
On the Design of an Efficient Architecture for Supporting Lar ge Crowds of
Autonomous Agents

Miguel Lozano, Pedro Morillo, Juan M. Orduña, Vicente Cavero
Departamento de Informática

Universidad de Valencia
SPAIN

e-mail: Juan.Orduna@uv.es

ABSTRACT

Crowd simulations require both rendering visually plausible images
and managing the behavior of autonomous agents. Therefore,these
applications need an efficient design that allow them to simulta-
neously tackle these two requirements. Although several proposals
have focused on the software architectures for these systems, no
proposals have focused on the computer systems supporting them.

In this paper, we analyze the computer architectures used inthe
literature to support virtual environments. Also, we propose a dis-
tributed computer architecture efficient enough to supportsimula-
tions of thousand of autonomous agents. This proposal consists of
a cluster of computers in order to improve flexibility and robust-
ness, as well as a hierarchical software architecture that efficiently
provides consistency. Performance evaluation results show that the
trade-off between flexibility and consistency allows to efficiently
manage thousands of autonomous agents.

Keywords: Distributed virtual environments, crowd simulation,
computer architecture.

Index Terms: I.3.2 [Computer graphics]: Graphics systems—
Distributed/network graphics; C.2.4 [Computer-communication
networks]: Distributed Systems—Distributed Applications;

1 INTRODUCTION

Crowd simulations have become an essential tool for many virtual
environment applications. Extensive use of virtual crowdshas been
made in many commercial movies like AntZ [2] or The Lord of the
Rings [12]. Also, high quality crowd simulations are crucial for
many virtual environment applications in education, training, and
entertainment [4, 18, 35].

Crowd simulations can be considered as virtual environmentap-
plications with two different goals. On the one hand, crowd simu-
lations must focus on rendering visually plausible images of the
environment, requiring a high computational cost. On the other
hand, complex agents must have autonomous behaviors, greatly
increasing the computational cost as well. Thus, some proposals
tackle crowd simulations as a particle system with different le-
vels of details (eg:impostors) in order to reduce the computational
cost [5, 36]. Although these proposals can handle crowd dynamics
and display populated interactive scenes (10000 virtual humans),
they are not able to produce complex autonomous behaviors for
their actors. On the contrary, several proposals have been made
to provide efficient and autonomous behaviors to crowd simula-
tions [30, 26, 6, 28, 21, 17]. However, they are based on a cen-
tralized system architecture, and they can only control a few hun-
dreds of autonomous agents with different skills (pedestrians with
navigation and/or social behaviors for urban/evacuation contexts).

Tacking into account that pedestrians represent the slowest human
actors (in front of other kind of actors like drivers in cars,for exam-
ple) these results show that scalability has still to be solved in crowd
simulations.

Although some scalable, complex multi-agent systems have been
proposed [37], these proposals are exclusively focused on the sof-
tware architecture, forgetting the underlying computer architecture
(the actual implementation of the computer and the application exe-
cuting on it [16, 31]). As a result, important features like inter-
process communications, workload balancing or network latencies
are not taken into account, seriously limiting the performance of
this applications.

In this paper, we analyze the computer architectures used inthe
literature to support virtual environments and we propose an effi-
cient system architecture, capable of simulating crowds ofup to
thousands of autonomous agents. In order to manage the tradeoff
between scalability, rich behaviors, and computational cost required
by crowd simulations, this system architecture is based on ahybrid
computational model. It consists of a networked-server Distributed
Virtual Environment (DVE) [32]. On top of this hardware archi-
tecture, we propose a hierarchical software architecture,in order to
efficiently supporting consistency and autonomous behaviors: one
of the servers is used to host a centralized semantic data-base, and
agents are uniformly distributed among the rest of the servers in the
system (denoted asreplicas). This scheme allows to scale up the
number of servers with the number of agents in the system, while
the centralized data base easily provides consistency. Theresults
obtained in the performance evaluation show that this architecture
can efficiently manage up to thousands of autonomous agents.

The rest of the paper is organized as follows: section 2 analyzes
the existing computer architectures proposed in the literature for
supporting Distributed Virtual Environments (DVEs). As a result
of such analysis, section 3 describes the proposed architecture for
crowd simulations. Next, section 4 shows the performance evalua-
tion of the proposed system architecture. Finally, section5 shows
some conclusion remarks and future work to be done.

2 COMPUTER ARCHITECTURES FOR DVES

Different computer architectures have been proposed in order to ef-
ficiently support DVEs: centralized-server architectures[38, 27],
networked-server architectures [19, 14] and peer-to-peerarchitec-
tures [22, 20]. Figure 1 shows an example of a centralized-server
architecture. In this example, the virtual world is two-dimensional
and avatars are represented as dots. In this architecture there is only
a single server and all the client computers are connected tothis
server.

Figure 2 shows an example of a networked-server architecture.
In this scheme there are several servers and each client computer is
exclusively connected to one of these servers. This scheme is more
distributed than the client-server scheme. Since there areseveral
servers, it considerably improves the scalability, flexibility and ro-
bustness in regard to the client-server scheme.



Figure 1: Example of client-server architecture

Figure 2: Example of networked-server architecture

Figure 3 shows an example of a peer-to-peer architecture. Inthis
scheme each client computer is also a server. This scheme provides
the highest level of load distribution. Although the first DVEs were
based on centralized architectures, during the last few years archi-
tectures based on networked servers have been the major standard
for DVE systems [19, 14]. However, each new avatar in a DVE
system represents an increase not only in the computationalrequi-
rements of the application but also in the amount of network traffic
[25, 24]. Due to this increase, networked-server architectures seem
not to properly scale with the number of clients, particularly for the
case of MMOGs [1], due to the high degree of interactivity shown
by these applications. As a result, Peer-to-Peer architectures have
been proposed for massively multi-player online games[22,20, 13].

Figure 3: Example of peer-to-peer architecture

Nevertheless, P2P architectures must still efficiently solve the
awarenessproblem. This problem consists of ensuring that each
avatar is aware of all the avatars in its neighborhood [34]. Provi-
ding awareness to all the avatars is a necessary condition topro-
vide time-space consistency (as defined in [39, 11, 29, 33]).Aware-
ness is crucial for DVEs, since otherwise abnormal situations could
arise. For example, a game user provided with a non-coherentview
of the virtual world could be shooting something that he can see alt-
hough it is not actually there. Also, it could happen that an avatar
not provided with a coherent view is killed by another avatarthat it
cannot see. In networked-server architectures, the awareness pro-
blem is easily solved by the existing servers, since they periodically
synchronize their state and therefore they know the location of all
avatars during all the time. Each avatar reports about its changes
(by sending a message) to the server where it is assigned to, and the
server can easily decide which avatars should be the destinations of
that message (by using a criterion of distance). There is no need for
a method to determine the neighborhood of avatars, since servers
know that neighborhood every instant.

3 ARCHITECTURE FOR CROWD SIMULATION

From the discussion above it seems that the more physical servers
the DVE relies on, the more scalable and flexible it is. On the con-
trary, features like the awareness and/or consistency are more diffi-
cult to be provided as the underlying architecture is more distributed
(peer-to-peer architecture). Therefore, we propose a networked-
server scheme as the computer architecture for crowd simulation.
On the one hand, this distributed scheme allows to improve sca-
lability, flexibility and robustness when compared to centralized
(client-server) architectures. On the other hand, the small number
of servers in networked-server architectures makes easy toprovide
awareness (and therefore time-space consistency) to the avatars mo-
ving in the virtual world. However, crowd simulations are not user-
driven applications, but computer-driven applications. This means
that there are not user-driven client computers, and only the inter-
connected servers are used to manage the crowd simulation. Fi-
gure 4 shows an example of the proposed computer architecture
with three servers.

Figure 4: An example of the proposed computer architecture for
crowd simulations

On top of this networked-server architecture, a software archi-
tecture must be designed to manage a crowd of autonomous agents.
In order to easily maintain the coherence of the virtual world, a
centralized semantic information system is needed. In thissense, it
seems very difficult to maintain the coherence of the semantic infor-
mation system if it follows a peer-to-peer scheme, where hundred
or even thousand of computers support each one a small numberof
actors and a copy of the semantic database. Therefore, on topof the
computer architecture shown in figure 4 we propose the software



architecture shown in figure 5. This architecture has been designed
to distribute the agents of the crowd in different server computers
(the networked servers).

Figure 5: The proposed software architecture

This hierarchical software architecture is composed of twokind
of elements: theAction Server (AS)and theClient Processes (CP).
The AS is unique, but the system can have as many client processes
as necessary, in order to properly scale with the number of agents
to be simulated. In his turn, each CP manages a group of auto-
nomous agents. In order to take advantage from the underlying
computer architecture, the most suitable distribution forthis sof-
tware architecture consists of allocating the AS in a singleserver,
and uniformly distributing the CPs among the rest of the networked
servers. In this way, the scalability and flexibility of the networked-
server scheme can be used to add more CPs (and/or replicas) asthe
number of agents increases. Since each client process can manage
a variable number of autonomous agents, the replicas usually host
one CP, although it can hosts several ones. On the other hand,the
action server is composed of two different modules, the Semantic
Data Base (SDB) and theAction Execution Module (AEM). The
action server is hosted on another networked server.

3.1 The Action Server

The Action Server corresponds to theaction engine[8, 9], and it
can be viewed as the world manager, since it controls and properly
modifies all the information the crowd can perceive. The Action
Server is fully dedicated to verify and execute the actions required
by the agents, since they are the main source of changes in thevir-
tual environment. For scalability purposes, the AS must be placed
on the computer with the highest computational power. This com-
puter should exclusively be used for this purpose. Since theAS is
unique, consistency is easily provided. In this context, consistency
involves the information that the agents should know to animate
consistent behaviors. Additionally, another important parameter for
interactive crowd simulations is theserver main frequency. This pa-
rameter represents how fast the world can change. Ideally, in a fully
reactive system all the agents send their action requests tothe ser-
ver, which processes them in a single cycle. In order to provide
realistic effects, the server cycle must not be greater thanthe thres-
hold used to provide quality of service to users in DVEs [23, 15].
Therefore, we have set the maximum server cycle to 250 ms..

Basically, the AS consists of two modules: the Semantic Data
Base and the Action Execution Module. The SDB represents the
global knowledge about the interactive world that the agents should

Figure 6: A collision example.

be able to manage, and it contains the necessary functionalities to
handle interactions between agents and objects. In our case, we
manage a simple map for objects and agents which let us to effi-
ciently control a set of (attribute, value) pairs associated to each ob-
ject/agent during the simulation. Since these attributes are centered
into objects or agents, we use their names to index the correspon-
dent map. The semantic information managed can be symbolic (eg:
ob jecti free true,ob jecti on ob jectk, ...) and numeric (eg:ob jecti
position,ob jecti bounding volume, ..), since it has been designed
to be useful for different types of agents.

We have decided to avoid complex spatial maps (such as
cuad/oct-trees) to control the SDB, since these structurescan be too
expensive to handle when the number of insertions and deletions
grows (agents can be continually changing their location).Instead,
we use a 2D Grid (Cellular Automata), which allows us to access
to any object/agent efficiently and it is also useful for pathfinding
behaviors, as we review below.

The AEM is devoted to guarantee the coherence of the virtual
world, as it is responsible for the action checking and execution.
For example, if an agent wants to change its location, it willtry to
perform a motor action, so a collision can occur. The agent should
request the server to validate that movement by sending a message.
Since the server knows the location of the agent, it accessesto its
cell through a simple function (similar to the one used by hash ta-
bles), and perform an object-object collision test with theneighbors
of agentw (see figure 6). If no collision caused by that movement is
detected, then the server shouldupdatethe SDB and send an ack-
nowledgment message to the agent.

As commented in the example, we reduce the visible area for
each agent to face collision detection. Concretely, we use aCe-
llular Automata (CA) as an adequate formalism to handle motion
behaviors for crowd simulations [3]. This formalism let us to ma-
nage collision detection andpathfindingbehaviors in several situa-
tions (see figure 7). Aspathfindingbehaviors clearly depends on
the agent decision taking, it is reviewed in the next section.

In order to manage the high number of changes produced, the
AEM puts all the action effects in a vector(vUpdates)which re-
flects the local changes produced by each actuation (eg: an agent
changes its position). Finally, when the server cycle has finished,
this vector is sent to both, the CPs and the SDB, which will update
their correspondent environmental states (see figure 5).

Once the server frequency has been set (in our case to 250 mi-
lliseconds), the available time to process each agent action results
from dividing the server frequency by the number of agents inthe
system. If the number of agents increases in such a way that the



server cannot be able to process all the actions in a single cycle,
then the pending actions are simply left to be processed in the next
cycle. In the experiments shown in section 4 we measure the action
latency, so we could estimate the degree of reactivity achieved by
these scheme.

The AEM manages the action’s flow of the simulation. In order
to allow the maximum flexibility, it can currently process 4 types of
actions:

Motion actions : Location changes where collisions can occur,
although agents were (potentially) able to navigate without
colliding. If an agent wants to move to the location currently
occupied by another object/agent, the environment should
simply not allow it.

Motor actions : We use simple key-framing tables to animate the
actors in walking, running, and other motions. Since no cons-
traints are allowed, the value received is simply accepted in
the SDB as an internal change in an agent attribute. We con-
sider the agent motor system as the responsible to continua-
lly read itsanimation statefrom the SDB. The graphic en-
gine, which contains all theactor’s skeletonsof the crowd,
performs this task according to its frame rate .

Agents interactions : Corresponds to a normal agent-agent com-
munication scheme, which can be obtained from the system
through the server. Messages can be managed as other agent
attributes, so the SDB will simply route them into the corres-
pondent slots. This scheme has made us possible to investi-
gate onsocialcrowds in the future.

STRIPS actions : STRIP is the action language used by our plan-
ning agents. A STRIPS action scheme [10] can be represented
through thePreconditions, AddandDeletelists associated to
each agent action. Before executing an action (eg: pick up ob-
ject), the AEM verifies its preconditions using the SDB maps
(eg: is object-k free?). When a STRIPS action is accepted,
the Add and Delete lists contain the new information the SDB
needs to update its state.

3.2 The Client Processes
Each client process in a replica manages an independent group of
autonomous agents (a subset of the crowd). This process has an in-
terfacefor receiving and updating the information from the server,
and a finite number of threads (each thread for an agent). Using
this interface, a replica initially connects to the server hosting the
Action Server and downloads a complete copy of the SDB. From
that instant, agents can think locally and in parallel with the server,
so they can asynchronously send their actions to the server,which
will process them as efficiently as possible (since each agent is a
process thread, it can separately access to the socket connected to
the server). When a server cycle finishes (every 250 ms.), theac-
cepted changes are submitted to all the replicas interfaces, that will
update their SDB copies.

The proposed multi-threading approach is independent of the
agent architecture (the AI formalism driving the agent behavior),
that is out of the scope of this paper. However, the proposed ac-
tion scheme guarantees the awareness for all agents [34], since all
the environmental changes are checked in a central server and then
broadcasted to the agents. Although time-space inconsistencies can
appear due to agent asynchronies and network latencies, allthese
inconsistencies are kept below the limit of the server period.

A classical complex behavior required by many crowd systems
is pathfinding (eg: evacuations). In our system, a CA is included as
a part of the SDB, and each cell has precomputed thek-bestpaths
of length l to achieve the exit cells. To calculate all the paths (k
paths per cell; cell = 1m side square), we are using a variation of

Figure 7: Evacuation test with 8000 agents



Figure 8: Urban environment with 8000 agents

the A* algorithm. Our algorithm starts from each goal cell, and by
inundation, we can select thek best paths that arrive to each cell.
Parameters such ask and the cell size allow to reduce the memory
required for managing large environments memory problems,avoi-
ding memory problems. Furthermore, the calculation of complete
paths is not interesting generally, as agents can only evaluate the
k-first steps before deciding its next cell.

During the simulation time, each agent can access to its celland
decide the next one according to this information, and the set of
heuristics defined (eg: waiting time, path congestion). As an exam-
ple, figure 7 shows 3 snapshots of the system running a evacuation
simulation with 8000 agents in a (200mx200m) area. The 22 exit
cells are located on the top of the maze, and we can easily recog-
nize them by following the different crowd flows. The first picture
shows the initial situation of the crowd, which is placed randomly.
The second one captures the crowd situation at the cycle 100,where
several congestions has already produced due to the design of the
environment (a maze with narrow doors). Finally, the last snapshot
shows the crowd state in the cycle 500, where some of thehot points
have dissapear and others have increased their density. To evacuate
all the crowd (8000 agents), the simulation finally consumes967
cycles. For a 250 ms. cycle period, this results in a simulation of 4
minutes and 1.75 seconds.

On other hand, it is important to ensure that the system can ren-
der visually plausible images of the virtual world. In this sense,
figures 8 and 9 show two different views of a urban simulation en-
vironment inhabited by 8000 agents. Figure 8 shows a generalview
of the city when the simulation starts, while figure 9 shows a more
detailed view of an avenue. These figures show that the graphical
quality provided during the simulation is acceptable enough.

4 PERFORMANCE EVALUATION

This section shows the performance evaluation of the architecture
described in the previous section. In order to achieve such goal, we
have performed measurements on a real system with this architec-
ture. Concretely, we have performed simulations where eachagent
keeps moving during 5 or 6 minutes. As cited in the previous sec-
tion, the AS cycle (the maximum period of time an interactiveactor
can wait for it action response) has been set to 250ms., and every
2.5 seg. statistics are computed, resulting in 30 differentsamples.
Each point of the plot and each value of the tables in this section
has been computed as the average value of the 30 samples. In order
to make a performance evaluation we have used wandering agents,
since this type of agents is the one that generate the highestwor-
kload to the AS (since they simply move, they require the server to
validate their movements in each server cycle). The computer plat-

Figure 9: Detailed view of the urban environment (8000 agents)

form has been a cluster of computers based on AMD Opteron (2 x
1.56 Ghz processors) with 3.84GB of RAM, executing Linux 2.6.9-
1 operating system. Depending on the test, we have used from one
to five nodes of the cluster.

Like in other distributed systems, the most important perfor-
mance measurements in DVE systems are latency and throughput
[7]. First, we have focused on system throughput (the maximum
number of agents that the system can efficiently support), that is
limited in our architecture by the AS throughput. Concretely, we
have measured the AS throughput when it is fully dedicated tocolli-
sion detection tasks. The rationale of this test is to evaluate the
number of actions that the server is able to carry out in a single
cycle, since this could be a plausible bottleneck.

When an action is requested by an agent, the server basically
must access to its cell and then it must compute a set of simple
distance checking against the agents which are sharing the same
cell, as figure 6 shows. If no collisions are produced, then this
process continues until the 8 neighbor cells pass the same test.

Figure 10 shows the results obtained in a collision detection test
performed in a single server where 10.000 agents demand a ran-
dom position as soon as they can, in order to saturate the server.
The purpose of this experiment is to know how fast the server can
run, in terms of the average of actions that it is able to process in a
single cycle. As figure 10 shows, this value highly depends onthe
density of the crowd. Nevertheless, we have represented this para-
meter as the percentage of finally executed actions (ACK’s),since
it is more informative for our purposes. Thus, an ACK percentage
of 0% occurs when no motion is allowed because the crowd is com-
pletely full and no one can move. On the other hand, when all the
agents pass a full collision test, all the actions are allowed (100%
of ACK’s) and all the agents finally move. In these experiments,
this case (94% of ACK’s) represents the worst case because the ser-
ver should access to 8 + 1 cells and compute a variable number of
distance checks for each action.

Figure 10 shows that in the worst case (94% of ACK’s) the ser-
ver is able to process around 6000 actions in a single cycle (250
ms). However, when the density of the crowd increases then the
percentage of ACK’s decreases because the probability of collision
grows in very dense worlds. This will produce that the servercan
finish the cell checking without visiting all the neighbors cells. As
a consequence, the server can process a higher number of actions
requests per cycle (12000 actions for a percentage of 0% ACKS).
It is also worth mention that for a medium case (48% ACK’s), the
system can manage around 8000 agents.

Additionally, we have evaluated the throughput and the latency
of the entire system in a configuration composed of 4 replicasand 1



Figure 10: Server performance on collision tests

S0 C1 C2 C3 C4
Agents % %(cy.) %(cy.) %(cy.) %(cy.)
1000 11 1(1) 1(1) 1(1) 1(1)
2000 22 4(1) 4(1) 4(1) 4(1)
3000 32 10(1) 10(1) 11(1) 10(1)
4000 43 18(1) 18(1) 18(1) 17(1)
5000 54 24(1) 27(1) 25(1) 23(1)
6000 64 31(1) 32(1) 30(1) 32(1)
7000 79 39(1) 40(1) 37(1) 36(1)
8000 94 45,0(1) 48(1) 45(1) 46(1)
9000 97 50(1,5) 49(1,3) 50(1,4) 49(1,3)
10000 98 48(2,0) 48(1,6) 48(1,7) 48(1,6)

Table 1: System throughput for a fixed agent cycle of 250ms.

server. For both cases, agents continuously demand a randomposi-
tion to the server. The purpose of these evaluations is to check if the
proposed architecture can improve the latency and throughput pro-
vided by other general purpose DVEs [25]. In these experiments,
the existing agents are distributed among the existing CPs in such
a way that all the replicas manage a crowd subset (group of agents)
of similar size. We have increased the number of agents untilthe
whole system has reached saturation. The saturation point is rea-
ched when the CPU utilization reaches 100% in any computer, and
it results in a huge increase of the system latency [25].

Table 1 shows the results for different simulations with thesame
AS cycle (250 ms.) but with different numbers of agents. Each
column in this table shows two different values, except for the ser-
ver. The column labeled with S0 shows the percentage of CPU
utilization reached in the computer hosting the AS. The columns
labeled with Cx show the percentage of CPU utilization reached in
that computer (replica) and the average response time (measured
in AS cycles) for the agents supported by that computer. The left
column shows the number of agents used in each simulation. Each
row in this table shows the results for a simulation with a different
number of agents, ranging from 1000 to 10,000 agents.

Table 1 shows that if a distributed (cluster-based) computer is
used then the proposed architecture takes advantage of the distri-
buted hardware, in such a way that the use of multiple computers
allows to improve the number of supported agents until the server
hosting the AS becomes the system bottleneck. Effectively,this ta-
ble shows that the system provides acceptable response times with
up to 8000 agents, when the computer hosting the AS reaches a

S0 C1 C2 C3 C4
Agents % %(s.) %(s.) %(s.) %(s.)
1000 28 2(0,1) 3(0,1) 4(0,08) 3(0,11)
2000 59 12(0,1) 13(0,1) 13(0,09) 16(0,1)
3000 90 36(0,1) 35(0,1) 43(0,08) 37(0,1)
4000 93 49(0,11) 48(0,11) 48(0,13) 48(0,13)
5000 96 50(0,15) 50(0,15) 50(0,16) 50(0,15)
6000 94 51(0,19) 51(0,22) 52(0,18) 52(0,18)
7000 95 52(0,23) 52(0,21) 51(0,23) 53(0,21)
8000 97 47(0,25) 48(0,25) 46(0,25) 46(0,25)
9000 97 45(0,29) 47(0,29) 46(0,31) 46(0,3)
10000 97 43(0,36) 43(0,34) 43(0,35) 42(0,34)

Table 2: Response times obtained at maximum throughput when
supporting different numbers of agents

CPU utilization of 94%. Although the CPU utilization in the AS
is close to saturation (94%), the response times in all the replicas
are kept below the AS cycle. That is, the AS is able to process all
the requests in a single cycle. However, when the system is sup-
porting 9000 or 10000 agents then the AS can only serve part of
such requests, increasing the average response time up to 2,0 cy-
cles (replica C1 for ten thousand agents). It is worth mention that
none of the computers reaches a CPU utilization of more than 50%,
showing that there is a single bottleneck (the AS).

Table 2 also shows the results for different simulations perfor-
med with different numbers of agents. However, in these cases we
have studied the minimum response times that can be achieved. In
order to achieve such goal, for each number of agents (each row)
we have adjusted the AS cycle until either it has reached a CPU
utilization close to saturation (90-97%) or until the CPU utilization
did not increase (that number of agents was not enough to saturate
the AS). Therefore, the column S0 in table 2 shows values equal or
higher than 90% for the last eight rows, and the average response
times for the agents supported by each replica (the values inparent-
hesis) are expressed in seconds.

Table 2 shows that for 3000 or less agents in the system the ave-
rage response times in all the replicas is below 0.1 s, and these
average response times increase as more agents are in the system.
When comparing tables 1 and 2 and figure 10, it can be seen that
they provide coherent results. Effectively, the results intable 1 are
obtained with an AS cycle of 250 ms., and that table shows that
the system can support up to 8000 agents while providing average
response time of 1 cycle in all the replicas. Table 2 shows that
for 8000 agents the average response times in all the replicas are
250ms.. That is, the system can manage up to 8000 autonomous
agents if the AS cycle is 250ms.. These results are obtained with a
50% of positive server acknowledgment, and therefore they agree
with the ones in figure 10, where the server process around 8000 ac-
tions (one per agent and cycle) for a moderately dense world (48%
of ACKs). Since the agents considered for performance evalua-
tion exclusively move following a random pattern, they generate
the highest number of requests as possible to the AS, that is the
resource that can potentially become a bottleneck. Therefore, if
the number of complex agents is increased then the time between
successive requests to the AS will also increase, thus allowing the
system to support a higher number of agents.

In order to prove the real improvement that the proposed archi-
tecture provides in regard to classical approaches, where acentra-
lized application is executed on a single computer, table 3 shows
the throughput achieved when the proposed software architecture
is executed on a single node of the cluster. Table 3 shows thatfor
3000 agents the average response time practically reaches the 0.25
ms. threshold, and with 4000 agents the average response time ex-



Agents CPU(%) Av-RT(ms)
1000 35 0,11
2000 73 0,16
3000 77 0,24
4000 82 0,32
5000 82 0,40

Table 3: Evaluation results for a fully centralized system configuration

ceeds this threshold.
When comparing tables 2 and 3 it can be clearly seen that

the proposed system architecture can take advantage of distribu-
ted computer architectures distributing the agents between the exis-
ting servers. In this way, the number of supported agents canbe
improved. These results validate the proposed scheme (a computer
architecture based on networked servers and a hierarchicalsoftware
architecture) as a trade-off between scalability and consistency.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed the computer architectures used in
the literature to support virtual environments. Also, we have propo-
sed an efficient, distributed architecture for crowd simulations. On
the one hand, this architecture consists of a computer system based
on networked servers, in order to improve scalability with regard to
centralized proposals, but also as a trade-off for efficiently provi-
ding awareness and time-space consistency. On the other hand, it
consists of a hierarchical software architecture that can easily main-
tain the coherence of the virtual world (there is a single copy of
the semantic database). Performance evaluation results show that
this architecture can take advantage of distributed architectures, ef-
ficiently managing thousands of autonomous agents. Concretely,
for the case of an AS cycle of 250ms., this scheme can handle at
least 8000 autonomous agents when using 5 computers.

As a future work to be done, we plan to efficiently distribute
the action server in different machines by using distributed databa-
ses techniques, in order to improve the scalability. Also, we plan
to characterize the requirements of different kinds of autonomous
agents. The idea is to use each replica for supporting one (ormore)
kind of agents, according to the computational power of the compu-
ter and the requirements of the agents. Thus, by properly balancing
the existing load among the servers we expect to improve the sys-
tem throughput.

ACKNOWLEDGEMENTS

This paper is supported by the Spanish MEC under Grants
CONSOLIDER-INGENIO CSD2006-00046 and TIN2006-15516-
C04-04

REFERENCES

[1] T. Alexander. Massively Multiplayer Game Development II. Charles
River Media, 2005.

[2] AntZ: http://www.pdi.com/feature/antz.htm.
[3] S. Chenney. Flow tiles. InProceedings of the 2004 ACM SIG-

GRAPH/Eurographics symposium on Computer animation. ACM
Press, 2004.

[4] D. Diller, W. Ferguson, W. Leung, A. Benyo, and D. Foley. Beha-
vior modelling in comercial games. InBRIMS ’04: Proceedings of
the 2004 Behavior Representation in Modelling and Simulation Con-
ference, 2004.

[5] S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan. Geopostors:
a real-time geometry/impostor crowd rendering system.ACM Trans.
Graph., 24(3):933–933, 2005.

[6] S. Donikian. Informed virtual environments. InProceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation. ACM Press, 2004.

[7] J. Duato, S. Yalamanchili, and L. Ni.Interconnection Networks: An
Engineering Approach. IEEE Computer Society Press, 1997.

[8] A. I. F. Luengo. Framework for simulating the human behavior for
intelligent virtual agents. part i: Framework architecture. Lectures
Notes in Computer Science, 3039:239–236, 2004.

[9] A. I. F. Luengo. Framework for simulating the human behavior for
intelligent virtual agents. part ii: Behavioral system.Lectures Notes
in Computer Science, 3039:237–244, 2004.

[10] R. Fikes and N. Nilsson. Strips: a new approach to the application of
theorem proving to problem solving.Artificial Intelligence, 5(2):189–
208, 1971.

[11] R. M. Fujimoto and R. Weatherly. Time management in the dod high
level architecture. InProceedings tenth Workshop on Parallel and
Distributed Simulation, pages 60–67, 1996.

[12] Lord of the rings: http://www.lordoftherings.net.
[13] L. Gautier and C. Diot. Design and evaluation of mimaze,a multi-

player game on the internet. InProceedings of IEEE Multimedia Sys-
tems Conference, 1998.

[14] C. Greenhalgh, A. Bullock, E. Fr¿on, D. Llyod, and A. Steed. Making
networked virtual environments work.Presence: Teleoperators and
Virtual Environments, 10(2):142–159, 2001.

[15] T. Henderson and S. Bhatti. Networked games: a qos-sensitive ap-
plication for qos-insensitive users? InProceedings of the ACM SIG-
COMM 2003, pages 141–147. ACM Press / ACM SIGCOMM, 2003.

[16] J. L. Hennessy and D. A. Patterson.Computer architecture: a quanti-
tative approach (3rd. Edition). Morgan Kaufmann Series in Computer
Architecture. Elsevier Science, 2002.

[17] A. Iglesias and F. Luengo. New goal selection scheme forbehavioral
animation of intelligent virtual agents.IEICE Transactions on Infor-
mation and Systems, Special Issue on ’CyberWorlds’, E88-D(5):865–
871, 2005.

[18] P. A. Kruszewski. A game-based cots system for simulating intelli-
gent 3d agents. InBRIMS ’05: Proceedings of the 2005 Behavior
Representation in Modelling and Simulation Conference, 2005.

[19] J. C. Lui and M. Chan. An efficient partitioning algorithm for distribu-
ted virtual environment systems.IEEE Trans. Parallel and Distributed
Systems, 13, 2002.

[20] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.Pruyne, B. Ri-
chard, S. Rollins, and Z. Xu. Peer-to-peer computing. Technical
report, Technical Report HPL-2002-57, HP Laboratories, Palo Alto,
2002.

[21] J. S. Monzani, A. Caicedo, and D. Thalmann. Integratingbehavio-
ral animation techniques. InProceedings of EUROGRAPHICS 2001,
pages 309–318. Computer Graphics Forum, Vol. 20, Issue 3, 2001.

[22] S. Mooney and B. Games.Battlezone: Official Strategy Guide. Brady-
Game Publisher, 1998.

[23] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. Amethod for
providing qos in distributed virtual environments. In13th Euromicro
Conference on Parallel, Distributed and Network-based Processing
(PDP’05). IEEE Computer Society, 2005.

[24] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. On the cha-
racterization of distributed virtual environment systems. In Euro-Par’
2003 - Lecture Notes in Computer Science 2790, pages 1190–1198.
Springer-Verlag, 2003.

[25] P. Morillo, J. M. Orduña, M. Fernández, and J. Duato. Improving the
performance of distributed virtual environment systems.IEEE Tran-
sactions on Parallel and Distributed Systems, 16(7):637–649, 2005.

[26] H. Nakanishi and T. Ishida. Freewalk/q: social interaction platform
in virtual space. InVRST ’04: Proceedings of the ACM symposium
on Virtual reality software and technology, pages 97–104, New York,
NY, USA, 2004. ACM Press.

[27] Quake: http://www.idsoftware.com/games/quake/quake/.
[28] S. Raupp and D. Thalmann. Hierarchical model for real time simu-

lation of virtual human crowds.IEEE Transactions oon Visualization
and Computer Graphics, 7(2):152–164, 2001.

[29] D. Roberts and R. Wolff. Controlling consistency within collaborative
virtual environments. InProceedings of IEEE Symposium on Distribu-
ted Simulation and Real-Time Applications (DSRT’04), pages 46–52,
2004.

[30] W. Shao and D. Terzopoulos. Autonomous pedestrians. InSCA ’05:



Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 19–28, New York, NY, USA, 2005.
ACM Press.

[31] D. Sima, T. Fountain, and P. Karsuk.Advanced Computer Architectu-
res : A Design Space Approach. Addison Wesley, 1997.

[32] S. Singhal and M. Zyda.Networked Virtual Environments. ACM
Press, 1999.

[33] J. Smed, T. Kaukoranta, and H. Hakonen. A review on networking
and multiplayer computer games. Technical report, Turku Centre for
Computer Science. Tech Report 454., 2002.

[34] R. B. Smith, R. Hixon, and B. Horan.Collaborative Virtual Environ-
ments, chapter Supporting Flexible Roles in a Shared Space. Springer-
Verlag, 2001.

[35] M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors
for crowd simulations. InProceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages
519–528. ACM Press, 2004.

[36] F. Tecchia, C. Loscos, and Y. Chrysathou. Visualizing crowds in real
time. Computer Graphics Forum, 21, 2002.

[37] H. Tianfield, J. Tian, and X. Yao. On the architectures ofcomplex
multi-agent systems. InProc. of the Workshop on ”Knowledge Grid
and Grid Intelligence”, IEEE/WIC International Conference on Web
Intelligence / Intelligent Agent Technology,, pages 195–206. IEEE
Press, 2003.

[38] Unreal Tournament: http://www.unrealtournament.com/.
[39] S. Zhou, W. Cai, B. Lee, and S. J. Turner. Time-space consistency

in large-scale distributed virtual environments.ACM Transactions on
Modeling and Computer Simulation, 14(1):31–47, 2004.


