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1 Departamento de Informática, Universidad de Valencia - SPAIN

emails: Victor.Fernandez-Bauset@uv.es, Juan.Orduna@uv.es, Pedro.Morillo@uv.es

Abstract

Collaborative Augmented Reality (CAR) systems based on mobile phones have expe-
rienced a huge expansion last years, since the hardware features of most mobile phones
provide excellent multimedia services and wireless network capabilities. In previous
works, we improved the performance of CAR systems based on mobile phones that use
a marker detection mechanisms. However, CAR systems based on feature vectors have
just emerged, changing the way in which Augmented Reality applications work.

In this paper, we propose the characterization and performance improvement of
CAR systems based on markerless tracking when using mobile phones. The characteri-
zation of client devices show that they work faster with markerless tracking than with
fiducial marker tracking, regardless of the phone model and operating system consid-
ered. The characterization of the whole CAR system shows that the response times
provided by the CAR system remain interactive, except when the system enters satu-
ration. At that point, the system does not drop any message, at the cost of exceeding
an interactive response time (250 ms.). As the system enters deep saturation, more
messages are dropped and as a consequence the response time is reduced, providing in-
teractive response times again. Thus, we have achieved simulations of CAR system with
1000 client devices for all the considered types of mobile phones without significantly
exceeding interactive response times.
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1 Introduction

Since the beginning of AR systems, the potential of collaborative AR (CAR) systems was
exploited for different activities like Collaborative Computing [6] or Teleconferencing [5].
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Wearable devices were used to provide CAR systems where a wearable AR user could collab-
orate with a remote user at a desktop computer [16]. One of these devices are mobile phones
[11, 14]. Effectively, current mobile phones have full color displays, integrated cameras, fast
processors and even dedicated 3D graphics chips, and they have become an ideal platform
for CAR systems [10]. However, the wide variety of current mobile phones, with different
graphic and processing capabilites, and different operating systems, can have significant
effects on the performance of the CAR application, in terms of system latency, frames per
second or number of supported clients with certain latency levels.

Augmented Reality superimposes multimedia content - 3D object, text, sound, etc -
on real world through a display or screen. In order to locate digital contents on a specific
image of the real world point, some references within the image are needed. These references
are known as markers, and two methods are usually used to track them: natural feature
tracking and fiducial marker tracking. The former method uses some actual objects of the
environment as a target to be tracked in order to place 3D virtual objects. The latter
method uses fiducial markers to find a specific position of real world.

In previous works, we characterized the behavior of different mobile phones for Aug-
mented Reality marker tracking, and we also proposed some improvements for CAR systems
based on fiducial markers and mobile phones as client devices [3, 2, 7]. However, the ad-
vent of Vuforia [17], released by the ARM-processor company Qualcomm at the end of the
2011, has allowed the widespread use of markerless-based CAR applications worldwide. The
reason for its popularity is that, unlike another approaches such as NyARToolkit [15], the
VuforiaSDK supports for more than 400 different smartphones and tablet models, and it
tracks real objects on the current frame with a impressive fluidityand reliability.

In this paper, we propose the characterization and performance improvement of CAR
systems based on markerless tracking when using mobile phones. The characterization
of client devices show that they work faster with markerless tracking than with fiducial
marker tracking, regardless of the phone model and operating system considered. The
characterization of the whole CAR system shows that the response times provided by the
CAR system remain interactive, except when the system enters saturation. At that point,
the system does not drop any message, at the cost of exceeding an interactive response
time (250ms.) [9]. As the system enters deep saturation, more messages are dropped and
as a consequence the response time is reduced, providing interactive response times again.
Thus, we have simulated CAR system with 1000 client devices for all the considered types of
mobile phones. Unfortunately, since the Vuforia library is not open source code, we cannot
find the reason for that behavior.

The rest of the paper is organized as follows: Section 2 shows some background about
CAR applications on mobile phones. Section 3 describes the characterization setup, and
Section 4 shows the characterization results and the performance obtained with this new
values in our CAR server. Finally, Section 6 presents some conclusions remarks.
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2 Background

Any CAR application needs a device equipped with an onboard camera, CPU and display.
The most common devices used for CAR applications are Tablet-PCs or mobile phones.
There are different kinds of mobile phones, with different operative systems (OS) and ca-
pabilities. The most extended OSs for mobile phones are Nokia Symbian, Google Android
OS (commonly referred as Android), RIM/Blackberry, Apple iOS, Microsoft Windows Mo-
bile/Phone 7 and Samsung Bada [1]. In this work, we are focusing on two of them, Android
and iOS, because they share the vast majority of the current market [8].

Augmented reality superimposes multimedia content - 3D object, text, sound, etc - to
real world through a display or screen. In order to locate digital contents on a specific image
of the real world point, some references within the image is needed. These references are
known as markers. The Augmented Reality marker tracking process in CAR applications
can be split into four stages: The first stage is denoted as image acquisition stage, and it
consists of obtaining an image from the camera’s flow. In the second stage, markers are
detected from the image obtained before. Using the position of this markers, the third stage
consists of drawing a 3D object on the image. Finally, in the fourth phase some information
(for example, the position(s) of the mark(s)) is sent to the other application nodes through
some kind of broadcast communication.

Two methods are usually used in CAR applications for the marker detection stage:
natural feature tracking and fiducial marker tracking. The former method uses interest
point detectors and matching schemes to associate 2D locations on the video with 3D
locations [22]. This process can be grouped in three big phases: interest point detection,
creation of descriptor vectors for these interest points, and comparison of vectors with the
database [13]. The latter method uses fiducial markers to find a specific position of real
world. This process can be divided in three phases: edge detection, rejection of quadrangles
that are too large or too small, and checking against the set of known patterns [22].

There are few solutions based on fiducial marker tracking over mobile phones. In 2003,
ArToolKit [12], one of the most well-known software libraries for developing Augmented
Reality (AR) application, was released for Windows CE, and the first self-contained applica-
tion was developed for mobile phones [23]. This software evolved later as the ArToolKitPlus
tracking library [22]. A tracking solution for mobile phones that works with 3D color-coded
marks was developed [14], and a version of ArToolKit for Symbian OS was developed, par-
tially based on the ArToolKitPlus source code [10]. The research teams behind these works
have worked on fiducial marker tracking, but not from the collaborative point of view. Also,
there are many other works that focus on natural feature tracking [22], [19], [20], [21].
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3 Characterization setup

We propose the characterization of each of the stages of a CAR application over different
mobile phones. For characterization purposes, the application performs the sending of
the positions of the marks. In the CAR server side, we have developed a multithreaded
CAR server that supports simulated clients (simulated mobile devices) with the behavior
measured in the characterization part, as we did for marker-based CAR systems [3, 7]. We
have time-stamped every message generated within this CAR system, in order to measure
the performance of every device. The system configuration consists of one server, and a
certain amount of mobile devices that are scanning the visual space of their video camera,
looking for a marker that will be converted into a 3D object in their display. The action
cycle performed by each client is composed of the steps illustrated by Figure 1, which
can be described as follows: first, it performs one new image acquisition followed by a
marker detection stage. Then, the client waits until the cycle period (determined by the
action frequency, a system parameter) finishes. Next, if the acknowledgments from all the
neighbors have been received, then a new message with the new marker location is sent.
If all the acknowledgments have not been received, then it waits for a maximum waiting
threshold of 20 seconds, and then a new round of messages (with the latest marker location)
are sent to the neighbors through the server. The neighbors simply return an ACK message
to the sender device through the server. The server simply forwards the messages to the
corresponding destination clients.

We have tested two different mobile phones using Android and another two mobile
phones using iOS operating system. We have selected the same phone models for comparison
purposes with our previous studies for CAR systems based on fiducial markers. Table 1
shows the main features of these mobile phones. For the Android operative system, we have
considered the Motorola Milestone, with 550 MHz of CPU frequency, and HTC Desire,
with almost double CPU frequency (998 MHz). For the iOS operating system, we have
considered the iPhone 3GS, with 412 MHz of CPU frequency, and iPhone 4, with double
CPU frequency (800 MHz). All of them include a 5 megapixels (5 MP) resolution camera,
except iPhone 3GS, which equips a 2 megapixels (2MP) resolution camera.

OS Android iOS
Model Milest. Desire iPh 3GS iPh 4

CPU (MHz) 550 998 412 800
RAM (MB) 256 512 128 512
Camera (MP) 5,02 4,92 1,92 4,92

Table 1: Hardware features of the considered mobile phones

The implementations we have used are those given in the Qualcomm site for both the
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Figure 1: A description of the most common stages in the AR marker tracking process

Android and iOS [18] operating systems. They are very similar (in fact, they first im-
plemented the Objective-C version, and then they used JNI to get the Android version).
We added the sending step described above to these implementations, converting the Aug-
mented Reality(AR) application into a CAR application. This step involves a simple socket
used to send to the server the position obtained each cycle from the real world.

4 Clients Characterization

The first step in improving the performance of CAR systems based on markerless detection
is the characterization of client mobile phones, in terms of both the time required by the
system to complete each CAR stage, and the time required by each smartphone to complete
a CAR cycle. Since we already performed a characterization with an implementation using
fiducial markers [3, 7], a performance comparison is made. In order to do so, table 2 shows
the same results when using fiducial markers (the upper part of the table, labeled with the
name of the libraries used, NyARToolKit ARToolKit Plus) and the results obtained with
the markerless implementation (labeled with the name of the library used, Qualcomm).

Each row in Table 2 presents the results for a mobile phone. The first two rows show
mobile phones using Android OS (representative examples high-end and middle-end de-
vices), and the last two rows show mobile phones executing iOS (idem). The same devices
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NyARToolKit & ARToolKit Plus
Phases(ms) Camera Detection Render Sending Total
Milestone 248,64 288,53 30,42 14,14 698,34

Desire 40,25 78,08 13,23 5,54 167,11
iPhone 3GS 33,29 58,07 28,26 15,42 398,21

iPhone 4 17,66 182,17 23,34 7,06 523,26

Qualcomm
Phases (ms) Camera Detection Render Sending Total

Milestone 19,58 3,95 2,38 15,06 86,41
Desire 9,97 18,03 1,76 8,48 56,68

iPhone 3GS 11,06 8,23 14,29 17,38 145,53
iPhone 4 8,15 6,21 17,85 9,68 105,91

Table 2: Execution time (ms) per stage for each considered mobile phone for both systems

are used for markerless tracking, in the lower part of the table. The first four columns
represent each phase of the CAR applications, and the last one represents the total time
needed to complete a cycle. All values are represented on milliseconds (ms.), and they
are averaged values. As it can be seen, the system based on markerless tracking is much
faster than the system based on fiducial markers in each CAR stage, except the in sending
stage, where both systems show similar times. This is due to the fact that the sending step
exclusively depends on the network parameters and status,and the same network with the
same configuration were used for both characterizations.

Table 2 shows that the time required for the image acquisition stage in the markerless
tracking system is at least half of the one required by the fiducial marker system (the case
of iPhone 4 case), while for the case of iPhone 3GS it works here three times faster, from
33’29ms. to 11’06ms. However, the best improvement is achieved for the Milestone, passing
from the 248’64 ms. required by the fiducial marker tracking to only 19’58ms required by
the markerless tracking.

Regarding the second stage, the performance differences are even larger. The time
required for completing this stage by the markerless implementation are at least one fourth
of the time required by the fiducial markers implementation. The reason for this behavior
is difficult to find, since Qualcomm does not provide the source code of the implementation,
but the compiled library. It is also worth mention that each considered device provides
different image resolutions, and the size of these resolutions is very different from Android
devices to iOS devices. As shown in our previous works [3], it is not the same to analyze
a image of 320x480 pixels searching a mark that doing the same for a image of 1280x720
pixels, because the last one needs too much time to be analyzed. Regarding the third stage,
table 2 shows that the markerless implementation does not improve this stage for all the
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considered devices, as it is the case for the iPhone 4, which requires a similar time in both
implementations.

Finally, the last column represents the time (in milliseconds) required by each device
to complete a CAR cycle when using a given implementation. Comparing the two imple-
mentations, we can conclude that all devices work at least three times faster when using
the markerless implementation. Therefore, the markerless implementation is better for any
kind of device, either high-end or middle-end. One reason that can contribute to these
results is that the fiducial marker tracking implementations were not designed explicitly for
the current mobile phones. However, the main reason is the efficient markerless implemen-
tation, although we cannot deeply analyze its performance because it is not an open source
code.

In order to show the practical effects of the performance achieved by both implemen-
tations, Table 3 shows the same values shown in table 2, but expressed in performance
parameters like Frames Per Second (FPS), that is, the amount of CAR cycles done in one
second, and the Round Trip Time (RTT). As before, each row represents the devices we
are using. The FPS are shown in the first column. The RTT are represented in the second
column (in ms.), and it corresponds to the values in the fourth stage showed in table 2.

NyARToolKit Qualcomm
FPS RTT (ms) FPS RTT (ms)

Milestone 1,43 14,14 11,57 15,06
Desire 5,98 5,54 17,64 8,48
iPhone 3G 2,51 15,42 6,87 17,38
iPhone 4 1,91 7,06 9,44 9,68

Table 3: Throughput (in FPS) and RTT for each smartphone in both systems

Table 3 shows that the slower device when using the Qualcomm implementation is the
iPhone 3GS, working almost over 7 FPS. This ”slowest” FPS on Qualcomm is faster than
any of the performances obtained with NyARToolKit or ARToolKit Plus, whose fastest
device was the HTC Desire, with a FPS of almost 6. These results show that markerless
tracking provide better results for CAR applications executed on mobile phones.

5 CAR System Performance

After the characterization of client devices, we simulated a CAR system with client devices
with that behavior, in order to analyze and improve the performance provided by CAR
systems using these devices. Like in the case of fiducial marker tracking [4], we used a
server based on UDP sockets . We performed tests on the CAR system varying the number
of client devices (from 100 to 1000), and the number of neighbors inside the workgroup
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(5, 10, 20 and 25). Due to space limitations, we will only show here the results for CAR
systems using one of the intermediate client devices, the iPhone 3GS, as a representative
example of slow devices (145.53ms. per cycle).

Table 4 shows the CAR system performance when all the client devices are iPhone 3GS
devices. This table show four subtables, for the cases of 5, 10, 20 and 25 devices per working
group. A working group is the subset of neighbor client devices that are collaborative
working on the same task (displaying the same scene), and therefore they are the subset of
neighbor devices to which the marker location should be sent in each cycle. The greater
working group size, the higher number of messages should be sent and acknowledged per
each cycle. In order to obtain comparable results with the case of fiducial marker tracking
[4], the messages containing the marker location are sent through the server (that is, it
sends the location update message to the server, and then the server re-sends the message
to the appropriate clients). For performance evaluation purposes, the destination clients
return an acknowledgment message (ACK) to the server, which, in turn, forwards it to the
source client.

The first (most left) column in each subtable Table 4 shows the number of simulated
devices in the CAR system. The next five columns, from left to right, show the average
system response time for all the clients (measured in milliseconds), labeled as ”RT”, and its
standard deviation (labeled as ”Dev”). This response time is measured as the time elapsed
since the origin client device sends a new position to the server until the instant when the
origin device receives all ACKs from its neighbors in the workgroup. The third column
shows the percentage of CPU utilization in the system server during the simulation. The
fourth column represents the server’s response time, measured as the time elapsed since the
server sends a message to a client until the instant when the server receives the answer to
that message. Finally, the last column represents the percentage of lost packets (this server
works with UDP sockets) in regard to the total number of messages exchanged.

Table 4 shows that for a working group size of 5 devices the latency remains almost
constant, around 10 milliseconds. The standard deviation increases slightly as the popu-
lation increase, from 3’53ms. to almost 21ms. The CPU consumption also increases but
does not reach 75%. The response time in the server remains constant too and no pack-
ets are lost. That is, when all the clients in the CAR system are iPhone 3GS terminals
and the working group size is 5, then the system works under a low workload, even when
supporting one thousand clients. The worst response time is obtained in the workgroup of
10, obtaining values slightly higher than the interactive times (250 ms. [9]), with 257ms
of response time for the case of 1000 devices. Here the response time grows linearly with
the population. The standard deviation grows higher than before, reaching 65’86ms.. Like
the CAR systems based on fiducial marker tracking, the system saturation is reached when
the percentage of CPU utilization reaches 85%, since no CPU utilization values higher than
85,3% are reached. Nevertheless, the system does not enter deep saturation even for 1000
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iPhone 3GS
WG 5 10
Disp. RT Dev CPU RT S %L RT Dev CPU RT S %L
100 6,43 3,53 19,20 3,10 0,00 15,73 5,82 18,60 7,81 0,00
200 7,54 5,85 21,63 3,46 0,00 13,46 9,23 32,93 6,09 0,00
300 9,44 7,31 29,10 4,29 0,00 20,67 17,12 47,13 8,86 0,00
400 6,04 7,24 34,30 2,84 0,00 30,13 24,75 58,80 12,80 0,00
500 8,96 12,66 42,63 4,26 0,00 42,12 33,58 73,47 17,36 0,00
600 12,11 18,52 49,00 5,04 0,00 101,09 52,79 83,83 49,49 0,00
700 12,10 20,22 59,63 5,14 0,00 174,63 50,59 84,50 85,83 0,00
800 6,87 13,53 63,23 3,07 0,00 202,13 50,49 85,23 99,40 0,00
900 8,14 20,92 72,83 3,41 0,00 228,80 56,26 85,30 112,64 0,00

1000 7,03 16,51 74,83 2,71 0,00 257,06 65,86 85,20 126,32 0,00

WG 20 25
Disp. RT Dev CPU RT S %L RT Dev CPU RT S %L
100 13,08 8,82 72,17 5,69 0,40 9,25 6,42 71,63 3,82 0,82
200 22,37 16,12 76,20 10,12 0,31 20,65 13,46 78,57 9,34 0,90
300 26,84 29,76 79,10 12,23 0,29 28,53 37,83 80,53 13,03 0,94
400 48,68 37,38 81,57 23,01 0,39 39,97 28,63 82,00 18,83 0,93
500 66,94 49,25 82,77 31,55 0,38 53,52 35,90 83,90 25,16 0,92
600 84,72 65,54 84,47 40,99 0,43 71,21 45,91 84,10 33,87 0,94
700 102,73 77,29 82,93 49,71 0,43 77,87 55,10 84,57 37,50 0,98
800 139,70 79,44 84,60 68,12 0,46 89,79 66,15 85,03 43,50 0,98
900 165,61 86,26 85,30 81,11 0,50 102,51 72,44 84,73 49,56 1,03

1000 178,73 87,04 85,23 87,05 0,54 124,03 83,96 84,73 59,93 0,99

Table 4: System performance for the iPhone 3GS

client devices, since no packets are dropped. When this point is reached, the response time
in the server, reaching 126’32ms. for 1000 devices.

The results shown by Table 4 for the working group size of 20 devices are not worse
(in terms of system response times) than the ones shown for a working group size of 10
devices. Moreover, the response times obtained for a working group size of 25 devices show
shorter response times, although the percentages of CPU utilization are higher. The reason
for that behavior is that some messages are dropped, and as a result the average response
time significantly decreases.

Although they are not shown here due to space limitations, the results for another faster
devices were similar, although the average response times were slightly higher. These results
show that when using natural feature tracking, the response times provided by the CAR
system remain interactive, except when the system enters saturation. At that point, the
system does not drop any message, at the cost of exceeding the interactive response time.
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As the system enters deep saturation, more messages are dropped and as a consequence the
response time is reduced, providing interactive response times again. Unfortunately, since
the Vuforia library is not open source code, we cannot find the reason for that behavior.

6 Conclusions

In this paper, we propose the characterization and performance improvement of CAR sys-
tems based on markerless tracking when using mobile phones. The characterization of client
devices show that they work faster with markerless tracking than with fiducial marker track-
ing, regardless of the phone model and operating system considered. The characterization
of the whole CAR system shows that the response times provided by the CAR system re-
main interactive, except when the system enters saturation. At that point, the system does
not drop any message, at the cost of exceeding an interactive response time (250ms.) [9].
As the system enters deep saturation, more messages are dropped and as a consequence the
response time is reduced, providing interactive response times again. Thus, we have simu-
lated CAR system with 1000 client devices for all the considered types of mobile phones.
Unfortunately, since the Vuforia library is not open source code, we cannot find the reason
for that behavior.
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