

From Continuous to Discrete Games1

Inmaculada García2, Ramón Mollá2, Pedro Morillo3

2Technical University of Valencia
{ingarcia,rmolla}@dsic.upv.es

3University of Valencia
{Pedro.Morillo}@uv.es

1 Supported by the Spanish MCYT under grant TIC2003-08154-C06-04

Abstract

Computer games follow a scheme of continuous
simulation, coupling the rendering phase and the
simulation phase. That way of operation has
disadvantages that can be avoided using a discrete
event simulator as a game kernel. This paper proposes
to integrate a discrete event simulator (DESK) to
manage the videogames events. The videogame kernel
used is Fly3D. The new kernel is called DFly3D. It
allows a discrete event simulation scheme and the
rendering and simulation phase independence. The
integration objective has been to maintain the Fly3D
main structure and functionality, changing only the
events management. The videogames objects behavior
and interconnection is modeled by message passing.
Maintaining the videogame quality, the videogames
created using DFly3D allow to reduce the computer
power used to execute it. That allows to execute the
videogame in computers with less computing power or
to improve the game quality.

1. Introduction

Only a few commercial computer games have their

source code published. Among them, we have
considered the games DOOM v1.1 [6], QUAKE v2.3
[9] and the Fly3D kernel [11][12] because of their
importance in computer games. The study has
considered too videogame kernels as: 3D GameStudio
[2] or Crystal Space [3]. But, they have not been
selected because most of them are only rendering
kernels and the conclusions obtained for some
videogames created using those engines follows the
same simulation scheme. We have selected in the
present study Fly3D as a videogame kernel to make the
integration with a discrete event simulator. The reasons

are: freeware license, open source code fully developed
using C++, documented code, object oriented,
modularized and highly structured, and plug-ins
oriented.

A Fly3D real-time application is a collection of
Fly3D objects. Fly3D main loop follows a typical
scheme of continuous simulation that couples the
simulation phase and rendering phase [8]. The
simulation process is executed for each main loop
evolution. The simulation takes care of the time
elapsed from last simulation until now. The simulation
process calls each active object simulation function.
For each main loop step a complete simulation and
rendering is done.

Simulation techniques [1] used in videogames
suppose in many cases consider computer games as
continuous systems. Videogames objects could have
both continuous and discrete behaviors. Computer
games are usually implemented as continuous coupled
systems. A continuous coupled simulation model has
disadvantages [5], as:
• All objects in the scene graph are accessed,

although many objects will never generate events
• The objects priority for simulation depends on the

objects situation in the scene graph.
A discrete events simulator can be implemented in

three different ways [5]: programming languages,
general purpose programming language libraries
(DESK [4] or SMPL [7]) or toolkits. The simulator
selected for the integration into the videogame is
DESK because it is open source code, it is
implemented as a library and in a general purpose
language commonly used in the videogames
implementation and widely used by the scientific
community.

2. Objectives

The main objective is to change the videogame

simulation paradigm from discrete to continuous. To
achieve that objective, the discrete event simulator
DESK is included into the real-time kernel Fly3D. The
discrete event simulator manages the application
events. The paper objectives are:
• Adapt the discrete event simulator DESK to work

as videogame kernel (GDESK).
• Integrate GDESK into Fly3D SDK. GDESK, used

as videogame kernel, allows: to change the
videogame simulation paradigm from continuous
to discrete and to decouple the simulation phase
and the rendering phase.

3. GDESK

GDESK (Game Discrete Event Simulation Kernel)

[5] is a real time applications simulation kernel that
copes with the videogame events (messages) handling.
GDESK controls the objects communication by
message passing. GDESK maintain the messages
ordered by time until their time stamp is exceeded.
GDESK uses two basic entities to model the message
passing mechanism: objects and messages. Objects are
the dynamic system entities. Any videogame element
must be a GDESK object. GDESK objects include both
game functional components objects (console or
render) and game objects (walls, players, missiles or
balls). GDESK treats any object in the same way. The
GDESK basic object contains the functions to send and
receive messages. Messages are the passive elements
to communicate objects. The system dynamic is
modeled by message passing.

4. DFly3D: Discrete Fly3D

DFly3D (Discrete Fly3D) is the modified Fly3D
kernel result of using GDESK to manage Fly3D events.

Once the integration is done, the videogame is an
objects collection interchanging messages.

The application main loop must be changed to cope
with discrete events and to decouple the system. The
DFly3D main loop supposes to change the Fly3D
simulation function by the GDESK simulation function
and remove the rendering function from main loop. The
rendering is integrated in the simulation phase to
decouple the system [5].

There are two object types in the DFly3D kernel.
System objects: they are the objects explicitly created
in the GDESK integration to develop some Fly3D
kernel tasks. System objects do not exist in Fly3D.

Videogame objects: they are the objects created by the
videogame programmer (as walls, characters or
weapons). They join Fly3D and GDESK basic objects
characteristics. The object behavior and the object
interaction with other objects must be modeled by
message passing. Both object types generate messages.
GDESK does not make any difference between the
system objects messages and the videogame objects
messages. An object only works when it must to do it.
It is not necessary to ask the console periodically for
pending tasks. The object defines its behavior as
response to a message arrival. It decides how to act
when a message is received. Depending on the kind of
message and the message parameters, the object
response will be different.

Messages have two utilities:
• Objects communication: when the object A needs

interact with the object B, A sends a message to B.
The object B could act or change its behavior as a
consequence of the message arrival. Only the
object that receives a message may generate other
messages as response.

• Model the object behavior: an object only acts as
a message arrival consequence. When an object A
must change its own behavior, A sends a message
to itself. As a consequence of a message arrival
from itself, the object A modifies its state as
convenience.

The programmer defines the object behavior using
the receive message function.

Let suppose two videogame characters (A and B)
interacting:
• A wants to interact with B. A fills the videogame

message parameters and invoke the send message
function.

• The dispatcher catches the message and calculates
the absolute simulation message time using the
message time stamp and the simulation clock. The
message is stored ordered by time. The dispatcher
goes on with the system simulation. It executes the
events with absolute time lower than the A
message. When the A message absolute time
exceeds the simulation clock the message is
removed from the dispatcher. The dispatcher sends
the message to the destiny object (character B).

• The object B receives the message. The character
B does not realize the message comes from the
dispatcher. The character B seems the message
comes from A. B acts as the message arrival
consequence. It can change its state or/and it sends
messages addressed to other objects or a message
addressed to itself. B releases the message.

5. Results

The results have been obtained creating two
videogame versions for both Fly3D and DFly3D
kernels.

We say that the computer system is collapsed when
a system is not able to show the number of frames per
second specified and render the scene properly. A
system could be collapsed due to the videogame scene
or simulation complexity, because of the low
computing power. If the system is collapsed both
kernels do not allow running he videogame properly.
The given moment of system collapse depends on the
videogame complexity and the kernel used.

Be:
• TV: videogame total time.
• TR: scene rendering time.
• TS: simulation time.
• TF: released time. Time when the videogame is

idle if there is enough computer power.
• SRR: (screen refresh rate) number of frames per

second (fps) that the computer shows in a second.
• B: number of balls.

Both kernels accomplish:
TV = TR + TS + TF (1)

The system load depends on the number of objects
in the system. The scene rendering time and the
simulation time grow as the objects number does:

B↑ → TR ↑ , TS ↑ (2)

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Objects Number

%
 T

ot
al

 T
im

e

Render Simulation Free
Figure 1: Fly3D times

Fly3D kernel follows a coupled scheme of

simulation and rendering. The system is continuously
simulating and rendering at its maximum speed (figure
1). The system uses nearly the 100% of application
time rendering and simulating:

TV ≈ TR + TS, TF → 0 (3)
An increase in the simulation load supposes to

decrease the rendering time (equation 4). The SRR

decreases too. If SRR is lower than 25fps the
videogame is not showed properly.

TS ↑ → TR↓ → SRR↓ (4)
An increase in the rendering load supposes to

decrease the simulation time (equation 5) because the
time TR+TS remains although a change of TR or TS.

TR ↑ → TS↓ (5)
This behavior is efficient when the computer power

is low or the videogame complexity is high; because it
allows to simulate and to render at the maximum speed.

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Objects Number

%
 T

ot
al

 T
im

e

Render Simulation Free
Figure 2: DFly3D times

DFly3D kernel allows the simulation and rendering

processes independence (decoupling) (figure 2). So, the
videogame time is not shared by rendering and
simulation processes (equation 6). If the computer
power is enough there is released time.

TV > TR + TS (6)
DFly3D kernel defines the SRR generated by the

videogame. The SRR is maintained while the system is
not collapsed. The time spent rendering a frame
depends directly on the scene complexity. The whole
rendering process consumes the time necessary to show
the scene SRR times per second. The rendering time
does not depend on the simulation load while the
system is not collapsed (equation 7). In that situation,
DFly3D releases computing time to be used by other
videogame tasks or by other applications. The
simulation time depends on the world simulation
complexity. If the number of objects grows, both the
simulation process and the rendering process consume
a bigger amount of processing time.

While the system is not collapsed; the equation 6 is
accomplished and the simulation time and the
rendering time are not dependent (equation 7).

TS ↑ → TF↓ , TR ↑ → TF↓ (7)
If the system is collapsed, TF is nearly 0 (equation

8). The system is not able to simulate and rendering so
many times to guarantee the videogame quality.

TF ≈ 0 ⇒ TV ≈ TR + TS (8)

0

50

100

150

200

250

300

350

400

450

500

550

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Objects Number

FP
S

Fly3D DFly3D
Figure 3: Frames per second generated

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

Objects Number

%
 T

ot
al

 T
im

e

Fly3D DFly3D
Figure 4: Released time

The DFly3D fps generation ratio is maintained

during all tests (figure 3). This ratio is maintained until
the system collapse. The number of frames per second
generated using Fly3D is highly dependent on the
computing load, so it can not be managed directly
(figure 4).

The Fly3D rendering time decreases with the
amount of balls because of simulation time rises. Thus,
there is less time for rendering. The rendering time in
DFly3D is lower than the rendering time in Fly3D.
Fly3D generates unnecessary renderings. DFly3D
avoids unnecessary renderings; delivering the released
computer power to other tasks or improving some
videogame parts, as artificial intelligence, collision
detection accuracy or increasing realism.

An advantage of DFly3D is to allow an intelligent
rendering. DFly3D kernel controls the rendering
process. Intelligent behaviors can be added in order to
adapt the render to the desired behavior. The SRR may
change depending on the system load, avoiding
renderings that will never be shown on the screen. The
SRR can be adapted to the world complexity allowing a
more complex simulation without collapsing the
system. That allows a certain videogame independence
of the computing power. A videogame can be executed

in computers with different computing power
maintaining the game output quality.

6. Conclusions

DFly3D is the kernel resulting from the integration
of the discrete event simulator GDESK in the real time
application kernel Fly3D. The integration objective is
the Fly3D event handling by GDESK. Using GDESK
to manage events, the kernel changes from continuous
to discrete, avoiding the continuous system
disadvantages (as disorderly events execution or event
lost).

DFly3D decouples the simulation and the rendering
phase. It allows the both processes independence. The
videogames SRR can be fixed to the minimum to
guarantee the videogame quality.

DFly3D releases computing power if the system is
not collapsed. So, videogames quality could be
improved or videogames could be executed in
computers with lower computing power without quality
lost.

7. References

[1] Banks, J., Carson II, J.S., Nelson, B.B., Nicol, D.M.,

Discrete-Event System Simulation, Prentice Hall
International Series in Industrial and Systems
Engineering, 2001.

[2] Conitec. http://www.conitec.net/.
[3] Crystal Space. http://crystal.sourceforge.net/drupal/.
[4] García, I., Mollá, R., Ramos, E., Fernández, M., “DESK

Discrete Events Simulation Kernel”, ECCOMAS, 2000.
[5] García, I., Mollá, R., Barella, A., “GDESK: Game

Discrete Events Simulation Kernel”, Journal of WSCG,
2004

[6] Idsoftware. www.idsoftware.com/archives/doomarc.html.
[7] MacDougal, M.H., SMPL - A Simple Portable

Simulation Language, Amdahl, 1980.
[8] Pausch, R., Burnette, T., Capehart, A.C., Conway, M.,

Cosgrove, D., DeLine, R., Durbin, J., Gossweiler, R.,
Koga, S., White, J., “A Brief Architectural Overview of
Alice, a Rapid Prototyping System for Virtual
Environments”, IEEE Computer Graphics and
Applications, 1995.

[9] Quake Page. www.gamers.org/dEngine/quake/.
[10] Shaw, C., Liang, J., Green, M., Sun, Y., “The

Decoupled Simulation Model for Virtual Reality
Systems”, CHI'92, May 1992, pp. 321-328.

[11] Watt, A., Policarpo, F., 3D Computer Games
Technology: Real-Time Rendering and Software.
Addison-Welsey. 2001.

[12] Watt, A., Policarpo, F., 3D Computer Games. Addison-
Wesley. Vol.2. 2003.

