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Abstract

Collaborative Augmented Reality (CAR) systems allow multiple users to share a
real work environment including computer-generated images in real time. Currently,
the hardware features of most mobile phones not only provide excellent multimedia
services, but they also include wireless network capabilities to support local and remote
communication and thus, they provide a natural platform for CAR systems. However,
the wide variety of these hardware features can have important effects on the perfor-
mance of the mobile CAR applications.

This paper presents the experimental characterization mobile phones for Augmented
Reality marker tracking, a core task that any CAR application must include. The char-
acterization is performed in regard to well-known performance metrics in distributed
systems, and the results show that the most time consuming stage is the marker detec-
tion stage, followed by the image acquisition stage. Therefore, the improvement of these
applications should be addressed to improve these stages. Moreover, the rendering stage
is decoupled on some devices, depending on the operative system used. This decoupling
process allows to avoid low refresh rates, facilitating the collaborative work. These
results can be used as the basis for an efficient design of CAR systems and applications.

Key words: Collaborative Augmented Reality; Marker tracking; Mobile Phones; Per-
formance improvement

1 Introduction

Augmented Reality (AR) systems are a combination of visualization, tracking and interac-
tion devices systems aimed to interactively blend real images and virtual objects in a real
environment. The sense provided to the end user is that the real world is supplemented
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with virtual (computer-generated) objects that appear to coexist in the same space as the
real world Since the beginning of AR systems, the potential of collaborative AR (CAR) sys-
tems was exploited for different activities like Teleconferencing or Collaborative Computing
[4] Wearable devices were used to provide CAR systems where a wearable AR user could
collaborate with a remote user at a desktop computer [15].

On other hand, the continue improvement in silicon technology, together with the evo-
lution of design methodologies, allowed to integrate complex computing Systems-on-Chip
(SoCs). As a result, a lot of devices comprising a computing embedded system pervade
our daily life, and they have been used for CAR systems. One of these devices are mobile
phones Effectively, current mobile phones have full color displays, integrated cameras, fast
processors and even dedicated 3D graphics chips, and they have become an ideal platform
for CAR systems [8]. However, the wide variety of current mobile phones, with different
graphic and processing capabilites, and different operating systems, can have significant
effects on the performance of the CAR application, in terms of system latency, frames per
second or number of supported clients with certain latency levels. This effects are partic-
ularly important in the process of the AR marker tracking, an essential process that takes
place in any CAR application. Taking into account that CAR applications should be in-
teractive, the design of an efficient marker tracking process must take into account these
effects in order to fulfill the required specifications.

In this paper, we propose an in-depth performance characterization of different mobile
phones for Augmented Reality marker tracking, starting from some preliminary results [3].
In order to achieve this goal, we have implemented a simple Augmented Reality marker
tracking application on a real system, and we have measured the performance achieved
with different mobile phones. In order to ensure a representative study of the mobile phone
market, we have considered different mobile phones based on two different operating systems
(OS): Android OS [6], and iOS [2]. The results show that the most time consuming stage
in an AR marker tracking is the marker detection stage, followed by the image acquisition
stage, the rendering stage and finally, the transmission stage. Therefore, any improvement
of the CAR applications (categorized from the obtained results as CPU-intensive but not
memory-intensive) should be addressed to improve the image acquisition process. Regarding
the operating systems, the results show that the rendering stage is decoupled on devices
using the Android OS, in such a way that it is executed with the other stages concurrently.
However, this stage can be programmed to work as in iOS operating system in ad-hoc
implementations. The results also show that some recent mobile phones like IPhone 4 [2]
only works with high resolution images. As a result, these mobile devices need a lot of time
for detecting the markers in the camera image plane.

The rest of the paper is organized as follows: Section 2 shows some related work about
CAR applications on mobile phones. Section 3 presents some details on how AR marker
tracking is implemented on mobile phones. Next, Section 4 describes the characterization
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setup, and Section 5 shows the characterization results. Finally, Section 6 presents some
conclusions and future work to be done.

2 Related Work

Augmented Reality superimposes multimedia content - 3D object, text, sound, etc - to real
world through a display or screen. In order to locate digital contents on a specific image
of the real world point, some references within the image are needed. These references are
known as markers, and two methods are usually used to track them: natural feature tracking
and fiducial marker tracking. The former method uses interest point detectors and matching
schemes to associate 2D locations on the video with 3D locations [21]. This process can be
grouped in three large phases: interest point detection, creation of descriptor vectors for
these interest points, and comparison of vectors with the database [10]. The latter method
uses fiducial markers to find a specific position of real world. This process can be divided in
three phases: edge detection, rejection of quadrangles that are too large or too small, and
checking against the set of known patterns [21].

There are few solutions based on fiducial marker tracking over mobile phones. In 2003,
ArToolKit [9], one of the most well-known software libraries for developing Augmented Real-
ity (AR) application, was released for Windows CE, and the first self-contained application
was developed for mobile phones This software evolved later as the ArToolKitPlus tracking
library [21]. A tracking solution for mobile phones that works with 3D color-coded marks
was developed [13], and a version of ArToolKit for Symbian OS was developed, partially
based on the ArToolKitPlus source code [8]. The research teams behind these works have
worked on fiducial marker tracking, but not from the collaborative point of view. Also,
there are many other works that focus on natural feature tracking [21, 18, 22, 23].

Although real-time natural feature tracking over mobile devices has been currently
achieved [21], fiducial marker tracking is more widely used, because it allows simultaneous
computational robustness and efficiency. A large number of locations and objects can be
efficiently labeled by encoding unique identifiers on the markers. Additionally, the markers
can be detected with angles near to 90 degrees [21].

3 CAR Applications on Mobile Phones

Any CAR application needs a device equipped with an on-board camera, CPU and display.
The most common devices used for CAR applications are Tablet PCs or mobile phones. We
will focus on mobile phones, because they are more wearable devices than tablet PCs, and
therefore they are more suitable for many CAR applications designed for daily life common
situations [19].
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Figure 1: A description of the most common stages in the AR marker tracking process

There are different kinds of mobile phones, with different operative systems (OS) and
capabilities. The most extended OSs for mobile phones are Nokia Symbian, Google Android
OS (commonly referred as Android), RIM/Blackberry, Apple iOS, Microsoft Windows Mo-
bile/Phone 7 and Samsung Bada [1]. In this work, we are focusing on two of them, Android
and iOS, because they share the vast majority of the current market [7].

The Augmented Reality marker tracking process in CAR applications can be split into
four stages, as depicted in Figure 1: The first stage is denoted as image acquisition state, and
it consists of obtaining an image from the camera’s flow. In the second stage, markers are
detected from the image obtained before. Using the position of this markers, the third stage
consists of drawing a 3D object on the image. Finally, in the fourth phase this information
(for example, the position(s) of the mark(s)) is sent to the other application nodes through
some kind of broadcast.

The first three phases are similar on any AR application [21], but the last one can be
performed by using different technologies like WiFi, 3G or Bluetooth [17]. Although there
are some classic CAR applications that uses Bluetooth, usually WiFi or 3G technologies
are used, since the use of Bluetooth severely limits the spatial range of transmission.

c©CMMSE ISBN:xxxxxxxxx



Vctor Fernández, Juan M. Orduña, Pedro Morillo

4 Characterization Setup

In this work, we propose the characterization of each of the stages of a AR marker tracking
process in different mobile phones. For characterization purposes, the application imple-
mented the sending of the positions of the marks. Different types of markers are avail-
able, such as ARToolKit, ARToolKitPlus, ARTag [5], ARSTudio, QR-Code, ShotCode,
etc.. However, the most widely used are the first two ones, due to its source code availabil-
ity [8]. For that reason, we have selected the ARToolKitPlus library. ARToolKitPlus is the
ARToolKit version for mobile devices that, among other adjustments, eliminates the use of
floating point arithmetic, since most mobile devices are not optimized to deal with it[21].
Finally, we focus on two different operating systems that are widely used in mobile phones:
Android and iOS.

4.1 Test description

We have tested two different mobile phones using Android and another two mobile phones
using iOS operating system. Table 1 shows the main features of these mobile phones. For
the Android operative system, we have considered the Motorola Milestone, with 550 MHz
of CPU frequency, and Nexus One, with almost double CPU frequency (998 MHz). For the
iOS operating system, we have considered the iPhone 3G, with 412 MHz of CPU frequency,
and iPhone 4, with double CPU frequency (800 MHz). All of them include a 5 megapixels
(5MP) resolution camera, except iPhone 3G, which equips a 2 megapixels (2MP) resolution
camera.

OS Android iOS
Model Milest. Nex. One iPh 3G iPh 4

CPU (MHz) 550 998 412 800
RAM (MB) 256 512 128 512
Camera (MP) 5,02 4,92 1,92 4,92

Table 1: Hardware features of the considered mobile phones

On the Internet, there are some implementations for Android and iOS OSs that are
open source. We have used them as a starting point to obtain an AR marker tracking
implementation. As we mentioned earlier, CAR applications are closely related with AR
applications. Previous studies on AR applications show that the mark size does not affect
performance, that the tracking computing is primarily CPU bound and not influenced much
by the operating system, and that the tracking performance increases linearly with the CPU
clock [16]. The problem with changing lighting conditions is solved on ARToolKitPlus with
an Automatic thresholding, so there is no need to worry about this issue. The increased
resolution on the camera provides only minimal improvement in the tracking quality [21].
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Our purpose is to analyze the amount of time that each stage needs to run, the CPU
consumption, the amount of memory it requires, and the round-trip delay of the data
transmission. We have performed all the tests with a single mark, since multi-marker
tracking provides highly stable tracking [21].

4.2 Android implementation

NyARToolKit [14] is a complete version of ARToolkit [9] that was exclusively written in
Java. This makes it slower in execution than the original, but it also makes it completely
independent of the processor architecture. As the original, NyARToolKit is a library of func-
tions visual interpretation and integration of VR data into physical environments, including
real-time camera vision functionality, 3D rendering of virtual objects, and integrating both
into the output stream.

Despite being native to Java, the toolkit works with C# and the Android operating
system [20] and uses OpenGL ES for rendering. After obtaining the source code, we analyzed
it to delimit each of stages of the AR marker tracking process by adding timestamps. Then,
we added the sending stage, creating a TCP socket that sends the information to a Server or
other devices. Among the different camera resolutions that offers Android, we have chosen
a small one, in order to provide a fast way to find the mark from the image obtained.
Concretely, we have used a resolution of 320x240 pixels for both mobile phones.

Figure 2 shows a snapshots of the AR marker tracking implementation performed dur-
ing a test with real industrial elements, for illustrative purposes. Concretely, this image
shows the results of a CAR system developed for remotely repairing an engine in a in-
dustrial environment. In this process, the on-site worker (which is repairing on-site the
machine at the factory) is guided by the qualified technician (at the laboratory) until the
maintenance/repair task is completed. The snapshot shows that the AR marker tracking
allows to superimpose green arrows pointing to the three connectors that the on-site worker
must disconnect in this step. In this case, the CAR application also adds some instructions
in text (written in Spanish).

4.3 iOS implementation

The iOS implementation has been developed by Benjamin Loulier [11] and is based on
ARToolKitPlus [21]. Among the features provided by this application, we can found single
marker detection (the marker detection is done using an objective-c wrapper developed over
ARToolKitPlus), loading of 3D objects using custom xml and “.h” files (or “.obj”, but the
parser is very slow for now), and only one texture file is supported. The association between
a markerID and an object is done by using a XML exchange file, which in turn gives access
to a GUI to modify the display parameters associated to an object[12]. It also uses OpenGL
ES for rendering.
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Figure 2: A snapshot of the marker tracking implementation

After getting the application, we did the same procedure as in the Android version:
analyzing its stages, putting time marks and adding the sending stage, also with TCP
sockets.

In contrast to Android, iOS only provides two camera resolutions: full or half. In half
resolution it obtains the same resolution that in full resolution, but it only analyzes one
of every two pixels. In order to make that fairest comparisons as possible, we used half of
the resolution, with a resolution of 400x304 on iPhone 3G and a resolution of 1280x720 on
iPhone 4.

5 Performance Evaluation

The main performance metrics in distributed systems are throughput and latency. From the
point of view of graphics, throughput is measured in frames per second (FPS) and latency
on milliseconds (ms). However, in distributed systems the latency of data exchanged among
different devices cannot be measured with accuracy, due to potential clock skews between
the sending and the receiver clocks. In these cases, the round-trip-time (RTT) is used, since
it allows that the sending and received instant are measured by the same clock.
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Table 2 shows the performance evaluation, in terms of the average number of FPS
achieved by each mobile phone, and the latency for the transmission stage of the application.

FPS RTT (ms)
Milestone 1,43 14,14

Nexus One 5,98 5,54
iPhone 3G 2,51 15,42
iPhone 4 1,91 7,06

Table 2: Throughput (in terms of FPS) and RTT for each smartphone

Table 2 shows that the Motorola Milestone is the handheld device with the poorest
throughput, and the Nexus One is the one with the best throughput. Although the iPhone
3G provides better throughput than the iPhone 4G, this behavior is due to the fact that
the iPhone 3G has to analyze much less amount of data than the iPhone 4, since the size
of its image is much lower. The right column in this table shows that the latency is quite
similar in all the mobile phones considered, as it could be expected, because it depends on
network features more than the computing capabilities of the considered mobile phone.

The next step in our characterization study consists of the analyzing of the throughput
achieved by each device considered. Table 3 shows the decomposition of the results shown
in table 2. Concretely, the first four columns show the average duration of each stage per
cycle for each device, and the rightmost column shows the total aggregated cycle time. The
inverse of these times result in the number of frames per second shown for each device in
table 2.

Stages(ms) Acq. Detect Render Send Total
Milestone 248,64 288,53 30,42 14,14 698,34
Nexus One 40,25 78,08 13,23 5,54 167,11
iPhone 3G 33,29 58,07 28,26 15,42 398,00
iPhone 4 17,66 182,17 23,34 7,06 523,26

Table 3: Execution time (ms) per stage for each considered mobile phone

Each row in Table 3 shows the number of milliseconds that each stage needs to finish on
each device. The Motorola Milestone provides the worst throughput because it is six times
slower in obtaining images, and almost twice slower in detecting a mark, than the next in
the list. Regarding the rendering and sending stages, there are also significant differences
with other devices. When comparing both OSs, we can see that the differences among the
“slow” devices are not significant, but the difference between the “fast” devices (Nexus One
and iPhone4) are important, providing best rendering and transmission times the Nexus
One.
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On other hand, the behavior shown by iOS-based devices for AR purposes is different
from the behavior shown by another mobile phones. In this sense, the image acquisition
process is twice faster on a iPhone 4 than the same state performed on an iPhone 3G.
However, the marker detection stage in an iPhone 4 is three times slower than in the
iPhone 3G. Although the CPU of an Iphone 4 is twice as powerful as the CPU included in
an Iphone 3G, the reason of this result is that the images processed in an iPhone 4 are six
times bigger than the images processed by an iPhone 3G. In this sense, Table 3 shows that
iPhone 4 is slightly faster than the former model for both the rendering and sending stages.

When Android-based devices are compared to Apple’s mobile phones in the analysis
of the marker detection stage, Table 3 shows that the Android devices are faster than iOs
phones because the images captured from the on-board cameras equipped in the Android
devices are four times smaller than the images captured by an iPhone 4. In this sense,
iPhone 3G takes less time than Android devices to complete the marker detection stage
taking not only into account that the images captured by an iPhone 3G has a size similar to
the images obtained by Android devices, but also the CPU of an HTC Nexus One (Android)
is twice as powerful as the CPU included in an Iphone 3G. Regarding the rendering stage,
the iOS-based smartphones are twice slower than the fastest Android. Finally, the sending
stage is completed slightly faster on Android devices.

Table 3 shows that if total execution time (included in the last column) is compared
to the reciprocal value of the throughput (FPS in Table 2) both Android devices have
almost a perfect matching. On the contrary, iOS smartphones need twice times to complete
the cycle. This unexpected and non-sequential behavior can be due to: i) Android seems
to leave its applications very often. ii) Android applications do not need to manage the
memory directly because they are executed on a Virtual Machine (VM), which manages
automatically the memory. iii) The CAR stages in Android-based devices are implemented
in independent threads and are not executed in a blocking manner. Since the rendering
thread is decoupled with the rest of the threads of the CAR framework, this thread does
not wait the update performed by the marker detection stage.

These results seem to indicate that the Android devices render the final Augmented
Reality scenes more often than the iOS devices. In order to confirm this result, we have
measured the number of completed rendering stages compared to the rest of the threads of
the CAR framework. The obtained averaged values are 6.28 renderings per cycle in HTC
Milestone and 5.55 renderings per cycle in the case of the HTC Nexus One.

The number of extra renderings per cycle depends on the number of polygons and the
amount of texture data in the 3D model. Table 4 shows the relation between the number
of renderings per cycle and the complexity of the 3D scene for the HTC Milestone and the
HTC Nexus One. In order to differentiate complexities we have selected two classical 3D
models as benchmarks consisting in a cylinder (simple 3D model) and a plane (complex 3D
model).
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Render (ms) RRender FPS
Milestone (simple model) 21,40 18,24 1,23
Milestone (complex model) 48,32 9,90 1,25
Nexus One (simple model) 5,48 6,27 5,80
Nexus One (complex model) 24,46 4,47 5,87

Table 4: Relation of the number of renderings per cycle and the complexity of the 3D scene
for different models on Android devices

The first column in Table 4 shows the number of milliseconds that the rendering stage
needs to finish on each device and 3D model. The next column (RRender) indicates the
the number of renderings per AR cycle (repetitions) and finally, the last column (FPS)
shows the application throughput expressed in frames per second. A similar experiment in
iOS devices only generates an slight increase in the total time of the AR cycle. Table 4
shows that both Android smartphone (HTC Nexus One and HTC Milestone) require more
time to complete the rendering stage as the complexity of the 3D models is increased. In
this experiment, the average time required to complete the rendering stage for the complex
3D models is the double of the time needed in the case of the simple 3D models. This
variation is more evident for the parameter corresponding to the number of repetitions of
the rendering stage. Since the rendering stage needs more time as the complexity of the 3D
model is increased, the number of repetitions of this stage in the regular cycle of the AR
application is decreased to maintain a constant application throughput.

6 Conclusions and Future Work

In this paper, we have proposed a performance characterization of mobile phones oriented
to the provide a robust and an efficient design of for Collaborative Augmented Reality
(CAR) Applications. In order to ensure an analysis of the mobile phone market for CAR
purposes (mid-and high-end mobile device), we have considered different mobile phones
based on Android OS and iOS operating systems. These devices have been used to execute
a simple AR marker tracking process on a real system where we have measured the achieved
performance.

The results of the performance evaluation show that when the same AR marker tracking
process is executed on different mobile phones, the best throughput, measured in frames per
second (FPS), is obtained for smartphones based on Android operative platforms. However,
as the hardware capabilities of the mobile phones decrease, iOS-based devices reach and
exceed the performance of Android-based smartphones.

In order to analyze more in detail the relation between the hardware features and the
performance of AR marker tracking process on different mobile phones, we have studied the
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different stages that compose a common AR marker tracking process. The results show that
the most time consuming stage in this process is the marker detection stage, followed by the
image acquisition stage, the rendering stage and finally, the transmission stage. Therefore,
any improvement of the AR marker tracking process should be oriented to enhance the
image acquisition process. Regarding the execution of CAR applications on mobile phones
in different operating systems, the results show that the rendering stage is decoupled on
devices using the Android OS, in such a way that it is executed with the rest of the stages
concurrently. However, this stage can be programmed to work as in iOS operating system
in ad-hoc implementations. Moreover, the results also show that some recent mobile phones
like IPhone 4 [2] only works with high resolution images. As a result, these mobile devices
achieves the most visual quality at the expense of needing a lot of time for detecting the
markers in the camera image plane.
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