
An interactive evolutionary approach for content based image retrieval

Miguel Arevalillo-Herráez, Francesc J. Ferri, Salvador Moreno-Picot
Departament d’Informàtica, Universitat de València

Dr Moliner, 50 46100 Burjassot, Spain
{miguel.arevalillo,francesc.ferri,salvador.moreno}@uv.es

Abstract—Content Based Image Retrieval (CBIR) systems aim
to provide a means to find pictures in large repositories without
using any other information except its contents usually as low-
level descriptors. Since these descriptors do not exactly match the
high level semantics of the image, assessing perceptual similarity
between two pictures using only their feature vectors is not a
trivial task. In fact, the ability of a system to induce high level
semantic concepts from the feature vector of an image is one of
the aspects which most influences its performance. This paper
describes a CBIR algorithm which combines relevance feedback,
evolutionary computation concepts and ad-hoc strategies in an
attempt to fill the existing gap between the high level semantic
content of the images and the information provided by the low
level descriptors.

I. INTRODUCTION

Evolutionary computation is concerned about the applica-
tion of natural selection and genetics concepts to computational
models. It embraces a set of techniques based on the processes
of mutation, reproduction, competition and selection as genetic
algorithms [1], evolution strategies [2], [3] and so on. IR
(Information Retrieval) deals with finding digital resources in
large databases. In this field, evolutionary computation has
been applied e.g. to clustering results [4], query optimiza-
tion [5] and hybrid simulated annealing-genetic programming
relevance feedback [6]. CBIR (Content Based Image Retrieval)
systems are a special type of IR system where the information
contained in the repository are pictures. CBIR systems that use
evolutionary computation have been recently presented in [7],
[8], [9].

This paper presents an algorithm which combines interac-
tive evolutionary computation concepts with ad-hoc strategies
to produce an efficient relevance feedback algorithm for image
retrieval. The system has been implemented and evaluated with
very promising results.

II. RELEVANCE FEEDBACK IN IMAGE RETRIEVAL

The purpose of a CBIR system is to allow users to perform
searches on image repositories. Since most of the time the
user’s interests can only be expressed in terms of the semantic
meaning of a query, this requires that the system is able to
translate these high level semantic concepts into the low level
representation of the images. The assumption that semantic
similarity is related to the similarity between low level features
is implicit to this procedure. Since this assumption does not

0This work has been partially funded by UVEG, FEDER and Spanish MEC
through projects UV-AE-20070220, DPI2006-15542-C04-04 and Consolider
Ingenio 2010 CSD2007-00018

hold completely true, the objective of most CBIR techniques
is to reduce the existing gap between the semantics induced
from the low level features and the real high level meaningful
semantics of the image.

Relevance feedback originated in the context of traditional
text based information retrieval systems [10] and refers to a
set of techniques which aim to refine the original query in-
teractively, using feedback information on previously retrieved
results provided by the user. In the context of CBIR, they are
usually based on some form of supervised learning and allow
retrieval systems to reduce the semantic gap, converting the
search into an iterative, dynamic and interactive process that
gradually adjusts the results to the interest of the user.

The most common form of relevance feedback mechanism
consists of requesting the user to judge on the results retrieved
at each iteration, either marking the pictures retrieved as
“relevant”, “not relevant” or “neutral”, or by means of a
slide bar which assigns a “grade of similarity” to each of
the results. This information is then used to recast the query
and produce a new set of results, repeating the process until
a satisfactory outcome is obtained. With the low amount of
information provided at each iteration, and in a limited amount
of time imposed by the fact that they are interactive systems,
a relevance feedback mechanism aims at minimizing user
interaction and fastening the search process.

Older approaches assumed the existence of a query point
and an appropriate set of weights in the feature space that
if found would provide the answer. In these methods, the
relevance feedback mechanism attempts to update the query
point so that more emphasis is placed on those features
which appear more relevant to the user according to his/her
selections [11], [12], [13], [9].

Other approaches for this are Bayesian methods [14], [15],
Self Organizing Maps (SOMs) [16] or more recently, Support
Vector Machines (SVM) [17], [18] or regression models [19].

III. IMAGE RETRIEVAL AND EVOLUTIONARY
COMPUTATION CONCEPTS

An evolutionary algorithm attempts to solve a problem
applying Darwin’s basic principles of evolution [20] on a
population of trial solutions to a problem, called individuals.
Genetic algorithms are a class of evolutionary algorithms,
which place a special emphasis on the application of genetic
operators, such as mutation and crossover. A GA (Genetic
Algorithm) uses an encoding method to represent potential so-
lutions to the problem, and a measure that allows a quantitative
evaluation of each candidate, called a fitness function.



Starting from an initial population, a GA uses the fit-
ness function to evaluate each candidate. The most promis-
ing individuals are allowed to reproduce and determine the
next generation of individuals, according to a series of pre-
established evolution rules. The process is repeated until a
solution is found. The representation of the individuals, and
the rules that govern the evolution of the population are key
issues in the development of a genetic algorithm. Usually,
potential solutions are encoded as binary strings, as sequence
of characters or as vectors of integer or floating point numbers,
where each element represents a particular aspect of the
solution. In genetic terms, the potential solution is called the
phenotype, and its representation is referred to as its genotype,
genome or chromosome. The evolution rules refer to the
parent selection method, and the definition of the mutation
and cross-over operations to obtain the offspring genotypes
for the next generation individuals. Most parent selection
methods are stochastic in order to keep the diversity of the
population, preventing premature convergence to a sub-optimal
solution. Cross-over operations emulate biological meiosis,
and mutations mimic the permanent DNA changes due to
transcription errors, radiation, and free chemical radicals which
occur in nature.

IGAs are a type of GA which have been successfully
applied to many different research areas [21], [22]. When the
design of an appropriate fitness function is not possible, IGAs
(Interactive Genetic Algorithms) use direct human evaluation.
In the context of CBIR, the only truly reliable relevance judg-
ments are those coming directly from the user. It seems then
that the use of a fitness function based on human interaction
may be an appropriate technique to approach the interactive
image retrieval problem.

Perhaps the most related publication to our work is that
in [23], where the authors propose the use of an standard
IGA using wavelet features. Although they both share the use
of interactive evolutionary concepts as part of the underlying
principles of the algorithm, the GUI concept, the user feedback
mechanism, the genotype representation, the parent selection
criteria, the size of the population and the genetic operations
are all defined differently, and combined with a series of ad-
hoc strategies to accelerate the convergence and improve the
results obtained.

IV. THE ALGORITHM

A. Representation

In genetic terms, the feature representation of an image
would be the equivalent to its genotype, and the image itself
to its phenotype. It is reasonable to assume that the rela-
tionship between the genotype and the phenotype is strongly
causal [24], and therefore small variations on the genotype
space imply small variations on the phenotype space. Since
the neighborhood structure under a strongly causal mapping
is conserved, the neighbors of the genotype would also be
neighbors in the phenotype space.

In principle, the genetic inspired framework presented in
this paper can be applied using any set of descriptors which

satisfy the condition of strong causality in the genotype-
phenotype mapping. In this particular work color information
as a feature vector of 30 components each representing a bin
on HS (Hue-Saturation) histogram of size 10× 3, and texture
information as 2 independent feature vectors of 10 compo-
nents each representing granulometric cumulative distribution
functions [25] have been used.

B. Fitness Function

In a genetic algorithm, a fitness function is used to measure
the goodness of a solution. At each iteration of the rele-
vance feedback process, the information captured from the
user interaction can be used to build this function. We are
certain that pictures which have been rated as positive have
a phenotype which is closer to that of the query than other
images which have been flagged as non relevant or simply not
rated. Thus, these are the pictures which should be allowed to
reproduce and are assigned a maximum score. Non relevant
selections are removed from the population and not allowed
to reproduce. It could be argued that the idea of a genetic
algorithm would be to assign these a lower fitness, but still
give them a small chance to survive. However, pure genetic
algorithms may take hundreds of iterations to converge to a
solution and we cannot afford such numbers. Therefore, it
is necessary to find strategies to accelerate the convergence.
The problem with restricting the sets of individuals which
are allowed to reproduce to such an extent is that the new
generations may lack of the required diversity in the resulting
population, getting trapped around a sub-optimal solution. To
avoid this we apply an operation that we call population
enrichment and helps maintaining population diversity, which
consists of introducing some new individuals extracted from
the repository. These are the neighbors of the positive selec-
tions, and this decision is supported by the strong causality
assumed for the genotype-phenotype mapping. Neighbors have
similar genotypes, and thus their phenotypes should also be
related. Still, this implication shall not be given the same
confidence as a positive selection.

Three groups of solution images are formed: the positive
selections, images among p-neighbors of a positive selection,
and images among the next p-neighbors of a positive selection.
A genotype may be present in more than one group and it
may appear several times within each group. This strategy
avoids getting trapped in a close area of the search space at the
same time that preserves population diversity and accelerates
the convergence. The value of p depends on the size of the
repository. In our implementation, it has been fixed to 20. To
calculate the neighbors the distances for each descriptor are
computed separately using the Euclidean distance on its vector
components, and they are equalized so that all possible values
are equally probable. The product rule is then used to produce
a composite distance. Since only an approximate ranking and
not an exact quantitative evaluation is needed, any consistent
measure which offers a reasonable accuracy would be valid.
Whilst a very accurate measure may accelerate the convergence
of the measure, a less precise metric increases the variety of



the population and protects the algorithm against converging
to sub-optimal solutions.

Another issue is the treatment of pictures which have
been marked as non relevant. A current search history is
maintained to keep track of all previous negative selections.
For all negative selections, whether from this or a previous
iteration, their n-neighborhoods are calculated. The value of n
in our implementation is 5. We know that their phenotypes
are not desired and the strong causality in the genotype-
phenotype mapping is used to induce that their genotypes and
their neighbor’s are not either. These genotypes should not
be allowed to reproduce and thus they are removed from the
groups of neighbors of the positive selections, if they were
present.

C. Parents Selection

Parents are chosen using roulette wheel parent selection.
The roulette wheel is initially divided into three sectors, one
per each of the groups described in the previous section with
associated sizes of 60%, 28% and 12%, respectively. Each
of these sectors is further divided between the individuals
in a proportional way to the number of appearances of each
genotype.

D. Evolution Rules

Next, we detail some major pitfalls associated with the
direct application of standard cross-over and mutation to our
genotype representation:

• The application of cross-over and mutation operations
may result in inconsistent genotypes. Features which
belong to the same concept may have to satisfy certain
restrictions. As an example, bins of a normalized color
histogram should add to one, and cumulative functions
should be monotonic.

• The mapping between a genotype and a phenotype is not
known. Even if the new genotype produced is consistent,
its corresponding phenotype needs to be shown to the
user for evaluation. Since we do not have a conversion
function from the genotype to the phenotype space, some
procedure which always produces an existing phenotype
is required.

• The number of positive selections may be too small to
allow the construction of a consistent new population
which ensures population diversity. This is specially true
during the first iteration, where just one or two positive
selections are common.

To solve these problems, reasonable and genetically consis-
tent ad-hoc strategies are adopted. The first pitfall is attacked
considering each group of features as a gen. In GAs, gens are
regarded as indivisible units in cross-over operations. Since the
gens in the original genotype are all coherent and they are not
altered during the process, they will remain consistent. The
concept of a gen and its implications in crossover operations
are illustrated in figure 1. To avoid that the mutation mech-
anism alters the structure of the gens, a mutation operation

Fig. 1. Possible results of a crossover operation on two genotypes with three
gens each.

consists of replacing a gen by another chosen at random from
the images in the repository.

The second problem is solved searching for the closest
genotype in the repository, according to a simple similarity
function, and using this instead. This operation can be consid-
ered a small mutation of the original genotype to match another
genotype which has a known phenotype, and is supported
by the strong causality assumed for the genotype-phenotype
mapping, which limits the impact of the mutation in the
phenotype space.

The solution to the third pitfall has already been described in
the context of the fitness function. To form a larger population,
we adopted the solution to include new individuals from the
neighborhood of the positive selection, and assign a lower
fitness value to them.

Each iteration of the algorithm proposed can be described
as follows:

1) Repeat k times
a) Select a pair of genotypes using roulette wheel

parent selection.
b) Apply a cross-over operation to produce a pair of

offspring genotypes. In our implementation it is
considered that each genotype is composed of three
gens. Figure 1 illustrates all possible combinations
considered.

c) Apply a mutation operation on a percentage of
the resulting offsprings. In our implementation, this
percentage has been fixed to 3%.

d) Search the pictures which best matches the off-
spring genotypes in the repository.

e) Add the genotypes of these pictures to the new
population.

Because relevance feedback is an interactive process, the
number of times k is a constant defined so that the algorithm
executes in an acceptable time. In our implementation, we
execute k = 6000 matches in each iteration, which allows
maintaining the processing time below 2 seconds.

It is worthwhile noticing several aspects of this algorithm:



• The new population may contain the same individual
more than once. However, it is not reasonable to display
the same image more than once in the same iteration.
Instead, a ranking is established so that the individuals
that appear more times in the new generation are shown
first in the user interface.

• Images which have been flagged as not relevant in pre-
vious iterations and appear in the ranking are removed.
This avoids that images we already have a valid judgment
for, are displayed again.

• Although cross-over operations have been forced to take
at least one gen from each parent, the roulette based
parent selection algorithm may chose the same individual
twice. In this case, the cross-over operation generates two
offsprings with the same genotype as the only parent. This
produces a desirable effect, causing that the positive user
selections be placed at the first ranking positions in the
next iterations.

• Mutations have a significant impact in the first iteration of
the algorithm, and when the number of positive selections
is small. Otherwise, their effect is rather unnoticeable.

E. A Global Perspective

A global schematic view of the algorithm is depicted in
Figure 2:

1) First a series of images are displayed on the GUI in
an order determined by the ranking established in the
previous iteration, and the user flags positive those which
are relevant to the query, and negative those which are
clearly not relevant.

2) As part of the population enrichment operation, a simple
distance function is used to obtain the genotypes of the
neighbors of positive and negative selections from the
repository. Five sets are created:
• Positive selections. Contains the genotypes of the

pictures that the user has flagged as relevant to the
query.

• Negative selections. Contains the genotypes of the
pictures that the user has flagged as clearly non
relevant to the query, at this and any other previous
iteration for the same search. A search history is
maintained that stores the genotypes which have
been rated negative at previous iterations.

• Positive first p-neighborhood. Contains the geno-
types of the first p-neighbors of the positive selec-
tions according to the distance function used.

• Positive next p-neighborhood. Contains the geno-
types of following p-neighbors of the positive se-
lections, according to the same distance function.

• Negative n-neighborhood. Contains the genotypes of
the n closest neighbors of the negative selections.

3) Genotypes in the sets Positive first p-neighborhood and
Positive next p-neighborhood which are also included in
either set Negative n-neighborhood or Negative selec-
tions are eliminated from their respective sets.

Fig. 2. Schematic description of the entire algorithm

4) The genotypes of the elements in the sets Positive
selections, Positive first p-neighborhood and Positive
next p-neighborhood are considered representations of
potential solutions, and crossover is applied. A roulette
based stochastic method is used to select the parents.

5) Random mutations are applied to the resulting set of
genotypes. When a mutation occurs, the gen from the
synthetic genotype is replaced by the same gen in a
picture randomly selected from the repository.

6) The synthetic genotypes are mapped into real genotypes
which can be found in the repository.

7) As a result of the previous mapping, some images will
appear several times in the new population. These are
counted and a ranking is established. This ranking is
used to present the new set of images to the user and
re-start the process.

V. EVALUATION

The final objective of any CBIR system is that the user is
able to find a desired picture in a minimum time. Since time
is very sensitive to and highly dependent on many external
factors, such as the computer literacy of the user, it is a
common approach to use the number of iterations required
instead.



Fig. 3. Histogram of the number of iterations required to bring the query
picture into the first page.

Still, the number of iterations depends heavily on two
aspects:

1) The picture the user looks for. Some pictures are easier to
find that others. If the database contains a large number
of pictures which are related to the user query, it will be
easier to find.

2) The initial layout of the images. It is easier to find a
picture if some images which are related to the query
appear on the first few pages of the GUI.

If we are able to run a sufficiently large number of these
queries the effects above will minimize. Then, the average
number of iterations required to find the target image will
become an appropriate measurement of performance.

For evaluation purposes, a special setup that uses the target
testing approach [14] has been prepared. The system presents
a picture chosen at random from the repository, and the user’s
aim is to bring that picture into the first page shown. We have
used a repository that is composed of 3742 images organized
into 49 categories, and we have run a total of 161 successful
queries, involving 23 users. A query is considered unsuccessful
when a user has run over 8 iterations and the current population
does not contain the query image. The evaluation software used
saves relevant information into a database. At each iteration,
the user is asked to report how many of the results retrieved in
the first page are relevant to the query. This value is divided by
the number of images in a page -16- to calculate the precision
at this cut-off value. Figure 3 shows the number of iterations
required as a histogram. An average number of 3.55 iterations
were required to find a random target.

To continue with the analysis of the results, we studied the
progress of the search process. We have grouped the searches
according to the number of iterations which were required to
bring the query picture into the first page, and examined the
evolution of the precision in those groups where the number of
samples makes it possible to obtain a meaningful result. The
results are presented in table I.

Each pair of rows in this table represents a set of queries
which required the same number of iterations, which is spec-
ified in the first column. For each such set, the precision
obtained at each iteration is analyzed. This has been calculated

at a cut-off value of 16, the number of pictures which are
displayed on a page. Both the average and standard deviation
of the results obtained for each query in the same group are
shown.

A consistent monotonic behavior can be appreciated, an
argument in favor of the robustness of the algorithm. However,
it is worth noticing some fluctuations which happens for the
groups of queries which required over 8 iterations. Although
the number of queries in these sets is not statistically meaning-
ful, the non-monotonic behavior deserves a careful analysis.

Intuitively, the images shown at each iteration are within a
cloud in the feature space, delimited by the positive selections
and their neighbors. The genetic algorithm works moving and
re-shaping this cloud towards the images of interest. When
the user makes a positive selection which is near the borders
of the cloud, the inclusion of the neighbors of the positive
selection in the calculation of the new generation causes this
effect. Since we are measuring the precision at a cut-off value
of 16, we can imagine a cloud of this size. When the images of
interest are disperse in the space and the query is located near
to a border, it may happen at one stage that the cloud covers a
number of related images, but does not include the query itself.
As the cloud moves towards the query, some pictures which
were previously considered relevant are left outside the scope
of the cloud. If these are more than the new relevant images
included, the precision value decreases. Obviously this does
not mean that the algorithm is diverging, but just the opposite.
The larger number of iterations required when this effect has
occurred implies a slower convergence, which is consistent
with the idea of a cloud slowly moving towards the query. In
other cases the cloud is wrapping the query and the effect of
user selections is a compression of the cloud, resulting in a
faster convergence and requiring less iterations.

TABLE I
AVERAGE OF PRECISION VALUES FOR EACH OF THE 11 GROUPS. THE

STANDARD DEVIATION IS ALSO SPECIFIED IN BRACKETS.

Precision values at iteration
1 2 3 4 5 6 7 8 9 10 11

0.41
(0.22)
0.23 0.57

(0.13) (0.23)
0.27 0.42 0.61

(0.20) (0.20) (0.22)
0.23 0.38 0.51 0.66

(0.14) (0.17) (0.21) (0.18)
0.26 0.31 0.40 0.42 0.59

(0.17) (0.19) (0.22) (0.18) (0.22)
0.19 0.30 0.41 0.48 0.54 0.69

(0.11) (0.13) (0.09) (0.14) (0.16) (0.15)
0.17 0.35 0.33 0.46 0.35 0.46 0.71

(0.16) (0.26) (0.18) (0.19) (0.16) (0.16) (0.14)
0.21 0.33 0.33 0.43 0.43 0.51 0.51 0.72

(0.20) (0.18) (0.15) (0.15) (0.13) (0.14) (0.12) (0.13)
0.28 0.47 0.47 0.47 0.41 0.44 0.41 0.53 0.63

(0.04) (0.13) (0.13) (0.13) (0.04) (0.00) (0.31) (0.31) (0.35)
0.25 0.31 0.31 0.81 0.69 0.25 0.25 0.25 0.25 0.44

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
0.13 0.25 0.34 0.41 0.47 0.53 0.59 0.44 0.25 0.25 0.34

(0.00) (0.00) (0.04) (0.04) (0.04) (0.13) (0.13) (0.09) (0.18) (0.18) (0.22)

VI. DISCUSSION

The algorithm developed in this paper depends heavily of
the assumption of strong causality of the genotype-phenotype
mapping. This strong causality has made it possible to work
with the neighborhoods to enrich the population and map



synthetic genotypes to other genotypes which exist in the
repository.

In some sense the so-called semantic gap breaks the neigh-
borhood structure under the mapping, and may cause that
the algorithm retrieves not only images which are relevant
to the query, but also others which are not relevant, simply
because they have a similar genotype. In our repository, most
stones and flowers share similar representations (genotypes)
and therefore they commonly appear together. To clean the
space and filter the relevant genotypes we consider negative
selections. Removing the neighbors of the negative selections
so that they are not allowed to reproduce unless they have been
rated positive, has proven to be an effective ad-hoc strategy to
palliate this effect.

The genetic technique presented in this work can also be
associated with an intuitive reasoning. The system assumes
that a user positive selection is based on a strong similarity
between some feature of the picture selected and the query. If
the algorithm works with color, shape and texture, the system
will attempt to discover which one of these features motivated
the user selection displaying another series of images, some
with the same color as the positive selection, some with the
same shape and some with the same texture. The crossover
operations on the genotypes make those features which are
common to several selections predominant among the new
population.

A flexible entire framework which allows the construction
of a relevance feedback mechanism for a variety of content
based image retrieval systems has been presented. The ap-
proach is not only suitable for retrievals based on positive
and negative selections, but it can also be adapted to work
with other type of paradigms. For example, some engines use
a slide bar below each picture which allows the user to assign
the image a “grade of similarity”, instead of one of three
qualifiers. In this case, the grades assigned can be used to
alter the probabilities within each group in the roulette, making
those pictures with higher grades more likely to reproduce.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press, 1992.

[2] H.-P. Schwefel, Numerical Optimization of Computer Models. Chich-
ester: Wiley, 1981.

[3] I. Rechenberg, Evolutions Strategies. Stuttgart: Fromman-Holzboog,
1973.

[4] M. Gordon, “User-based document clustering by redescribing subject
descriptions with a genetic algorithm,” J Amer Soc Information Sci,
vol. 42, no. 5, pp. 311–322, 1991.

[5] D. Kraft, F. Petry, B. Buckles, and T. Sadasivan, Genetic algorithms for
query optimization in information retrieval: relevance feedback. World
Scientific, 1997, ch. Genetic Algorithms and Fuzzy Logic Systems, p.
155173.

[6] O. Cordón, F. Moya, and C. Zarco, “A new evolutionary algorithm
combining simulated annealing and genetic programming for relevance
feedback in fuzzy information retrieval systems,” Soft Computing, vol. 6,
pp. 308–319, 2002.

[7] S. Kato, “An image retrieval method based on a genetic algorithm,”
in ICOIN ’98: Proceedings of the 13th International Conference on
Information Networking. Washington, DC, USA: IEEE Computer
Society, 1998, pp. 333–336.

[8] S.-F. Wang, X.-F. Wang, and J. Xue, “An improved interactive ge-
netic algorithm incorporating relevant feedback,” in Proceedings of the
4th International Conference on Machine Learning and Cybernetics,
Guangzhou, August 2005, pp. 2996–3001.

[9] R. da S. Torres, A. X. Falco, M. A. Goncalves, B. Zhang, W. Fan,
E. A. Fox, and P. Calado, “A new framework to combine descriptors for
content-based image retrieval,” in Fourteenth Conference on Information
and Knowledge Management, Bremen, Germany, 2005, pp. 335–336.

[10] G. Salton and M. J. McGill, Introduction to Modern Information Re-
trieval. McGraw Hill, 1983.

[11] Y. Ishikawa, R. Subramanya, and C. Faloutsos, “Mindreader: Querying
databases through multiple examples,” in Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, New York, USA, 1998, p. 433438.

[12] Y. Rui, S. Huang, M. Ortega, and S. Mehrotra, “Relevance feedback: a
power tool for interactive content-based image retrieval,” IEEE Trans-
action on circuits and video technology, vol. 8, no. 5, 1998.

[13] S. Bissol, P. Mulhem, and Y. Chiaramella, “Dynamic learning of index-
ing concepts for home image retrieval,” in Content-Based Multimedia
Indexing, Rennes, France, September 2003, pp. 87–93.

[14] I. Cox, M. Miller, T. Minka, T. V. Papathomas, and P. Yianilos, “The
bayesian image retrieval system, pichunter: Theory, implementation and
psychophysical experiments,” IEEE Transaction on image processing,
vol. 9, no. 1, pp. 20–37, 2000.

[15] E. de Ves, J. Domingo, G. Ayala, and P. Zuccarello, “A novel bayesian
framework for relevance feedback in image content-based retrieval
systems,” Pattern Recognition, vol. 39, pp. 1622–1632, 2006.

[16] M. Koskela, J. Laaksonen, and E. Oja, “Use of image subset features in
image retrieval with self-organizing maps.” in Image and Video Retrieval:
Third International Conference, Dublin,Ireland, july 2004, pp. 508–516.

[17] X. S. Zhou and T. S. Huang, “Small sample learning during multimedia
retrieval using biasmap.” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2001, pp. 11–17.

[18] S. Tong and E. Chang, “Support vector machine active learning for image
retrieval,” in Proceedings of the 9th ACM International Conference on
Multimedia. New York, NY, USA: ACM Press, 2001, pp. 107–118.

[19] T. León, P. Zuccarello, G. Ayala, E. de Ves, and J. Domingo, “Applying
logistic regression to relevance feedback in image retrieval systems,”
Pattern Recogn., vol. 40, no. 10, pp. 2621–2632, 2007.

[20] C. Darwin, The Origin of Species. London: Dent Gordon, 1973.
[21] H. Takagi, “Interactive evolutionary computation: fusion of the capabili-

ties of ec optimization and human evaluation,” Proceedings of the IEEE,
vol. 89, no. 9, pp. 1275–1296, 2001.

[22] Q.-k. Bu and A.-q. Hu, “Footballs video scene retrieval with interactive
genetic algorithm,” vol. 2, May 2008, pp. 500–504.

[23] S.-B. Cho and J.-Y. Lee, “A human-oriented image retrieval system using
interactive genetic algorithms,” IEEE Transactions on Systems, Man, and
Cybernetics. Part A: Systems and humans, vol. 32, no. 3, pp. 452–458,
May 2002.

[24] B. Sendhoff, M. Kreutz, and W. von Seelen, “A condition for the
genotype-phenotype mapping: causality,” in Proceedings of the 7th In-
ternational Conference on Genetic Algorithm, Bck, Ed. San Francisco:
Morgan Kauffman, 1997, pp. 2996–3001.

[25] P. Soille, Morphological Image Analysis: Principles and Applications.
Berlin: Springer-Verlag, 2003.


