 96 3160424
Email addresses: Silvia.Rueda@uv.es (S. Rueda),

Pedro.Morillo@uv.es (P. Morillo), Juan.Orduna@uv.es (J.
M. Orduña), jduato@gap.upv.es (J. Duato).

tar, whose state is controlled by the user. Since DVE
systems support visual interactions between multi-
ple avatars, every change in each avatar must be pro-
pagated to other avatars in the shared virtual envi-
ronment. DVE systems are currently used in many
different applications [1], such as collaborative de-
sign [2], civil and military distributed training [3],
e-learning [4] or multi-player games [5].

Architectures based on networked servers are be-
coming a de-facto standard for DVE systems [1,6].
In these architectures, the control of the simulation
relies on several interconnected servers. Client com-
puters are attached exclusively to one of the ser-
vers in the system. When a user modifies an avatar,
the client computer controlling this avatar sends an
updating message to the client computers control-
ling other avatars, in order to provide a consistent
and updated view of the virtual world to all ava-
tars. When the number of connected clients increa-
ses, the number of updating messages must be limi-

Preprint submitted to Elsevier Science 21 February 2006



ted in order to avoid a communication outburst. In
this sense, concepts like areas of influence (AOI) [1],
locales [7] or auras [8] have been proposed for limi-
ting the number of neighboring avatars that a given
avatar must communicate with. All these concepts
define a neighborhood area for avatars, in such a way
that a given client computer controlling a given ava-
tar i must notify all the movements of i (by sending
an updating message) only to the client computers
that control the avatars located in the neighborhood
of avatar i. The avatars in the AOI of avatar i are
denoted as neighbor avatars of avatar i. Other ap-
proaches use three tiered architectures [9,10], data
filtering [11] or distributed cache management [12]
in order to minimize the impact of network traffic
on the performance of the DVE system.

Depending on their origin and destination ava-
tars (client computers), messages in a DVE system
can be intra-server or inter-server messages. In or-
der to design a scalable DVE system, the number
of inter-server messages should be minimized. Since
intra-server messages only require a single server,
the more intra-server messages there are, the less re-
sources the application will require to exchange the
same number of messages. Fig. 1 shows an example
of a DVE system with a multi-server architecture,
composed of three servers. It also shows an exam-
ple of both intra-server and inter-server communi-
cation. In this example, avatars are represented as
dots and the AOI of each avatar is represented as a
circumference.

Fig. 1. An example of multi-server architecture for a DVE
system.

The partitioning problem [6] has been shown as
the main issue in the design of efficient DVE systems
based on networked servers. It consists of efficiently
distributing the workload among the different ser-
vers in the system (by assigning avatars to servers).
In previous works [13–15], we developed a partitio-
ning method that provides a significant throughput

increase to DVE systems. Nevertheless, the most im-
portant performance measures in DVE systems (as
in any distributed, client-server system) are not only
throughput but also latency. Latency can be defi-
ned in DVE systems as the time interval from the
instant when any neighbor of a given avatar i makes
a movement until the instant when avatar i is noti-
fied of that movement. Latency represents Quality
of Service (QoS) provided to users by the system,
since it determines how fast changes in the virtual
world are notified to the proper client computers.

Once the partitioning method has ensured that
the system throughput is maximized (it has provi-
ded a partition where the estimated percentage of
CPU utilization in all the DVE servers is under 99%
[13]), then the computing resources can still be used
to decrease the average system time response pro-
vided to avatars. This improvement should be car-
ried out also by the partitioning method, since it is
really a trade-off between system throughput and
system latency. The problem of solving the parti-
tioning problem ensuring both that the system is
below its saturation point and that the average la-
tency provided to avatars is minimized is known as
the QoS problem. This problem can be modeled as
finding a partition that minimizes a quality func-
tion. In a previous paper, we performed a compari-
son study of some heuristic methods applied to the
QoS problem in DVE systems [16]. In this study,
we implemented and tested different heuristic search
methods based on Simulated Annealing (SA) and
Greedy Randomized Adaptive Search (GRASP) te-
chniques. These heuristic methods were capable of
improving the QoS offered by DVE systems.

Since the QoS problem in DVE systems can be
stated as a problem of balancing both communi-
cations and computational load, in this paper we
show how a genetic approach can improve the cur-
rently existing solutions to this problem. Concre-
tely, we present in this paper the implementation,
tuning, and evaluation of a Genetic Algorithm for
solving the QoS in Distributed Virtual Environment
Systems (QSGA). Performance evaluation results
show that this nature inspired heuristic technique is
able to improve the QoS provided by DVE systems
with shorter execution times than GRASP or SA
techniques. Therefore, this implementation of GA
technique can be considered as a suitable heuristic
method for providing QoS in DVE systems.

The rest of the paper is organized as follows: Sec-
tion 2 details the problems to be solved for achieving
QoS in DVE systems. Section 3 describes the im-

2



plementation and tuning of QSGA. Next, Section 4
presents the performance evaluation of the proposed
method. Finally, Section 5 presents some concluding
remarks.

2. Background

The term Quality of Service (QoS) has been ex-
tensively used in wide area network (WAN) envi-
ronments to describe the ability of some systems to
conform with some specific user requirements of la-
tency, jitter delays, traffic peaks, etc. [17–21]. Howe-
ver, the term QoS can be applied to any system, and
it means that the system not only supports a given
client but it also fulfills some specific requirements
of that client.

The QoS problem has been already described in
DVE systems, and some strategies have been pro-
posed for solving it [22,23]. Approaches like [23] use
latency compensating methods in order to repair
the effects of high network jitter. Adaptive rende-
ring strategies like [22] or [1] modify the resolution
of the 3-D models depending on the client connec-
tion speed. However, none of these strategies takes
into account the non-linear behavior of DVE sy-
stems with the workload assigned to each server, as
described in [13]. Therefore, these strategies cannot
guarantee that the performance provided to avatars
will not degrade beyond any threshold value.

The QoS problem can be expressed in DVE sy-
stems as latency constraints. A DVE system can
only offer QoS to clients if it is working below its
saturation point and at the same time the average
round-trip delay for the messages sent by each ava-
tar (denoted as ASR, for average system response)
is lower than 250 ms. [23]. However, the ASR pro-
vided to a given avatar i depends on which servers
are the neighbor avatars of i assigned to. If avatar
i is assigned to server s, then the ASR for avatar i

linearly decreases with the number of neighbor ava-
tars of i that are assigned to server s. A partitioning
method designed to provide QoS to avatars should
maximize the number of neighbor avatars assigned
to the same server. At the same time, it should ba-
lance the workload (avatars) in order to keep the
system away from saturation. Additionally, it must
not migrate more than 30% of avatars in the system
[10]. Therefore, the QoS problem consists of finding
the best partition complying with all these three re-
quirements. In a previous paper we defined a quality
function that measures how a given partition fulfills

these requirements [16]. In order to make this paper
self-contained, in this section we will briefly describe
this function.

Equation 1 represents the evaluation function pro-
posed measuring the QoS, composed of three terms.
This function measures the quality of a possible par-
tition (assignment of n avatars to s servers). The
partitioning method consists of performing a heuri-
stic search to find the partition with the lowest value
of FQoS as possible. FQoS function is defined as

FQoS =

s∑

i=0

hcpu(i) +

n∑

i=0

hasr(i) + nm (1)

This function is the sum of three different func-
tions or terms. The term hcpu(i) is a function of the
estimated percentage of CPU utilization in each ser-
ver i. Fig. 2 shows the behavior of this function, that
is exponential. This term will make FQoS to assign
a poor (high) value to any partition where at least
one of the DVE servers is estimated to be saturated
or close to saturation.

Fig. 2. Behavior of hcpu(i)

The term hasr(i) measures the estimated ASR
provided to each avatar in the system by a given par-
tition. Fig. 3 shows the behavior of this term, that
is composed of two sections. Function hasr(i) pena-
lizes partitions where the estimated ASR of avatars
is higher than 250 ms.

Finally, the term nm measures the number of ava-
tars that should be migrated in order to obtain a gi-
ven partition. This function is also composed of two

3



Fig. 3. Behavior of hasr(i)

sections, as shown in Fig. 4. This function penalizes
partitions that migrates more than 30% of avatars.

Fig. 4. Behavior of nm.

Thus, the QoS problem in DVE systems consists
of finding a partition (assignment of the existing n

avatars to the s existing servers in the DVE system)
with the lowest value of FQoS as possible. Because
of the high complexity of this problem, labeled as
NP-hard in other systems [17], heuristic procedu-
res can provide near-optimal solutions that actually
improve the QoS offered by DVE systems.

3. A Genetic Algorithm for providing QoS:

QSGA

Genetic Algorithms (GAs) are heuristic search
methods based on the concept of evolution by na-
tural selection [24]. A GA starts from an initial po-
pulation, composed of P chromosomes, that evolves
following certain rules for optimizing a function un-
til reaching a convergence condition. Each iteration

of our GA consists of generating a new population
from the existing one by recombining or even muta-
ting chromosomes. A chromosome contains a geno-
type or string representing an individual (a particu-
lar solution of the problem) and also a phenotype or
features that the genotype represents. We will use
this additional information in the phenotype for tu-
ning the behavior of the algorithm.

In our particular case, the genotype consists of an
array defining the pairs avatar-server. If there are
N avatars in the system, this array contains N ele-
ments, each one designating the server where that
avatar is assigned to. The phenotype consists of in-
formation about the estimated workload that each
avatar adds (in terms of the CPU utilization) to the
server to which it is assigned to. This information
can be estimated starting from both the movement
rate of the avatar and the number of neighbors in
its AOI [25]. Also, the phenotype indicates if each
avatar is a boarder avatar or not. If a given avatar
is assigned to server s, then this avatar is a boarder
avatar if any of its neighbor avatars (the avatars wi-
thin its AOI) is assigned to another server different
from s. We will use FQoS as the fitness function to
be minimized.

Most of heuristic methods are based on the ran-
dom generation of an initial population. However,
if the initial population has been correctly defined,
then the heuristic method easily obtains a good ap-
proximation to the global optimum. In this case the
algorithm should maintain a certain level of structu-
ral diversity among all the chromosomes, in order to
avoid the premature convergence of the search [26].
Therefore, the initial population in QSGA is provi-
ded by the ALB partitioning method [14]. This load
balancing method provides a balanced partition of
the DVE system, ensuring low initial values of the
term

∑
s

i=0 hcpu(i). The GA must keep the work-
load balanced while providing QoS to the maximum
number of avatars as possible.

Each iteration consists of generating an offspring
generation of chromosomes, starting from a parent
generation. The way that the algorithm provides the
next generation determines the behavior of the GA.
In order to choose the variation of GA that fits the
best to the QoS problem, we have considered two
different criteria: the utilization of the boarder ava-
tars to perform the search, and the use of the ALB
algorithm for constructing the initial population.
The utilization of the boarder avatars consists of ex-
clusively exchanging boarder avatars in each itera-
tion. We have empirically evaluated the four possi-

4



ble combinations of these two criteria.
For this evaluation (as well as for all the eval-

uations shown in this paper) we have considered
two different DVE configurations, denoted as ME-
DIUM1 and MEDIUM2 [16]. MEDIUM1 is compo-
sed of 250 avatars and 3 servers, and MEDIUM2 is
composed of 700 avatars and 10 servers. However,
for the sake of shortness we only present here the
result for the MEDIUM2 configuration. The results
obtained for MEDIUM1 configuration were very si-
milar. For evaluation purposes we have measured
both the system cost provided by each variation of
GA (the values of FQoS ) and also the execution ti-
mes required by the algorithm in each case.

In order to evaluate the performance of a DVE sy-
stem, usually three different avatar distributions in
the virtual world have been suggested in the litera-
ture: uniform, skewed and clustered [6]. The reason
for using different distributions is that they gene-
rate a different workload. Fig. 5 shows an example
of these avatar distributions in a 2-D virtual world.
In this figure, the virtual world is a square and ava-
tars are represented as black dots. We have evalua-
ted the four possible combinations of the two crite-
ria under these three distributions of avatars in the
virtual world.

Fig. 5. Distributions of avatars in a 2-D virtual world: a)
Uniform b) Skewed c) Clustered.

Fig. 6 shows the FQoS values corresponding to
the partitions provided by the four variations of GA
that we have considered. We have denoted these va-
riations as follows: Boarder Care for those cases ex-
clusively using boarder nodes in the recombination
operator, and No Boarder Care for those cases using
any avatars, Low Init for those cases using the ALB
for providing the initial partition, and High Init for
those cases where the initial population has been
randomly generated.

Fig. 6 shows that the No Boarder Care alterna-
tives provide worse results than the Boarder Care
ones. The reason for this behavior is that boarder
avatars generate most of the inter-server traffic, and
this traffic requires most of both the computational

Fig. 6. System costs provided by different variations of GA

and communication bandwidth. Therefore, focusing
on the boarder avatars leads to better results than
focusing on the other avatars. Also, this figure shows
that the use of the partition provided by the ALB
algorithm is not significant for the Boarder Care al-
ternatives.

Fig. 7 shows the execution times required for pro-
viding the partitions whose FQoS values are shown
in Fig. 6. This figure shows that the execution times
required to provide the partitions is linearly related
to the quality of the provided partitions.

Fig. 7. Execution times required by different variations of
GA.

Taking into account the results shown in fig. 6
and 7, we have chosen the combination of Boarder
Care and Low Init alternatives for implementing the
GA. We have denoted this implementation as QSGA
(for Quality of Service Genetic Algorithm). Effecti-
vely, for solving the QoS problem we have chosen
a recombination technique [26], in such a way that
each offspring is generated starting from two pa-
rents. However, in order to provide a high diversity,

5



we have also used non homogeneous hybrid deriva-
tion (certain rate of recombination absence in repro-
duction). Additionally, we use elitism in each itera-
tion, in the sense that that some (the best) indivi-
duals of a given population are directly passed to
the next generation without suffering any variation
[26,?]. The pseudocode for this algorithm is shown
below. In each QSGA iteration, an intermediate po-
pulation of P + Nelitist chromosomes is generated,
where the Nelitist chromosomes are the ones with
the best fitness function in the previous iteration. At
the end of the iteration, the new generation will be
composed of the P chromosomes with the best fit-
ness function in the intermediate population. Addi-
tionally, we have introduced a selective recombina-
tion operator on the boarder nodes, in order to avoid
that the population can prematurely converge.

In the case of recombination process, in each ite-
ration the first parent for the i − th chromosome of
the population is the i−th chromosome of the popu-
lation in the previous iteration. The second parent
is randomly selected among the 50% of the previous
population with the best fitness function. The i− th

chromosome of the population is then obtained by
applying one-point crossover, two-point crossover or
uniform crossover to the parents [26].

One-point crossover technique consists of ran-
domly selecting one crossing point. From the be-
ginning of the offspring to the crossing point the
corresponding genotype is copied from the first pa-
rent, and from the crossing point up the offspring
is copied from the corresponding genotype of the
second parent. Fig. 8 shows an example of the one-
point crossover. These three methods are randomly
selected in our algorithm.

Fig. 8. One-Point Crossover.

Two-point crossover consists of randomly selec-
ting two crossing points in the offspring chromo-
some. Then, the first part in this offspring is copied
from the corresponding genotype in the first parent,

the second part (from the first to the second cros-
sing point) is copied from the corresponding geno-
type in the second parent, and the third part of the
offspring is copied again from the corresponding ge-
notype in the first parent. Fig. 9 shows an example
of the two-point crossover.

Fig. 9. Two-Point Crossover.

Finally, uniform crossover consists of randomly se-
lecting each assignment in the offspring either from
the corresponding assignment in the first parent or
from the corresponding assignment in the second pa-
rent. Fig. 3 shows an example of the uniform cros-
sover.

Fig. 10. Uniform Crossover.

In the case of recombination absence, the parent
itself is selected as the offspring.

Once the offsprings of iteration t are obtained,
if the finishing condition is not reached then a re-
combination operator is performed on all the chro-
mosomes of that offspring. This recombination pro-
cess consists of randomly selecting two boarder ava-
tars and exchanging the servers they are assigned
to. This process allows to keep diversity while exclu-
sively exploring highly probable solutions. Finally,
a mutation can be performed on the resulting off-
spring. It consists of randomly selecting an avatar
in a chromosome and changing its server. The whole
process performed in each iteration can be expres-
sed as the following pseudo-code statements (where

6



Genotype Gt is the resulting population of the pre-
vious iteration t, composed of P chromosomes):
Iteration t_plus_1 (Genotype Gt)

CONST

Nelitist /* Num. of elitist chromosomes */

P /* Num. of chromosomes in genotype */

N /* Num. of avatars in DVE system */

Recomb /* recombination rate */

TYPE

chromosome : int[N]

VAR

int i

Anc1, Anc2 : chromosome /* parents */

Desc : chromosome /* offspring */

begin

Copy_Nelitist_best_of_Gt_to(Gi)

For i:=Nelitist to P+Nelitist do

Anc1 := Gt[i]

a := Reproduction_select(Recomb)

if a = 0 then /* 0 = Recombination , 1 = No recombination */

Anc2 := Random_select_from(Gi)

crossover := Random_select_crossover()

case(crossover)

one-point:

Desc := 1point_cross(Anc1,Anc2)

multipoint:

Desc := mpoint_cross(Anc1,Anc2)

uniform:

Desc := unif_cross(Anc1,Anc2)

end_case

else

Desc := Anc1

end_if

if (NOT converg_condition(Desc)) then

recombination(Desc)

end_if

if (random()< mutation_rate) then

mutation(Desc)

end_if

Gi[i] := Desc;

end_for

Evaluate_And_Sort(Gi);

For i:=0 to P do

Gt_plus_1[i] := Gi[i];

end_for

end

In order to establish the convergence condition
(finishing condition of the algorithm), we have con-
sidered three parameters. The first one is the stan-
dard deviation of the fitness function (FQoS). When
all the individuals in the population are very simi-
lar, it will hardly provide solutions better than the
current one. Therefore, we will stop the algorithm if
this parameter is below a threshold value. The se-
cond parameter is the number of consecutive itera-
tions performed without improving the current best

fitness function. If we cannot find a better chromo-
some (solution) in a given number of iterations, we
assume that the current solution is the best one. Fi-
nally, we have also limited the total number of ite-
rations to a given value. When any of these three
conditions is fulfilled, then the algorithm finishes.

In order to obtain the maximum performance of
the algorithm, several parameters must be tuned
in the proposed implementation. These parameters
are the following ones: the number of chromoso-
mes in the population (P ), the number of itera-
tions (Max. Iterations), the mutation rate, number
of elitist chromosomes (Nelitist), the recombina-
tion rate (the percentage of iterations in which re-
combination is performed), the minimum standard
deviation allowed for the convergence condition (di-
versity threshold), the maximum number of itera-
tions allowed without improving the fitness function
(Max repetitions), and the maximum number of ite-
rations. We have empirically tuned these seven pa-
rameters in both MEDIUM1 and MEDIUM2 con-
figurations. However, we do not present the tuning
data in this paper for the sake of shortness. Instead,
Table 1 shows the tuning values that provided the
best QSGA performance for the MEDIUM2 confi-
guration. We used these values for the performance
evaluation shown in Section 4.

Parameter Value

Population size (P) 100

Elitism percentage (%Nelitist) 50

Mutation rate 0.05

Recombination rate 0.75

Max. Iterations 300

Max Repetitions 50

Diversity threshold 0.005

Table 1
Results of tuning QSGA parameters.

4. Performance Evaluation

In this section, we present the performance eval-
uation of the genetic algorithm described in the pre-
vious section. For comparison purposes, we have
also tested another two heuristic methods, SA and
GRASP, that have been adapted to the QoS problem
in DVE systems [16]. We have empirically tuned
these other heuristics in the same MEDIUM1 and
MEDIUM2 configurations described in the previous

7



section. Since the considered heuristic methods are
stochastic procedures, we have performed 100 exe-
cutions of each method and we have computed the
average value for each of the performance measures
shown in the following tables (these average values
have been rounded due to space limitations). There-
fore, each value in the tables represents the average
value obtained after 100 different executions. The
standard deviation of the different executions was
not higher than 20% of the shown values in any case.

Table 2 shows the results obtained for MEDIUM1
and MEDIUM2 configurationswhen avatars are uni-
formly located in the virtual world. Each column in
the table shows the results for a given partitioning
algorithm. Each row in the table shows a different
performance measure. The first row shows the maxi-
mum estimated percentage of CPU utilization that
any server will have with the resulting partition pro-
vided by each method. This measure must not be
greater than 99% [15]. The second row shows the sy-
stem cost (in terms of quality function FQoS values)
provided by each method. The third row shows the
estimated number of avatars that will be provided
with QoS, according to the resulting partition pro-
vided by each method[16]. The fourth row shows the
number of avatars that have to be migrated in order
to arrive to the resulting partition from the current
(initial) partition. Finally, last row shows the execu-
tion time (in seconds) required by each method in
order to provide the resulting partition.

MEDIUM1 MEDIUM2

SA GRASP QSGA SA GRASP QSGA

Max Ut. (%) 8 9 8 17 19 16

FQoS 17753 17352 17495 69633 62048 61558

QoS 239 249 245 526 619 621

Γ(P0) 13 15 13 54 101 101

Texe (s.) 0.45 0.37 0.47 7,68 7,31 9,07

Table 2
Results for DVE system with a uniform distribution of ava-
tars.

Table 2 shows that the considered methods ma-
nage to keep the system below the saturation point,
since the maximum estimated utilization percentage
does not reach 20% in any column. These values also
indicate that a uniform distribution of avatars gene-
rate a low level of workload. The Γ(P0) row shows
that the three methods provide good partitioning
efficiency, since all of them provide a final parti-
tion where the number of avatars to be migrated

is below the threshold of one third of the popula-
tion (250/3 for MEDIUM1 configuration and 700/3
for MEDIUM2 configuration). This table also shows
that for a uniform distribution of avatars, QSGA
method does not provide a significant performance
improvement with regard to GRASP or SA heuristic
methods. Although it provides a final partition with
a slightly lower value of FQoS, the required execution
time is longer than the one required by GRASP or
SA methods for MEDIUM2 configuration. Similar
results are obtained for MEDIUM1 configuration.
However, it is very unlikely that all avatars in a DVE
system show a uniform movement pattern. DVE sy-
stems usually have certain “hot points” where ava-
tars tend to head for [27]. In other cases, like 3-D
networked games, these hot-points are game resour-
ces (energy, weapons, etc.) that dynamically appear
and disappear, and only avatars located within a gi-
ven radius of the hot-point tend to approach these
points [28]. That is, non uniform distributions like
the skewed or clustered distributions are more rea-
listic than the uniform distribution of avatars.

Table 3 shows the results for MEDIUM1 and ME-
DIUM2 configurations when avatars are located in
the virtual world following a skewed distribution.
In this case, the maximum utilization rates increase
with regard to the ones in Table 2, showing that in
this distribution the workload generated with the
same number of avatars is greater. Table 3 clearly
shows how for this distribution of avatars and for
MEDIUM2 configuration QSGA is able to provide
a partition with lower (better) values of FQoS than
the ones provided by GRASP or SA. For this confi-
guration QSGA is capable of increasing the number
of avatars provided with QoS in a 24% when com-
pared with GRASP method, and increasing it in a
48% when compared to SA method. However, for
MEDIUM1 configuration QSGA provides QoS to a
lower number of avatars than GRASP method. Ne-
vertheless, it requires the shortest execution time in
order to provide the resulting partition for both con-
figurations. These results suggest that QSGA pro-
vides comparatively better results as the size of the
DVE system grows, adding scalability to the DVE
system.

Finally, Table 4 shows the results for both con-
figurations when avatars are located in the virtual
world following a clustered distribution. For this di-
stribution of avatars, the maximum utilization rates
still increase with regard to Table 3. This means that
this is the distribution where avatars generate the
greatest workload. In this case, for MEDIUM2 con-

8



MEDIUM1 MEDIUM2

SA GRASP QSGA SA GRASP QSGA

Max Ut. (%) 26 29 24 53 58 54

FQoS 20322 19370 19796 88426 82857 75326

QoS 222 234 232 290 347 431

Γ(P0) 54 55 49 194 81 169

Texe (s.) 3.77 2.08 1.67 84.08 20.07 18.43

Table 3
Results for a DVE system with a skewed distribution of
avatars.

figuration QSGA is capable of providing a partition
with a FQoS that is 5% lower than the one provided
by GRASP and 8.5% lower than the one provided
by SA method. As a result, the number of avatars
provided with QoS increases to a value of 436, while
for the other two methods this value is 415 and 349,
respectively. Nevertheless, the most spectacular im-
provement is done in terms of execution times. The
execution time required by QSGA is around half the
time required to execute GRASP method. However,
the results for MEDIUM1 configuration are similar
or even worse (in terms of number of avatars pro-
vided with QoS) than those obtained with GRASP.
As for the case of the skewed distribution, these re-
sults show that the potential of QSGA can be fully
exploited in large scale DVE systems.

MEDIUM1 MEDIUM2

SA GRASP QSGA SA GRASP QSGA

Max Ut. (%) 28 36 28 69 72 70

FQoS 21307 19868 20354 92677 88960 84774

QoS 213 237 226 349 415 436

Γ(P0) 69 67 66 95 82 120

Texe (s.) 4.34 3.01 1.73 48.89 43.66 23.40

Table 4
Results for a DVE system with a clustered distribution of
avatars.

All these results show that the performance of
QSGA increases as the distribution of avatars in the
virtual world generates a greater workload. Since the
purpose of the method is to provide QoS to the ma-
ximum number of avatars and as longer as possible,
these results validate QSGA as a very efficient heu-
ristic method for providing QoS in DVE systems.

5. Conclusions and Future Work

In this paper, we have proposed a genetic algo-
rithm for solving the QoS problem in Distributed
Virtual Environment systems. We have compared
the performance of the proposed method with the
performance obtained with other heuristic methods
applied to the same problem.

Due to its ability of both finding good search pa-
ths and keeping diversity, this technique can pro-
vide significantly better solutions than other heu-
ristic methods with shorter execution times. Thus,
the evaluation results show that although the newly
proposed method does not improve the performance
of the DVE system when the workload is low, it pro-
perly scales with the workload generated by avatars.
As a result, it provides the best performance for the
QoS problem as the DVE system gets more loaded.
Since the purpose of the method is to provide QoS to
the maximum number of avatars as longer as possi-
ble (regardless of the distributions of avatars in the
virtual world), these results validate QSGA as an
efficient heuristic method that can actually improve
the QoS offered by DVE systems.

As a future work to be done, we plan to tackle the
problem with a multi-objective algorithm.

Acknowledgments

This paper is supported by the Spanish MEC un-
der grant TIC2003-08154-C06-04.

References

[1] S. Singhal, M. Zyda, Networked Virtual Environments,
ACM Press, 1999.

[2] J. S. Dias, R. Galli, A. C. Almeida, C. A. C. Belo, J. M.
Rebordao, mWorld: A multiuser 3d virtual environment,
IEEE Computer Graphics and Applications 17 (2)
(1997) 55–65.

[3] D. Miller, J. Thorpe, SIMNET: The advent of simulator
networking, Proceedings of the IEEE 83 (8) (1995) 1114–
1123.

[4] T. Nitta, K. Fujita, S. Cono, An application of
distributed virtual environment to foreign language, in:
30th Annual Frontiers in Education Conference, vol. 1,
2000, pp. F1G/9–F1G15.

[5] M. Lewis, J. Jacboson, Game engines in scientific
research: Introduction, Communications of the ACM
45 (1) (2002) 27–31.

[6] J. C. Lui, M. Chan, An efficient partitioning algorithm
for distributed virtual environment systems, IEEE

9



Trans. Parallel and Distributed Systems 13 (3) (2002)
193–211.

[7] D. B. Anderson, J. W. Barrus, J. H. Howard, C. Rich,
C. Shen, R. C. Waters, Building multiuser interactive
multimedia environments at merl, IEEE MultiMedia
2 (4) (1995) 77–82.

[8] F. C. Greenhlagh, Awareness-based communication
management in massive systems, Distributed Systems
Engineering 5 (3) (1998) 129.

[9] H. Abrams, K. Watsen, M. Zyda, Three-tiered interest

management for large-scale virtual environments, in:
VRST ’98: Proceedings of the ACM symposium on
Virtual reality software and technology, ACM Press,
New York, NY, USA, 1998, pp. 125–129.

[10] K. Lee, D. Lee, A scalable dynamic load distribution
scheme for multi-server distributed virtual environment
systems with highly-skewed user distribution, in:
Proceedings of the 10th ACM Symposium on Virtual
Reality Software and Technology (VRST 2003), ACM,
2003, pp. 160–168.

[11] H. Trefftz, I. Marsic, M. Zyda, Handling heterogeneity
in networked virtual environments, Presence:
Teleoperators and Virtual Environments 12 (1) (2003)
37–51.

[12] M. V. Capps, The quick framework for task-specific asset
prioritization in distributed virtual environments, in:
VR ’00: Proceedings of the IEEE Virtual Reality 2000
Conference, IEEE Computer Society, Washington, DC,
USA, 2000, p. 143.

[13] P. Morillo, J. M. Orduña, M. Fernández, J. Duato, On
the characterization of distributed virtual environment
systems, in: Euro-Par 2003 - Lecture Notes in Computer
Science 2790, ACM, Springer-Verlag, 2003, pp. 1190–
1198.

[14] P. Morillo, J. M. Orduña, M. Fernández, J. Duato, An
adaptive load balancing technique for distributed virtual
environment systems, in: Proc. of Intl. Conf. on Parallel
and Distributed Computing and Systems (PDCS’03),
IASTED, ACTA Press, 2003, pp. 256–261.

[15] P. Morillo, J. M. Orduña, M. Fernández, J. Duato,
Improving the performance of distributed virtual
environment systems, IEEE Transactions on Parallel
and Distributed Systems 16 (7) (2005) 637–649.

[16] P. Morillo, J. M. Orduña, M. Fernández, J. Duato,
A comparison study of metaheuristic techniques for
providing QoS to avatars in DVE systems, in: ICCSA’
2004 - Lecture Notes in Computer Science 3044,
Springer-Verlag, 2004, pp. 661–670.

[17] X. Yuan, Heuristic algorithms for multi-constrained
quality of service routing, IEEE Transactions on
Networking 10 (2) (2002) 244–256.

[18] B. Caminero, C. Carrión, F. Quiles, J. Duato,
S. Yalamanchili, A hardware approach to QoS support in
cluster environments: The multimedia router MMR, in:
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA’03), 2003, pp. 220–226.

[19] Z. Wang, J. Crowcroft, Quality-of-service routing for
supporting multimedia applications, IEEE Journal of
Selected Areas in Communications 14 (7) (1996) 1228–
1234.
URL citeseer.ist.psu.edu/wang96quality.html

[20] S. Chen, K. Nahrstedt, Distributed quality-of-service
routing in high-speed networks based on selective
probing, in: LCN, 1998, pp. 80–89.
URL citeseer.ist.psu.edu/499012.html

[21] P. Bhaniramka, W. Sun, R. Jain, Quality of service
using traffic engineering over MPLS: An analysis, in:
Proceedings of 25th Annual IEEE Conference on Local
Computer Networks (LCN 2000), 2000, pp. 238–241.

[22] Z. Choukair, D. Retailleau, M. Hellstrom, Environment
for performing collaborative distributed
virtual environments with QoS, in: Proceedings of the
International Conference on Parallel and Distributed
Systems (ICPADS’00), IEEE Computer Society, 2000,
pp. 111–118.

[23] T. Henderson, S. Bhatti, Networked games: a QoS-
sensitive application for qos-insensitive users, in:
Proceedings of the ACM SIGCOMM 2003, ACM Press
/ ACM SIGCOMM, 2003, pp. 141–147.

[24] R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms,
Ed. Willey, 1997.

[25] P. Morillo, J. M. Orduña, M. Fernández, J. Duato, On
the characterization of avatars in distributed virtual
worlds, in: EUROGRAPHICS’ 2003 Workshops, The
Eurographics Association, 2003, pp. 215–220.

[26] Z. Michalewicz, Genetic Algorithms + Data Structures
= Evolution Programs, Springer, 1994.

[27] C. Greenhalgh,
Analysing movement and world transitions in virtual
reality tele-conferencing., in: European Conference on
Computer Supported Cooperative Work (ECSCW 97),
1997, p. 313.

[28] M. Matijasevic, K. P. Valavanis, D. Gracanin,
I. Lovrek, Application of a multi-user distributed virtual
environment framework to mobile robot teleoperation
over the internet, Machine Intelligence & Robotic
Control 1 (1) (1999) 11–26.

10


