TEMA 1: LÓGICA Y PROGRAMACIÓN

- 1. Introducción
- 2. Lógica proposicional
- 3. Lógica de predicados
- 4. Programación lógica
 - Algoritmo de normalización clausal
 - Unificación
 - Resolución

Matemática Discreta

4. Programación lógica

- La programación lógica nace de la idea de crear un lenguaje más cercano al lenguaje natural y a la forma de pensar humana.
- Se intenta separar la lógica del problema del control del programa:
 Algoritmo = Lógica + Control
- Sin embargo, Gödel demostró que la lógica no es decidible, por tanto no se puede utilizar como lenguaje de programación.

Matemática Discreta

4. Programación lógica

- En programación lógica se utiliza un subconjunto de la lógica de predicados que sí que es decidible y además se resuelve de manera eficiente.
- Únicamente se utilizan los operadores v y ~ y el cuantificador universal V.
- Como regla de inferencia se utiliza únicamente la regla de resolución, que es una generalización de la regla de El.
- La regla de resolución necesita además la unificación, que consiste en unificar en un sólo literal, dos literales con variables.

Matemática Discreta

4.1. Algoritmo de normalización clausal

- Transforma fórmulas de lógica de predicados en fórmulas clausales o cláusulas.
- Como ejemplo utilizaremos la siguiente frase:

"La sucesión de números primos está acotada y no está acotada"

En lógica de predicados:

p(X): X es primo m(Y,X): Y>X

 $\exists \, X \colon (p(X) \, \wedge \, \forall \, Y \colon (p(Y) \Rightarrow \sim m(Y,X))) \, \wedge \\$

 $\sim \exists X: (p(X) \land \forall Y: (p(Y) \Rightarrow \sim m(Y,X)))$

0 1

Matemática Discreta

4.1. Algoritmo de normalización clausal

- 1. Eliminar los símbolo de implicación
 - Se eliminan utilizando las equivalencias:
 - $p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
 - p ⇒ q ≡ ~p ∨ q

 $\exists X: (p(X) \land \forall Y: (p(Y) \Rightarrow \sim m(Y,X))) \land$

 $\sim \exists X: (p(X) \land \forall Y: (p(Y) \Rightarrow \sim m(Y,X)))$

 $\exists\,X{:}\; (p(X)\,\wedge\,\forall\,Y{:}\; ({\sim}p(Y)\overset{\bullet}{\textbf{v}}\,\sim\!m(Y{,}X)))\,\wedge\\$

 $\sim \exists X: (p(X) \land \forall Y: (\sim p(Y) \lor \sim m(Y,X)))$

Matemática Discreta

4.1. Algoritmo de normalización clausal

- 2. Reducir negaciones a fórmulas atómicas
 - Se realiza utilizando las leyes de De Morgan y las leyes de De Morgan generalizadas:

 $\sim (p \land q) \equiv \sim p \lor \sim q$

 $\sim (p \lor q) \equiv \sim p \land \sim q$

~∀ i: P(i) ≡ ∃ i: ~ P(i)

 $\sim \ddot{\exists} i: P(i) \equiv \forall i: \sim P(i)$

 $\exists X: (p(X) \land \forall Y: (\sim p(Y) \mathbf{v} \sim m(Y,X))) \land$

 $\sim \exists X: (p(X) \land \forall Y: (\sim p(Y) \mathbf{v} \sim m(Y,X)))$

 $\exists X: (p(X) \land \forall Y: (\sim p(Y) \mathbf{v} \sim m(Y,X))) \land$ $\forall X: (\sim p(X) \mathbf{v} \exists Y: (p(Y) \land m(Y,X)))$

4.1. Algoritmo de normalización clausal

3. Renombrar las variables duplicadas

Renombramos variables para evitar confusiones cuando eliminemos cuantificadores:

$$\exists X: (p(X) \land \forall Y: (\sim p(Y) \lor \sim m(Y,X))) \land \\ \forall X: (\sim p(X) \lor \exists Y: (p(Y) \land m(Y,X)))$$

 $\exists U: (p(U) \land \forall V: (\sim p(V) \lor \sim m(V, U))) \land$ $\forall X: (\sim p(X) \ V \ \exists Y: (p(Y) \land m(Y,X)))$

4.1. Algoritmo de normalización clausal

4. Skolemizar la fórmula

- Eliminar los cuantificadores existenciales mediante funciones de Skolem.
- Constantes de Skolem: Si el cuantificador existencial es el primer cuantificador que aparece en la fórmula (no depende de otro cuantificador), podemos eliminarlo sustituyendo la variable por una constante nueva (regla de EP).

Ejemplo:

Existe una muier cuva madre es Eva:

 $\exists X (mujer(X) \land madre(eva, X))$

Existe un país donde todos sus habitantes son felices

 $\exists Y: \forall X: (habitante(X,Y) \Rightarrow feliz(X))$

4.1. Algoritmo de normalización clausal

- Funciones de Skolem: Si el cuantificador existencial depende de uno o varios cuantificadores universales, podemos eliminarlo sustituvendo la variable por una función nueva que dependa de las variables de los cuantificadores universales.
- La constante de Skolem es una función de Skolem sin parámetros.

Ejemplo:

Para todo entero X, existe un entero Y mayor que X:

∀ X: **∃** Y: mayor(Y, X)

∀ X, Y: (**∃** Z: (**∀** U, V: (**∃** W: p(W,Z))))

Matemática Discreta

4.1. Algoritmo de normalización clausal

4. Skolemizar la fórmula

 $\exists U$: $(p(U) \land \forall V$: $(\sim p(V) \lor \sim m(V, U))) \land$

 $\forall X: (\sim p(X) \vee \exists Y: (p(Y) \land m(Y.X)))$

 $p(h) \land \forall V: (\sim p(V) \ v \sim m(V, h)) \land$

 $\forall X: (\sim p(X) \ V \ (p(f(X)) \land m(f(X), X)))$

Matemática Discreta

4.1. Algoritmo de normalización clausal

- 5. Desplazar los cuantificadores universales a la izquierda
 - Se desplazan todos los cuantificadores a la izquierda. La expresión resultante se dice que está en forma prenex

$$p(h) \land \forall V: (\sim p(V) \ v \sim m(V, h)) \land$$

$$\forall X: (\sim p(X) \vee (p(f(X)) \wedge m(f(X), X)))$$

 $\forall V: \forall X: p(h) \land (\sim p(V) \lor \sim m(V, h)) \land$

 $(\sim p(X) \mathbf{v} (p(f(X)) \wedge m(f(X), X)))$

4.1. Algoritmo de normalización clausal

6. Eliminar los cuantificadores universales

Toda variable existente en la fórmula tiene un cuantificador universal a la izquierda, por tanto los cuantificadores son redundantes y se eliminan por convención de notación.

 $\forall V: \forall X: p(h) \land (\sim p(V) \lor \sim m(V, h)) \land$

 $(\sim p(X) \ \mathbf{v} \ (p(f(X)\) \land m(f(X),\ X)))$

 $p(h) \wedge (\sim p(V) \ \mathbf{v} \sim m(V, h)) \wedge (\sim p(X) \ \mathbf{v} \ (p(f(X)) \wedge m(f(X), X)))$

4.1. Algoritmo de normalización clausal

7. Convertir la fórmula a su FNC

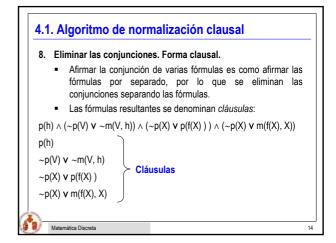
- Convertir la fórmula a la Forma Normal Conjuntiva (FNC), que consiste en conjunción de disyunciones.
- Utilizamos la equivalencia:

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

 $p(h) \wedge (\sim p(V) \vee \sim m(V, h)) \wedge (\sim p(X) \vee (p(f(X)) \wedge m(f(X), X)))$

 $p(h) \wedge (\sim p(V) \vee \sim m(V, h)) \wedge (\sim p(X) \vee p(f(X))) \wedge (\sim p(X) \vee m(f(X), X))$

Matemática Discreta



Reescritura utilizando la implicación. Las cláusulas se pueden escribir utilizando la implicación (⇒) y la conjunción (A), ya que queda más claro su significado y es como las utilizaremos en los programas.

4.1. Algoritmo de normalización clausal

Los literales negativos pasan a ser antecedentes y los positivos consecuentes: $p \Rightarrow q \equiv \sim p \vee q$

p(h) **←** $\leftarrow p(V), m(V, h)$ $p(f(X)) \leftarrow p(X)$ $m(f(X), X) \leftarrow p(X)$

p(h). :- p(V), m(V, h) p(f(X)) := p(X)

Programa PROLOG

m(f(X), X) := p(X)

Matemática Discreta

4.1. Algoritmo de normalización clausal Cláusulas de Horn. Las cláusulas se pueden clasificar atendiendo al tipo de literales que contienen. 1 o + lit. - Pregunta Cláusulas de Horn Cláusulas -Regla 2 o + lit. + Cláusulas no Horn Matemática Discreta

4.1. Algoritmo de normalización clausal

Clasificación de las cláusulas del ejemplo anterior:

p(h) ← Hecho $\Leftarrow p(V), m(V, h)$ Pregunta $p(f(X)) \leftarrow p(X)$ Regla Regla $m(f(X), X) \leftarrow p(X)$

Ejemplo de cláusula no Horn:

$$(m(X) \lor q(X)) \Leftarrow p(X)$$

