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ABSTRACT

The purpose of content based image retrieval (CBIR) systems is to allow users to retrieve pictures from
large image repositories. In a CBIR system, an image is usually represented as a set of low level descrip-
tors from which a series of underlying similarity or distance functions are used to conveniently drive the
different types of queries. Recent work deals with combination of distances or scores from different and
usually independent representations in an attempt to induce high level semantics from the low level
descriptors of the images. Choosing the best method to combine these results requires a careful analysis
and, in most cases, the use of ad-hoc strategies. Combination based on or derived from product and sum
rules are common approaches. In this paper we propose a method to combine a given set of dissimilarity
functions. For each similarity function, a probability distribution is built. Assuming statistical indepen-
dence, these are used to design a new similarity measure which combines the results obtained with each

Score normalization independent function.

Probabilistic

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

CBIR systems (Datta et al., 2008; Lew et al., 2006) aim to recover
pictures from large image repositories, according to the user’s
interest. Usually, a CBIR system represents the images in the repos-
itory as a multi-dimensional feature vector extracted from a series
of low level descriptors, such as color, texture or shape. The subjec-
tive similarity between two pictures is usually quantified in terms
of a particular measure of distance defined on the corresponding
multi-dimensional feature space.

Most retrieval systems including CBIR ones explicitly rely on
distance, similarity or score functions aiming at relating
descriptors to perceptual or subjective resemblance to some extent
(Neumann and Gegenfurtner, 2006; Li and Chang, 2003). The
Minkowski-form distance, the Manhattan distance, the Euclidean
distance, the Hausdorff distance, the Quadratic Form (QF) distance,
the Mahalanobis’ distance, the Kullback-Leibler divergence (Do and
Vetterli, 2002) and the Jeffrey divergence are some of the most
commonly used functions to estimate the similarity between pic-
tures. These are applied on low level descriptors such as the color
histogram (Swain and Ballard, 1991; Pass et al., 1996), the co-
occurrence matrix (Haralick et al., 1973), morphological features
(Ayala et al., 2001), wavelet-based descriptors (Chuang and Kuo,
1996) or Zernike moments (Khotanzad and Hong, 1990). Further
details on these and other dissimilarity measures in the context
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of image retrieval are provided in (Rubner etal., 2001; Kamarainen
etal., 2003). For more information on feature extraction, the reader
is referred to e.g. (Long et al., 2003).

System performance heavily depends on the descriptors and
underlying similarity function used. It is a common practice to de-
sign a number of similarity measures as described above, each
using a different function acting on different or even disjoint sub-
sets of the available features. These similarities are later combined
to produce a definitive result that may consist of a composite sim-
ilarity or score value. Different strategies to appropriately perform
this combination have been proposed in general information re-
trieval (Fernandez et al., 2006) and biometric recognition (Jain
et al.,, 2005; Prabhakar and Jain, 2002). In the particular case of
CBIR, a multi-objective optimization technique based on a Pareto
Archive Evolution Strategy (PAES) (Knowles and Corne, 2000) has
been used in (Zhang et al., 2006) to define a global measure as
an optimal linear combination of partial similarity functions; in
(Igbal and Aggarwal, 2002), color, texture and structure distances
were pre-processed using a technique based on Gaussian normal-
ization, and a global measure was defined as a weighted linear
combination of the normalized distances; in (Giacinto and Roli,
2004) a simple linear normalization so that features are mapped
to the range [0, 1] was applied; and in (Torres et al., 2005) a genetic
algorithm was used to derive a set of weights for each descriptor.

Evidence combination has also been used in complete CBIR sys-
tems usually to fuse possibly multimodal information taken from
user feedback (Urban and Jose, 2004; Bruno et al., 2007).

In this paper, a novel probabilistic strategy to combine similar-
ity measures is proposed. The method takes ideas from different
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contexts and builds upon preliminary ideas presented in
(Arevalillo-Herrdez et al., 2008). This approach can be regarded
as optimal from the point of view that it best represents empiri-
cally assessed user preferences under certain independence
assumptions.

The remainder of this paper is organized as follows. First, a
method to convert a similarity function into another one which
has a self contained probabilistic meaning is described. Next, a
probabilistic reasoning is followed to yield a simple method to
combine a series of such functions. Then, some implementation is-
sues related to the computation of the probabilities and the meth-
od used to gather the empirical data required by the method are
discussed. After, a series of experiments that evidence the potential
of the technique are presented. Finally, some conclusions are
drawn.

2. From similarities to probabilities

Let us assume our objects are represented in a particular feature
space where the whole set of available (vector) features is desig-
nated as F and {F”}", is a family of subsets of F.

We define a similarity measure as one which makes use of a
subset of features to produce a value which is as related as possible
to the subjective perception of similarity, in such a way that the
higher the value the more similar (or less similar for dissimilarity
measures). A typical example of a (dis)similarity measure is the
application of the Euclidean distance to color histograms.'

Mathematically, a similarity measure using a subset of the fea-
tures F¥ can be expressed as

si FO x FO — g>0

In the context of this work, a probabilistic similarity measure is a
function that produces values that can be directly translated into
probabilities. This can refer to probabilities of belonging to the same
category (Jain et al., 2005), of being relevant to a query (Nottelmann
and Fuhr, 2003) or, as in our case, being subjectively similar.

Converting a measure which only has a meaning when two
measurements are compared (such as Euclidean distance) into an-
other one which has a self-contained probabilistic meaning pro-
vides a significant advantage specially when these values are to
be further processed.

Similar transformations are usually referred to in the informa-
tion retrieval literature as normalization. Normalization methods
play usually an homogenization role prior either to combining or
post-processing the results of one or several queries. Some normal-
ization methods have also been related to a probabilistic interpre-
tation (Fernandez et al., 2006).

In this particular work, the key fact is to model the similarity
between images according to the preferences of a generic user
which are assumed to be roughly the same for a large number of
users. Obviously, it is implicitly assumed that this subjective sim-
ilarity can be modelled as a probability and that there is at least
a weak relation or dependence between this and the family of sim-
ilarity measures considered.

Let us assume that the fact that a user considers that any two
images in a given repository are similar can be conveniently mod-
elled in terms of the particular similarity value obtained using the
function s;. Similarly to other works (Manmatha et al., 2001;
Nottelmann and Fuhr, 2003; Fernandez et al., 2006) we will denote
this (posterior) probability simply by p(similar|x;) where the subin-
dex refers to using the ith basic similarity measure (using ith fea-
ture subset) and x; represents a given similarity value.

! From this point on, and unless otherwise stated, we will assume without loss of
generality that we work with similarity measures.

If we use the Bayes rule, this probability can be written as
p(x;|similar) - P(similar)
p(x:)

where p(x;|similar) is the conditional probability density function
associated with similarity values produced by s;, P(similar) is the prior
probability of images being similar and p(x;) is the unconditional
probability that s; produces a value x;. This last probability could also
be written as P(similar)p(x;|similar) + (1— P(similar)) p(x;|dissimilar).

In the equation above, and for a given repository and application,
P(similar) can be estimated from data or even fixed for conve-
nience while the probability distribution functions p(x;|similar),
p(xi|dissimilar) and p(x;) could in principle be independently or
jointly estimated using either parametric or non-parametric meth-
ods (Fernandez et al., 2006; Jain et al., 2005; Manmatha et al., 2001).

p(similar|x;) =

(1)

3. A composite probabilistic similarity measure

In our particular context, the goal consists of introducing a com-
posite similarity measure that uses all available features by com-
bining and aggregating all the information provided by all the
particular basic similarity measures considered.

Let us assume that we have a set of particular similarity measures
S ={s1,52,...,5n} each defined on a different subset of features, Fd.

We wish to design a new similarity function on the entire set of
features

S:FxF— R

It would be fair to associate the value of s for any two images with
the probability that a user judges them as being similar. To compute
this probability, we can reuse the information produced by each of
the basic similarity measures in the set S. Let us denote by x the vec-
tor (xi,...,Xn), containing the values produced by each of the simi-
larity functions s;.

Then, we can consider the probability that two images in the gi-
ven repository are considered similar conditioned to the fact that
the basic similarity measures sp,...,s, have produced values
X1,...,Xn, respectively. As in the previous section, we write this
composite probability as p(similar|x).

Applying the Bayes rule this probability turns into

p(x|similar) - P(similar)
p(x)

where the new p(x|similar) and p(x) represent as in the previous
section, the conditional and unconditional probability density func-
tions corresponding to obtaining a particular similarity vector, x
when using the family of similarities S.

In order to make use of the above expression we will assume
from now on the mutual independence of the values obtained
through the similarity measures in S. In this work, as in most clo-
sely related prior work, the similarity measures defined on the dif-
ferent subsets of features can be considered as both conditionally
and unconditionally independent. This is merely an approximation
for particular pairs of closely related similarities. The effect of this
assumption on the behavior of the proposed method for different
sets of similarities will be empirically assessed in Section 5.

By using the independence assumption, the above expression
for the composite probability may be rewritten as

p(similar|x) =

n

P(similar) - H p(xi|similar) 2)

p(similar|x) =
i=1 XI

and simplified further using Eq. (1):
p(similar|x) =

n
P(similar)"! H p(similar|x;) 3)
i=1
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This expression is in fact the well-known product rule for the com-
bination of classifiers when they act on conditionally independent
representations (Kittler et al., 1998). Other combination rules apart
from the product one would be possible by adding further assump-
tions but we will restrict ourselves only to the product rule and the
independence assumption. On the other hand, by reasons that will
become clear, we will prefer the expression in Eq. (2) instead of the
more familiar one that explicitly uses the basic posterior probabil-
ities in Eq. (3).

Notice that the final similarity function is proportional to the
product of the individual distances between each set of compo-
nents. This is consistent with the fact that independence between
them has been assumed and also that a logical ‘and’ operator has
indeed been used.

4. Effectively combining similarities into a composite measure

Once the estimated composite probabilistic similarity has been
written in terms of the basic similarity functions, one of the possi-
ble ways of using this consists of estimating the conditional prob-
abilities from empirical data. This would allow the evaluation of
the expression in Eq. (2) for new data.

Even though posterior probabilities could be directly estimated
(as e.g. in k-NN methods Duda et al., 2000) we consider here the
separate estimation of p(x;|similar) and p(x;). The motivation for
this comes partially from the fact that relatively much more data
is available to estimate the unconditional probability.

Basically for the same reasons explained in (Prabhakar and Jain,
2002) all estimates in this work will be produced using the Kernel
Density or Parzen Windows method (Duda et al., 2000; Silverman,
1986). In particular, the kernel density estimate g,,(x) obtained from
m samples {Xj}j"l1 drawn from an unknown density g is given by:

1 & (x—X;
89 = 5 2K ()
=

where K is the kernel or window function and h is the window size
or smoothing parameter. Gaussian windows are commonly used
because of their flexibility and ability to give smooth estimates.
The smoothing parameter is critical for different applications and
must be carefully selected based on the data at hand. This has been
addressed by using a plug-in method (Sheather and Jones, 1991)
which uses an iterative procedure to solve a non-linear equation,
each iteration involving the use of the density estimator with a dif-
ferent smoothing parameter.

A numerical problem arises with this estimation. Since the esti-
mate of p(x;) is later used in the denominator of a fraction (see Eq.
(2)) we must be sure that it does not vanish or becomes so small
that it causes numerical accuracy problems. This happens when
the probability distribution of the values produced by the function
s; concentrates in a small interval of its range. The case of a peaked
probability distribution also produces a sampling problem. Since
the whole interval of possible similarity values is sampled at the
same rate, such a distribution leads to a poor definition of the most
frequent values.

To better deal with numerical problems and further simplify the
corresponding expressions, we propose to replace the division in
Eq. (2) by an equalization of the values produced by each of the
similarity functions s;, in such a way that p(x;) becomes uniform
in its range. This equalization operation takes away the denomina-
tor in the equation and does not change the meaning of the previ-
ous expressions, that only suffer a change of variable. Equalizing
probability densities (or histograms in the context of image analy-
sis) (Gonzales and Wintz, 1987) is a well known technique that has
also been used previously in the context of score normalization in
information retrieval (Fernandez et al., 2006).

Each of the equalizing functions E; is given by the cumulative
density function corresponding to p(x;) as a function of x;. With this
transformation, y; = Ei(x;) is a new real-valued random variable
which is unconditionally uniformly distributed in [0, 1] and whose
conditional distribution is given by p(y;|similar). With this change
of variable, the Eq. (2) becomes

n
p(similar|x) = P(similar) - H p(Ei(x;)|similar) (4)
i~1
When this composite probability is to be used to account for the
similarity between a given pair of images, the constant term
P(similar) can be safely ignored; note that we are not interested
in the particular probability value but only in the order it induces
in a given set of the images, i.e., it is used to rank images by their
similarity to a given query.

Fig. 1 shows an illustrative example of the described procedure
to transform the original similarity value x; into a more meaningful
measure p(similar|y;). Fig. 1a shows the histogram of the distance
values produced by a typical dissimilarity function. In Fig. 1b the
cumulative histogram which is used to equalize the distances is
illustrated. In Fig. 1c, the histogram once the distances have been
equalized is depicted. A kernel approximation of the distribution
of p(y;|similar) is also shown, scaled so that its area matches that
of the histogram.

5. Experimental results

To demonstrate the validity of the technique, a number of
experiments have been carried out, using three different data sets:

e A database containing 1508 pictures, some of which were
extracted from the web and others were taken by the members
of the research group. These have been manually classified as
belonging to 28 different semantic concepts such as flowers,
horses, paintings, skies, textures, ceramic tiles, buildings,
clouds, trees, etc. The number of images in each of these cate-
gories varies from 24 to 300. This database and corresponding
labels have also been used in (de Ves et al., 2006 and Le6n et
al.,, 2007), where further details can be found. The features
which have been computed for these pictures are a flattened
10 x 3 HS (Hue-Saturation) histogram, and the horizontal and
vertical granulometries (Soille, 2003), calculated according to
(de Ves et al., 2006). We have used the histogram intersection
(Swain and Ballard, 1991) to estimate color similarities. For the
rest of the features and in general for the rest of the paper
unless otherwise specified, the Euclidean distance has been
used.

e A far larger database composed of a total of 102 894 royalty free
photographs extracted from a commercial collection called “Art
Explosion”, distributed by the company Nova Development
(http://www.novadevelopment.com). The images in this reposi-
tory are organized in 201 thematic folders. Six texture features
have been computed for this repository, namely Gabor Convolu-
tion Energies (Smith and Burns, 1997), Gray Level Co-occurrence
Matrix (Conners et al., 1984), Gaussian Random Markov Fields
(Chellappa and Chatterjee, 1985), the coefficients of fitting the
granulometry distribution with a B-spline basis (Chen and
Dougherty, 1994) and two versions of the Spatial Size distribu-
tion (Ayala et al., 2001), one using a horizontal segment and
another with a vertical segment.

e A subset of the previous database, composed of 5476 images
classified into 62 categories. The themes in the previous data-
base have been replaced by categories where images have been
carefully selected so that the ones in the same category repre-
sent a similar semantic concept.
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Fig. 1. Histograms representing the frequency of distance values x; between similar (dark) and dissimilar (white) pairs shown for evaluation; (a) before equalization,
(b) equalizing function E(x;) and (c) after equalization using E(x;), along with a scaled version of the corresponding kernel estimate.

For experimental purposes, and with the exception of a last
experiment, the available categories have been used as concepts.
User judgments about similarity have been simulated considering
that all pictures under the same category are similar, and all
images under different categories represent different concepts
and are then dissimilar. This allows us to easily study the behavior
of the technique as the number of training samples increases and
obtain quantitative performance measures.

Two experiments have been carried out using the first data set.
In a first experiment, we study the behavior of the method for dif-
ferent sizes of the training set. Then, a second experiment com-
pares the algorithm to classical combination approaches. For the
first experiment we have used a fixed and increasing number of
random samples to produce the corresponding composite similar-
ity measure given by Eq. (4). Then this new function has been used
on a different and independent set of 50000 image pairs extracted
from the same repository, and its associated kernel density esti-
mate (after equalization) has been calculated using the categories
of these pairs as a ground truth. This is equivalent to estimating
the function p(E;(x;)|similar) for the composite measure, as if it
was a basic function. The shape of this function can provide a good
indication of the expected discriminatory power of the similarity
function. Highly skewed curves suggest a better performance, as
they imply higher relative probabilities that closer images are
judged similar by a generic user.

This entire procedure has been repeated for training sets of
increasing sizes to study the influence of the size on the perfor-
mance of the resulting composite function. In order to quantify
these results, two measures on the corresponding distribution
have been considered: the (negative) skewness and the probability
that a similar pair is within the 10% most similar pairs according to
the ranking established by the composite function. For the sake of
robustness, the experiments have been run 10 times for each dif-
ferent size of the training set and the results have been averaged.
Fig. 2a shows these data. As expected, the performance of the mea-
sure grows with the size of the training set. In Fig. 2b the actual
probability distributions are shown to allow for a relative visual
comparison for different values of the size of the training set. For
clarity reasons, only seven functions have been plotted.

Although it is not shown in the plots, the experiments per-
formed have also revealed that with a relatively small training
set of only 256 judgments, the composite measure performs better
than any of the three basic functions.

A more exhaustive and objective experiment consists of evaluat-
ing precision and recall graphs on a large amount of independent
data. Precision vs recall curves are a common method to present re-
sults in the context of information retrieval, and they provide a good
indication of performance (Miiller et al., 2001). Precision and recall
can be measured for different numbers of retrieved images, a value
which is usually referred to as the cut-off. In particular
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In this experiment, randomly selected sets of 30000 pairs of pic-
tures (less than 3% of the pairs that can be built from the whole
set) have been considered for training while the rest of the over
one million possible pairs of pictures have been kept for testing.
The training data is used to estimate both the equalizing functions
and the conditional probabilities to construct the composite simi-
larity. Then, the proposed composite similarity is used to evaluate
the probability of being similar on the test data while the user judg-
ments on all possible pairs from the database is used as a ground
truth. These judgments allow us to rank the test data by probability
and compute precision and recall, considering that pairs under the
same category are relevant results.

In this case we have run each experiment 20 times and aver-
aged the results obtained for each cut-off value. The resulting plots
conveniently summarize the behavior of the different similarity
measures considered over the whole range of situation. The out-
come is shown in Fig. 3 where it can be observed that the proposed

composite measure significantly outperforms any of the original
measures and their sum using either a linear (Giacinto and Roli,
2004) or a Gaussian normalization (Igbal and Aggarwal, 2002),
which have also been implemented. Notice that at recall values be-
low 0.015 the Gaussian normalization obtains a slightly better per-
formance. However, the differences observed are not significant
and the normalization proposed in this paper quickly provides bet-
ter results.

To test the effectiveness of the approach when applied to larger
databases and with a larger number of distance functions, a similar
experiment has been performed on the other two repositories pre-
sented above. On the second database, it has been necessary to use
an alternative approach because of the unfeasible amount of mem-
ory which would otherwise be required to store the over 10° pos-
sible pairs. In particular, sets of 150000 image pairs have been
randomly chosen to train the function, and the evaluation has been
carried out on sets composed of other different 200000 image
pairs, also chosen at random. These results have been averaged
over 20 runs. The low precision values obtained for all approaches
evidences that the initial folder-based classification provided in
“Art explosion” does not correspond well to differentiated seman-
tic concepts. Still, the use of the composite measure proposed
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Fig. 3. Precision-recall graphs on independent test data for the original measures and their sum using either a linear or a Gaussian normalization (a) entire graph; (b) zoomed
version to appreciate details which cannot be easily observed in (a).

yields better results. An experiment that followed the same set-up
as for the first repository has also been performed on the third
database. This time, the composite function was built using nearly
300000 pairs (1% of the total number of pairs) and the results were
averaged over 20 runs. Both results are shown in Fig. 4 in the form
of precision-recall graphs, appropriately zoomed to appreciate the
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relevant details. Again, it can be observed that the composite mea-
sure proposed significantly outperforms the other two combina-

tion methods.
A last experiment has been carried out to evaluate the new sim-

ilarity function in a more practical and realistic setting, using the
third picture database. An application has been built that chooses
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Fig. 4. Precision-recall graphs obtained using (a) the second repository and (b) the third repository.
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Table 1
Precision obtained for the four similarity functions

Distance function Precision (%)

Composite measure 23.50
Gaussian normalization 17.75
Linear normalization 16.94

a target image at random and then presents three groups of pic-
tures to the user, each containing the closest 16 images according
to the composite function, and their sum after applying Gaussian
and linear normalization. The user is requested to report how
many images on each set are relevant to the query. This data is re-
corded and averaged, to produce the average precision at a cut-off
value of 16.

A total of 10 users participated in the process, each evaluating
the performance on 10 different queries. Table 1 shows the results.

As it can be observed, the proposed similarity measure corre-
lates extremely well with the previous results in which subjective
similarity was merely simulated by performing a manual
classification.

6. Concluding remarks

This paper has presented a technique which allows one to com-
bine a set of distance functions into a composite measure that pre-
sents a higher performance than each of the individual functions.
The technique uses empirical data and kernel density estimates
to convert the basic distance functions into the probability that
the user considers that two images are subjectively similar for each
possible value the function may produce. The values obtained
using these distributions are then combined to yield a new global
similarity measure, according to a consistent probabilistic
reasoning.

Exhaustive experimentation has been carried out to evaluate
the approach. The performance of the new global similarity func-
tion has been compared to that of the individual distance mea-
sures, and to other normalization approaches, according to
precision and recall values in several ways. In these experiments
it has been shown that the new composite measure reaches
acceptable levels of performance even when using small training
sets, and that the algorithm outperforms other widely used combi-
nation approaches.

A number of open questions and extensions arise. The present
work has been developed and tested using a Single Instance repre-
sentation (SI) of the pictures (a set of global features extracted
from the entire image). Recent works have combined global and re-
gional features for image annotation (Wang et al., 2008; Tang et al.,
in press). The latter are produced by segmenting the picture and
then processing each region independently, resulting in a Multiple
Instance representation (MI) of the image. In (Tang et al., in press),
the MI representation is converted into a SI representation as part
of the process. This same approach could in principle be adopted to
allow combining both global and regional features.

Besides, the equalization performed as part of our method could
also be integrated with other combination rules which are more
commonly used in information retrieval systems. This could lead
both to fully understand the relative benefits of equalization and
combination and also to improve the proposed measure further.
The most obvious but in principle unfeasible extension could con-
sist on stating our proposal in a per query basis, as a first step to
incorporate the approach into a user feedback mechanism. To this
end possibly parametric techniques as in (Manmatha et al., 2001)
and/or some sort of query aggregation and evidence combination
would need to be integrated into the approach.
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