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ABSTRACT

Crowd simulations require both rendering visually plalesimages
and managing the behavior of autonomous agents. Therdfiesse
applications need an efficient design that allow them to Kanu
neously tackle these two requirements. Although seveogiqgmals
have focused on the software architectures for these sgstem
proposals have focused on the computer systems suppdréng t

In this paper, we analyze the computer architectures usttkin
literature to support virtual environments. Also, we prep@ dis-
tributed computer architecture efficient enough to suppionula-
tions of thousand of autonomous agents. This proposal tsns
a cluster of computers in order to improve flexibility and usb
ness, as well as a hierarchical software architecture ffiaieatly
provides consistency. Performance evaluation results shat the
trade-off between flexibility and consistency allows to aéfintly
manage thousands of autonomous agents.

Keywords: Distributed virtual environments, crowd simulation,
computer architecture.

Index Terms: 1.3.2 [Computer graphics]: Graphics systems—
Distributed/network graphics; C.2.4 [Computer-commatian
networks]: Distributed Systems—Distributed Applicaton
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Crowd simulations have become an essential tool for maryalir
environment applications. Extensive use of virtual crowas been
made in many commercial movies like AntZ [2] or The Lord of the
Rings [12]. Also, high quality crowd simulations are crudier
many virtual environment applications in education, tiragn and
entertainment [4, 18, 35].

Crowd simulations can be considered as virtual environrapnt
plications with two different goals. On the one hand, croivdus
lations must focus on rendering visually plausible imagethe
environment, requiring a high computational cost. On theeot
hand, complex agents must have autonomous behaviors]ygreat
increasing the computational cost as well. Thus, some galpo
tackle crowd simulations as a particle system with differien
vels of details (egmpostor$ in order to reduce the computational
cost [5, 36]. Although these proposals can handle crowd mjcga
and display populated interactive scenes (10000 virtuaidns),
they are not able to produce complex autonomous behaviors fo
their actors. On the contrary, several proposals have beatem
to provide efficient and autonomous behaviors to crowd smul
tions [30, 26, 6, 28, 21, 17]. However, they are based on a cen-
tralized system architecture, and they can only controhatfen-
dreds of autonomous agents with different skills (pedassriwith
navigation and/or social behaviors for urban/evacuatimmexts).

INTRODUCTION

Tacking into account that pedestrians represent the stdwesan
actors (in front of other kind of actors like drivers in caia, exam-
ple) these results show that scalability has still to beesbia crowd
simulations.

Although some scalable, complex multi-agent systems haeee b
proposed [37], these proposals are exclusively focuseti®sdf-
tware architecture, forgetting the underlying computeh#ecture
(the actual implementation of the computer and the apjidicaxe-
cuting on it [16, 31]). As a result, important features likeeir-
process communications, workload balancing or netwodnkzies
are not taken into account, seriously limiting the perfanoea of
this applications.

In this paper, we analyze the computer architectures ustitkin
literature to support virtual environments and we propaseféi-
cient system architecture, capable of simulating crowdsmto
thousands of autonomous agents. In order to manage thedffade
between scalability, rich behaviors, and computationst sequired
by crowd simulations, this system architecture is basedoybad
computational model. It consists of a networked-servetrbisted
Virtual Environment (DVE) [32]. On top of this hardware aich
tecture, we propose a hierarchical software architector@der to
efficiently supporting consistency and autonomous behgsviane
of the servers is used to host a centralized semantic da-bad
agents are uniformly distributed among the rest of the selinghe
system (denoted agplicag. This scheme allows to scale up the
number of servers with the number of agents in the systenewnhi
the centralized data base easily provides consistency. réshats
obtained in the performance evaluation show that this srchire
can efficiently manage up to thousands of autonomous agents.

The rest of the paper is organized as follows: section 2 apaly
the existing computer architectures proposed in the titeeafor
supporting Distributed Virtual Environments (DVESs). Asesult
of such analysis, section 3 describes the proposed artthitefor
crowd simulations. Next, section 4 shows the performanatuay
tion of the proposed system architecture. Finally, sechigimows
some conclusion remarks and future work to be done.

COMPUTER ARCHITECTURES FOR DVESs

Different computer architectures have been proposed ieraodef-
ficiently support DVEs: centralized-server architectui@s, 27],
networked-server architectures [19, 14] and peer-to-peshritec-
tures [22, 20]. Figure 1 shows an example of a centralizecese
architecture. In this example, the virtual world is two-éinsional
and avatars are represented as dots. In this architecaneithonly
a single server and all the client computers are connecteigo
server.

Figure 2 shows an example of a networked-server archigctur
In this scheme there are several servers and each clienutenip
exclusively connected to one of these servers. This schemeiie
distributed than the client-server scheme. Since theresareral
servers, it considerably improves the scalability, fldkijpand ro-
bustness in regard to the client-server scheme.



Figure 2: Example of networked-server architecture

Figure 3 shows an example of a peer-to-peer architectutbidn
scheme each client computer is also a server. This schemiel@so
the highest level of load distribution. Although the first B¥were
based on centralized architectures, during the last fewsyaahi-
tectures based on networked servers have been the majdastan
for DVE systems [19, 14]. However, each new avatar in a DVE
system represents an increase not only in the computatieqal-
rements of the application but also in the amount of netwafit
[25, 24]. Due to this increase, networked-server architestseem
not to properly scale with the number of clients, particyléor the
case of MMOGs [1], due to the high degree of interactivityvgho
by these applications. As a result, Peer-to-Peer archiesthave
been proposed for massively multi-player online gamesf0213].

Figure 3: Example of peer-to-peer architecture

Nevertheless, P2P architectures must still efficientlyesdhe
awarenesgroblem. This problem consists of ensuring that each
avatar is aware of all the avatars in its neighborhood [34bviP
ding awareness to all the avatars is a necessary conditiproto
vide time-space consistency (as defined in [39, 11, 29, 28]are-
ness is crucial for DVEs, since otherwise abnormal sitaatmould
arise. For example, a game user provided with a non-coheiemt
of the virtual world could be shooting something that he esmait-
hough it is not actually there. Also, it could happen that estar
not provided with a coherent view is killed by another avatat it
cannot see. In networked-server architectures, the aesseoro-
blem is easily solved by the existing servers, since thepgdieally
synchronize their state and therefore they know the lonaifaall
avatars during all the time. Each avatar reports about angés
(by sending a message) to the server where it is assigneadohe
server can easily decide which avatars should be the dastinaf
that message (by using a criterion of distance). There ised for
a method to determine the neighborhood of avatars, sineerser
know that neighborhood every instant.

3 ARCHITECTURE FOR CROWD SIMULATION

From the discussion above it seems that the more physicadrser
the DVE relies on, the more scalable and flexible it is. On the c
trary, features like the awareness and/or consistency are diffi-

cult to be provided as the underlying architecture is mos#itiuted
(peer-to-peer architecture). Therefore, we propose aarkéd-
server scheme as the computer architecture for crowd diioila
On the one hand, this distributed scheme allows to improee sc
lability, flexibility and robustness when compared to calieed
(client-server) architectures. On the other hand, the lsmuahber

of servers in networked-server architectures makes egstade
awareness (and therefore time-space consistency) todkerawmo-
ving in the virtual world. However, crowd simulations are neer-
driven applications, but computer-driven applicationbisTmeans
that there are not user-driven client computers, and omyirtter-
connected servers are used to manage the crowd simulatien. F
gure 4 shows an example of the proposed computer archigectur
with three servers.

LAN-¥AN

Figure 4: An example of the proposed computer architecture for
crowd simulations

On top of this networked-server architecture, a softwachiar
tecture must be designed to manage a crowd of autonomoutsagen
In order to easily maintain the coherence of the virtual diod
centralized semantic information system is needed. Insthise, it
seems very difficult to maintain the coherence of the sermarftr-
mation system if it follows a peer-to-peer scheme, wheredreoh
or even thousand of computers support each one a small niwhber
actors and a copy of the semantic database. Therefore, o tiop
computer architecture shown in figure 4 we propose the softwa



architecture shown in figure 5. This architecture has besigded
to distribute the agents of the crowd in different server patars
(the networked servers).
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Figure 5: The proposed software architecture

This hierarchical software architecture is composed of kind
of elements: thé\ction Server (ASand theClient Processes (CP)
The AS is unique, but the system can have as many client reses
as necessary, in order to properly scale with the number erfitag
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Figure 6: A collision example.

be able to manage, and it contains the necessary functiesaid
handle interactions between agents and objects. In our vase
manage a simple map for objects and agents which let us to effi-
ciently control a set of (attribute, value) pairs associdatecach ob-
ject/agent during the simulation. Since these attributesantered
into objects or agents, we use their names to index the qanes
dent map. The semantic information managed can be symlegjic (
object free true,object onobjec, ...) and numeric (egobject
position,ob ject bounding volume, ..), since it has been designed

to be simulated. In his turn, each CP manages a group of auto-to be useful for different types of agents.

nomous agents. In order to take advantage from the undgrlyin
computer architecture, the most suitable distributiontfos sof-
tware architecture consists of allocating the AS in a sirsglever,
and uniformly distributing the CPs among the rest of the neted
servers. In this way, the scalability and flexibility of thetworked-
server scheme can be used to add more CPs (and/or repli¢as) as
number of agents increases. Since each client process cagma
a variable number of autonomous agents, the replicas yduast
one CP, although it can hosts several ones. On the other ttend,
action server is composed of two different modules, the $¢ma
Data Base (SDB) and tha&ction Execution Module (AEM)The
action server is hosted on another networked server.

3.1 The Action Server

The Action Server corresponds to thetion enging8, 9], and it
can be viewed as the world manager, since it controls ancepsop
modifies all the information the crowd can perceive. The @i
Server is fully dedicated to verify and execute the acti@ugired
by the agents, since they are the main source of changes virthe
tual environment. For scalability purposes, the AS mustlbegul
on the computer with the highest computational power. This-c
puter should exclusively be used for this purpose. Sincé\Biés
unique, consistency is easily provided. In this contextiststency
involves the information that the agents should know to atém
consistent behaviors. Additionally, another importamapzeter for
interactive crowd simulations is tlserver main frequencyr his pa-
rameter represents how fast the world can change. Idealyfllly
reactive system all the agents send their action requesite teer-
ver, which processes them in a single cycle. In order to geovi
realistic effects, the server cycle must not be greater thamhres-
hold used to provide quality of service to users in DVEs [Z3, 1
Therefore, we have set the maximum server cycle to 250 ms..

We have decided to avoid complex spatial maps (such as
cuad/oct-trees) to control the SDB, since these structmede too
expensive to handle when the number of insertions and deteti
grows (agents can be continually changing their locatibmtead,
we use a 2D Grid (Cellular Automata), which allows us to asces
to any object/agent efficiently and it is also useful for fiatiing
behaviors, as we review below.

The AEM is devoted to guarantee the coherence of the virtual
world, as it is responsible for the action checking and etienu
For example, if an agent wants to change its location, it tlto
perform a motor action, so a collision can occur. The agentilsh
request the server to validate that movement by sending sages
Since the server knows the location of the agent, it accasses
cell through a simple function (similar to the one used byhhas
bles), and perform an object-object collision test withrie@ghbors
of ageniy (see figure 6). If no collision caused by that movement is
detected, then the server shouipgdatethe SDB and send an ack-
nowledgment message to the agent.

As commented in the example, we reduce the visible area for
each agent to face collision detection. Concretely, we u€e-a
llular Automata (CA) as an adequate formalism to handle omoti
behaviors for crowd simulations [3]. This formalism let asnba-
nage collision detection armhthfindingbehaviors in several situa-
tions (see figure 7). Apathfindingbehaviors clearly depends on
the agent decision taking, it is reviewed in the next section

In order to manage the high number of changes produced, the
AEM puts all the action effects in a vectévUpdates)which re-
flects the local changes produced by each actuation (eg: ent ag
changes its position). Finally, when the server cycle hastHed,
this vector is sent to both, the CPs and the SDB, which willatgd
their correspondent environmental states (see figure 5).

Once the server frequency has been set (in our case to 250 mi-

Basically, the AS consists of two modules: the Semantic Data lliseconds), the available time to process each agentractisults
Base and the Action Execution Module. The SDB represents the from dividing the server frequency by the number of agenthiin

global knowledge about the interactive world that the agiehbuld

system. If the number of agents increases in such a way that th



server cannot be able to process all the actions in a single,cy
then the pending actions are simply left to be processedesimétxt
cycle. In the experiments shown in section 4 we measure ti@mac
latency, so we could estimate the degree of reactivity aelidy
these scheme.

The AEM manages the action’s flow of the simulation. In order
to allow the maximum flexibility, it can currently processypés of
actions:

Motion actions : Location changes where collisions can occur,
although agents were (potentially) able to navigate withou
colliding. If an agent wants to move to the location currgntl
occupied by another object/agent, the environment should
simply not allow it.

Motor actions : We use simple key-framing tables to animate the
actors in walking, running, and other motions. Since no €ons
traints are allowed, the value received is simply accepted i
the SDB as an internal change in an agent attribute. We con-
sider the agent motor system as the responsible to continua-
lly read itsanimation stateérom the SDB. The graphic en-
gine, which contains all thactor’'s skeleton®f the crowd,
performs this task according to its frame rate .

Agentsinteractions : Corresponds to a normal agent-agent com-
munication scheme, which can be obtained from the system
through the server. Messages can be managed as other agent
attributes, so the SDB will simply route them into the cotres
pondent slots. This scheme has made us possible to investi-
gate onsocialcrowds in the future.

STRIPSactions : STRIP is the action language used by our plan-
ning agents. A STRIPS action scheme [10] can be represented
through thePreconditions Add andDeletelists associated to
each agent action. Before executing an action (eg: pick up ob
ject), the AEM verifies its preconditions using the SDB maps
(eg: is object-k free?). When a STRIPS action is accepted,
the Add and Delete lists contain the new information the SDB
needs to update its state.

3.2 The Client Processes

Each client process in a replica manages an independerp gfou
autonomous agents (a subset of the crowd). This processiias a
terfacefor receiving and updating the information from the server,
and a finite number of threads (each thread for an agent). gUsin
this interface, a replica initially connects to the servesting the
Action Server and downloads a complete copy of the SDB. From
that instant, agents can think locally and in parallel wité server,

so they can asynchronously send their actions to the sevhérh

will process them as efficiently as possible (since eachtagem
process thread, it can separately access to the socketatedrie
the server). When a server cycle finishes (every 250 ms.jadhe
cepted changes are submitted to all the replicas interfttatswill
update their SDB copies.

The proposed multi-threading approach is independent ef th
agent architecture (the Al formalism driving the agent lvédr,
that is out of the scope of this paper. However, the proposed a
tion scheme guarantees the awareness for all agents [Bd¢ all
the environmental changes are checked in a central sersi¢han
broadcasted to the agents. Although time-space inconsistecan
appear due to agent asynchronies and network latencietheal
inconsistencies are kept below the limit of the server merio

A classical complex behavior required by many crowd systems
is pathfinding (eg: evacuations). In our system, a CA is ibetlias
a part of the SDB, and each cell has precomputedibestpaths
of length| to achieve the exit cells. To calculate all the paths (k
paths per cell; cell = 1m side square), we are using a vaniaifo

Figure 7: Evacuation test with 8000 agents




Figure 8: Urban environment with 8000 agents

the A* algorithm. Our algorithm starts from each goal cefiddy
inundation, we can select thebest paths that arrive to each cell.
Parameters such &sand the cell size allow to reduce the memory
required for managing large environments memory problewsi;
ding memory problems. Furthermore, the calculation of detep
paths is not interesting generally, as agents can only atealhe
k-first steps before deciding its next cell.

During the simulation time, each agent can access to itandll
decide the next one according to this information, and theoke
heuristics defined (eg: waiting time, path congestion). Mexam-
ple, figure 7 shows 3 snapshots of the system running a evaiuat
simulation with 8000 agents in a (200mx200m) area. The 2R exi
cells are located on the top of the maze, and we can easilg+eco
nize them by following the different crowd flows. The first pie
shows the initial situation of the crowd, which is placeddamly.
The second one captures the crowd situation at the cyclent@fe
several congestions has already produced due to the ddsige o
environment (a maze with narrow doors). Finally, the lastpsfot
shows the crowd state in the cycle 500, where some didhpoints
have dissapear and others have increased their densityaGoate
all the crowd (8000 agents), the simulation finally consu®&s
cycles. For a 250 ms. cycle period, this results in a simuradif 4
minutes and 1.75 seconds.

On other hand, it is important to ensure that the system aan re
der visually plausible images of the virtual world. In thisnse,
figures 8 and 9 show two different views of a urban simulation e
vironment inhabited by 8000 agents. Figure 8 shows a genieal
of the city when the simulation starts, while figure 9 showsaaen
detailed view of an avenue. These figures show that the gralphi
quality provided during the simulation is acceptable etoug

4 PERFORMANCE EVALUATION

This section shows the performance evaluation of the arctuite
described in the previous section. In order to achieve soah we
have performed measurements on a real system with thisecehi
ture. Concretely, we have performed simulations where ageht
keeps moving during 5 or 6 minutes. As cited in the previous se
tion, the AS cycle (the maximum period of time an interactegor
can wait for it action response) has been set to 250ms., ag ev
2.5 seg. statistics are computed, resulting in 30 diffesamples.
Each point of the plot and each value of the tables in this@®ct
has been computed as the average value of the 30 sampledein or
to make a performance evaluation we have used wanderingsagen
since this type of agents is the one that generate the higluest
kload to the AS (since they simply move, they require theesety
validate their movements in each server cycle). The comnjmle-

Figure 9: Detailed view of the urban environment (8000 agents)

form has been a cluster of computers based on AMD Opteron (2 x
1.56 Ghz processors) with 3.84GB of RAM, executing Linux2-6

1 operating system. Depending on the test, we have used fnem o
to five nodes of the cluster.

Like in other distributed systems, the most important perfo
mance measurements in DVE systems are latency and thraughpu
[7]. First, we have focused on system throughput (the mamimu
number of agents that the system can efficiently suppora), ith
limited in our architecture by the AS throughput. Concrgtele
have measured the AS throughput when it is fully dedicatedle
sion detection tasks. The rationale of this test is to eveltae
number of actions that the server is able to carry out in alesing
cycle, since this could be a plausible bottleneck.

When an action is requested by an agent, the server basically
must access to its cell and then it must compute a set of simple
distance checking against the agents which are sharingathe s
cell, as figure 6 shows. If no collisions are produced, thes th
process continues until the 8 neighbor cells pass the sane te

Figure 10 shows the results obtained in a collision detedtst
performed in a single server where 10.000 agents demand-a ran
dom position as soon as they can, in order to saturate therserv
The purpose of this experiment is to know how fast the seraar c
run, in terms of the average of actions that it is able to Bsde a
single cycle. As figure 10 shows, this value highly dependthen
density of the crowd. Nevertheless, we have representsghéna-
meter as the percentage of finally executed actions (ACKiske
it is more informative for our purposes. Thus, an ACK peragpt
of 0% occurs when no motion is allowed because the crowd is com
pletely full and no one can move. On the other hand, when all th
agents pass a full collision test, all the actions are altb\®0%
of ACK’s) and all the agents finally move. In these experimsent
this case (94% of ACK’s) represents the worst case becaaseth
ver should access to 8 + 1 cells and compute a variable nunfiber o
distance checks for each action.

Figure 10 shows that in the worst case (94% of ACK’s) the ser-
ver is able to process around 6000 actions in a single cyé&e (2
ms). However, when the density of the crowd increases then th
percentage of ACK’s decreases because the probabilityliésion
grows in very dense worlds. This will produce that the sepasr
finish the cell checking without visiting all the neighborsls. As
a consequence, the server can process a higher numbermfsacti
requests per cycle (12000 actions for a percentage of 0% ACKS
It is also worth mention that for a medium case (48% ACK's§ th
system can manage around 8000 agents.

Additionally, we have evaluated the throughput and thenkate
of the entire system in a configuration composed of 4 rephoaksl



Server performance on collision detection
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Figure 10: Server performance on collision tests

SO C1 C2 C3 C4
Agents | % | %(cy.) | %(cy.) | %(cy.) | %(cy.)
1000 | 11 1(1) 1(1) 1(1) 1(1)
2000 | 22 | 4(1) 4(1) 4(1) 4(1)
3000 | 32| 10(1) 10(1) 11(1) 10(2)
4000 | 43 | 18(1) 18(1) 18(1) 17(1)
5000 | 54 | 24(1) 27(1) 25(1) 23(1)
6000 | 64 | 31(1) 32(1) 30(1) 32(1)
7000 | 79 | 39(1) 40(1) 37(2) 36(1)
8000 | 94 | 45,0(1) | 48(1) 45(1) 46(1)
9000 | 97 | 50(1,5) | 49(1,3) | 50(1,4) | 49(1,3)
10000 | 98 | 48(2,0) | 48(1,6) | 48(1,7) | 48(1,6)

Table 1: System throughput for a fixed agent cycle of 250ms.

server. For both cases, agents continuously demand a rgmatsim
tion to the server. The purpose of these evaluations is tckahthe
proposed architecture can improve the latency and thraugimp-
vided by other general purpose DVEs [25]. In these experigsaen
the existing agents are distributed among the existing 8Rsch
a way that all the replicas manage a crowd subset (group ofs)ge
of similar size. We have increased the number of agents tinatil
whole system has reached saturation. The saturation oieti
ched when the CPU utilization reaches 100% in any computer, a
it results in a huge increase of the system latency [25].

Table 1 shows the results for different simulations withshme
AS cycle (250 ms.) but with different numbers of agents. Each
column in this table shows two different values, except fier ser-

SO C1l C2 C3 C4
Agents | % %(s.) %(s.) %(s.) %(s.)
1000 | 28 | 2(0,1) 3(0,1) 4(0,08) | 3(0,11)
2000 | 59 | 12(0,1) | 13(0,1) | 13(0,09)| 16(0,1)
3000 | 90 | 36(0,1) | 35(0,1) | 43(0,08)| 37(0,1)
4000 | 93 | 49(0,11) | 48(0,11)| 48(0,13) | 48(0,13)
5000 | 96 | 50(0,15) | 50(0,15) | 50(0,16) | 50(0,15)
6000 | 94 | 51(0,19) | 51(0,22) | 52(0,18) | 52(0,18)
7000 | 95 | 52(0,23) | 52(0,21) | 51(0,23)| 53(0,21)
8000 | 97 | 47(0,25) | 48(0,25)| 46(0,25)| 46(0,25)
9000 | 97 | 45(0,29) | 47(0,29) | 46(0,31)| 46(0,3)
10000 | 97 | 43(0,36) | 43(0,34)| 43(0,35) | 42(0,34)

Table 2: Response times obtained at maximum throughput when
supporting different numbers of agents

CPU utilization of 94%. Although the CPU utilization in theSA

is close to saturation (94%), the response times in all thbcees

are kept below the AS cycle. That is, the AS is able to prockss a
the requests in a single cycle. However, when the systempis su
porting 9000 or 10000 agents then the AS can only serve part of
such requests, increasing the average response time up ty-2,
cles (replica C1 for ten thousand agents). It is worth mentiat
none of the computers reaches a CPU utilization of more tBé® 5
showing that there is a single bottleneck (the AS).

Table 2 also shows the results for different simulationgqgver
med with different numbers of agents. However, in thesexase
have studied the minimum response times that can be achikved
order to achieve such goal, for each number of agents (each ro
we have adjusted the AS cycle until either it has reached a CPU
utilization close to saturation (90-97%) or until the CPWization
did not increase (that number of agents was not enough tcasatu
the AS). Therefore, the column SO0 in table 2 shows valueslequa
higher than 90% for the last eight rows, and the average nsgpo
times for the agents supported by each replica (the valussrent-
hesis) are expressed in seconds.

Table 2 shows that for 3000 or less agents in the system the ave
rage response times in all the replicas is below 0.1 s, amgbthe
average response times increase as more agents are in tm.sys
When comparing tables 1 and 2 and figure 10, it can be seen that
they provide coherent results. Effectively, the resulttalle 1 are
obtained with an AS cycle of 250 ms., and that table shows that
the system can support up to 8000 agents while providingageer
response time of 1 cycle in all the replicas. Table 2 shows tha
for 8000 agents the average response times in all the repdiea
250ms.. That is, the system can manage up to 8000 autonomous
agents if the AS cycle is 250ms.. These results are obtairtbdaw
50% of positive server acknowledgment, and therefore tlgegea
with the ones in figure 10, where the server process arour@dl 860

ver. The column labeled with SO shows the percentage of CPU tions (one per agent and cycle) for a moderately dense wéah(

utilization reached in the computer hosting the AS. The mwis
labeled with Cx show the percentage of CPU utilization reddn
that computer (replica) and the average response time (mezhs
in AS cycles) for the agents supported by that computer. &fte |
column shows the number of agents used in each simulatiah Ea
row in this table shows the results for a simulation with dedént
number of agents, ranging from 1000 to 10,000 agents.

Table 1 shows that if a distributed (cluster-based) compigte
used then the proposed architecture takes advantage ofsthie d
buted hardware, in such a way that the use of multiple compute
allows to improve the number of supported agents until tineese
hosting the AS becomes the system bottleneck. Effectitigityta-
ble shows that the system provides acceptable response witie

of ACKs). Since the agents considered for performance avalu
tion exclusively move following a random pattern, they gete
the highest number of requests as possible to the AS, thaeis t
resource that can potentially become a bottleneck. Therefb
the number of complex agents is increased then the time batwe
successive requests to the AS will also increase, thus ialipthe
system to support a higher number of agents.

In order to prove the real improvement that the proposedi-arch
tecture provides in regard to classical approaches, wheesiaa-
lized application is executed on a single computer, tabladvs
the throughput achieved when the proposed software actiite
is executed on a single node of the cluster. Table 3 showddhat
3000 agents the average response time practically redoh@s25

up to 8000 agents, when the computer hosting the AS reaches ams. threshold, and with 4000 agents the average responsexm



Agents | CPU(%) | Av-RT(ms) 7]
1000 35 0,11
2000 73 0,16 [8]
3000 77 0,24
4000 82 0,32
5000 82 0,40 [9]

Table 3: Evaluation results for a fully centralized system configuration [10]

ceeds this threshold. (11

When comparing tables 2 and 3 it can be clearly seen that
the proposed system architecture can take advantage abudist
ted computer architectures distributing the agents betweeexis-
ting servers. In this way, the number of supported agentsbean
improved. These results validate the proposed scheme (autem
architecture based on networked servers and a hierarcoftalare
architecture) as a trade-off between scalability and cteiscy.

[12]
[13]

[14]

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed the computer architectiged in
the literature to support virtual environments. Also, weehpropo-
sed an efficient, distributed architecture for crowd sirtiates. On
the one hand, this architecture consists of a computermyisased
on networked servers, in order to improve scalability wébard to
centralized proposals, but also as a trade-off for effitygmovi-
ding awareness and time-space consistency. On the othdy iban
consists of a hierarchical software architecture that eailyemain-
tain the coherence of the virtual world (there is a singleycop
the semantic database). Performance evaluation resoks thiat
this architecture can take advantage of distributed archites, ef-
ficiently managing thousands of autonomous agents. Cafgret
for the case of an AS cycle of 250ms., this scheme can handle at
least 8000 autonomous agents when using 5 computers.

As a future work to be done, we plan to efficiently distribute
the action server in different machines by using distributataba-
ses techniques, in order to improve the scalability. Alse,plan
to characterize the requirements of different kinds of motoous
agents. The idea is to use each replica for supporting onadog)
kind of agents, according to the computational power of trapu-
ter and the requirements of the agents. Thus, by propernbalg
the existing load among the servers we expect to improveythie s
tem throughput.

[15]

[16]

[17]

(18]

[19]

[20]

[21]
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