
CVS(1) CVS(1)

NAME
cvs − Concurrent Versions System

SYNOPSIS
cvs [cvs_options]

cvs_command [command_options] [command_args]

NOTE
This manpage is a summary of some of the features of cvs but for more in-depth documentation, consult the
Cederqvist manual (as described in the SEE ALSO section of this manpage).

DESCRIPTION
CVS is a version control system, which allows you to keep old versions of files (usually source code), keep
a log of who, when, and why changes occurred, etc., like RCS or SCCS. Unlike the simpler systems, CVS
does not just operate on one file at a time or one directory at a time, but operates on hierarchical collections
of directories consisting of version controlled files. CVS helps to manage releases and to control the con-
current editing of source files among multiple authors. CVS allows triggers to enable/log/control various
operations and works well over a wide area network.

cvs keeps a single copy of the master sources. This copy is called the source ‘‘repository’’; it contains all
the information to permit extracting previous software releases at any time based on either a symbolic revi-
sion tag, or a date in the past.

ESSENTIAL COMMANDS
cvs provides a rich variety of commands (cvs_command in the Synopsis), each of which often has a wealth
of options, to satisfy the many needs of source management in distributed environments. However, you
don’t hav e to master every detail to do useful work with cvs; in fact, five commands are sufficient to use
(and contribute to) the source repository.

cvs checkout modules . . .
A necessary preliminary for most cvs work: creates your private copy of the source for modules
(named collections of source; you can also use a path relative to the source repository here). You
can work with this copy without interfering with others’ work. At least one subdirectory level is
always created.

cvs update
Execute this command from within your private source directory when you wish to update your
copies of source files from changes that other developers have made to the source in the repository.

cvs add file . . .
Use this command to enroll new files in cvs records of your working directory. The files will be
added to the repository the next time you run ‘ cvs commit ’. Note: You should use the ‘ cvs
import ’ command to bootstrap new sources into the source repository. ‘ cvs add ’ is only used for
new files to an already checked-out module.

cvs remove file . . .
Use this command (after erasing any files listed) to declare that you wish to eliminate files from
the repository. The removal does not affect others until you run ‘ cvs commit ’.

cvs commit file . . .
Use this command when you wish to ‘‘publish’’ your changes to other developers, by incorporat-
ing them in the source repository.

OPTIONS
The cvs command line can include cvs_options, which apply to the overall cvs program; a cvs_command ,
which specifies a particular action on the source repository; and command_options and command_argu-
ments to fully specify what the cvs_command will do.

Warning: you must be careful of precisely where you place options relative to the cvs_command . The same
option can mean different things depending on whether it is in the cvs_options position (to the left of a cvs
command) or in the command_options position (to the right of a cvs command).

1

CVS(1) CVS(1)

There are only two situations where you may omit cvs_command: ‘ cvs −H ’ or ‘ cvs --help ’ elicits a list of
available commands, and ‘ cvs −v ’ or ‘ cvs --version ’ displays version information on cvs itself.

CVS OPTIONS
As of release 1.6, cvs supports GNU style long options as well as short options. Only a few long options are
currently supported, these are listed in brackets after the short options whose functions they duplicate.

Use these options to control the overall cvs program:

−H [--help]
Display usage information about the specified cvs_command (but do not actually execute the com-
mand). If you don’t specify a command name, ‘ cvs −H ’ displays a summary of all the commands
available.

−Q Causes the command to be really quiet; the command will generate output only for serious prob-
lems.

−q Causes the command to be somewhat quiet; informational messages, such as reports of recursion
through subdirectories, are suppressed.

−b bindir
Use bindir as the directory where RCS programs are located (CVS 1.9 and older). Overrides the
setting of the RCSBIN environment variable. This value should be specified as an absolute path-
name.

−d CVS_root_directory
Use CVS_root_directory as the root directory pathname of the master source repository. Overrides
the setting of the CVSROOT environment variable. This value should be specified as an absolute
pathname.

−e editor
Use editor to enter revision log information. Overrides the setting of the CVSEDITOR, VISUAL,
and EDITOR environment variables.

−f Do not read the cvs startup file (˜/.cvsrc).

−l Do not log the cvs_command in the command history (but execute it anyway). See the description
of the history command for information on command history.

−n Do not change any files. Attempt to execute the cvs_command , but only to issue reports; do not
remove, update, or merge any existing files, or create any new files.

−t Trace program execution; display messages showing the steps of cvs activity. Particularly useful
with −n to explore the potential impact of an unfamiliar command.

−r Makes new working files read-only. Same effect as if the CVSREAD environment variable is set.

−v [--version]
Displays version and copyright information for cvs.

−w Makes new working files read-write (default). Overrides the setting of the CVSREAD environment
variable.

−x Encrypt all communication between the client and the server. As of this writing, this is only
implemented when using a Kerberos connection.

−z compression−level
When transferring files across the network use gzip with compression level compression−level to
compress and de-compress data as it is transferred. Requires the presence of the GNU gzip pro-
gram in the current search path at both ends of the link.

USAGE
Except when requesting general help with ‘ cvs −H ’, you must specify a cvs_command to cvs to select a
specific release control function to perform. Each cvs command accepts its own collection of options and
arguments. However, many options are available across several commands. You can display a usage

2

CVS(1) CVS(1)

summary for each command by specifying the −H option with the command.

CVS STARTUP FILE
Normally, when CVS starts up, it reads the .cvsrc file from the home directory of the user reading it. This
startup procedure can be turned off with the −f flag.

The .cvsrc file lists CVS commands with a list of arguments, one command per line. For example, the fol-
lowing line in .cvsrc:

diff −c

will mean that the ‘ cvs diff ’ command will always be passed the −c option in addition to any other options
that are specified in the command line (in this case it will have the effect of producing context sensitive
diffs for all executions of ‘ cvs diff ’).

CVS COMMAND SUMMARY
Here are brief descriptions of all the cvs commands:

add Add a new file or directory to the repository, pending a ‘ cvs commit ’ on the same file. Can only
be done from within sources created by a previous ‘ cvs checkout ’ inv ocation. Use ‘ cvs import ’
to place whole new hierarchies of sources under cvs control. (Does not directly affect repository;
changes working directory.)

admin Execute control functions on the source repository. (Changes repository directly; uses working
directory without changing it.)

checkout
Make a working directory of source files for editing. (Creates or changes working directory.)

commit
Apply to the source repository changes, additions, and deletions from your working directory.
(Changes repository.)

diff Show differences between files in working directory and source repository, or between two revi-
sions in source repository. (Does not change either repository or working directory.)

export Prepare copies of a set of source files for shipment off site. Differs from ‘ cvs checkout ’ in that
no cvs administrative directories are created (and therefore ‘ cvs commit ’ cannot be executed
from a directory prepared with ‘ cvs export ’), and a symbolic tag must be specified. (Does not
change repository; creates directory similar to working directories).

history Show reports on cvs commands that you or others have executed on a particular file or directory in
the source repository. (Does not change repository or working directory.) History logs are kept
only if enabled by creation of the ‘ $CVSROOT/CVSROOT/history ’ file; see cvs(5).

import Incorporate a set of updates from off-site into the source repository, as a ‘‘vendor branch’’.
(Changes repository.)

init Initialize a repository by adding the CVSROOT subdirectory and some default control files. You
must use this command or initialize the repository in some other way before you can use it.

log Display log information. (Does not change repository or working directory.)

rdiff Prepare a collection of diffs as a patch file between two releases in the repository. (Does not
change repository or working directory.)

release Cancel a ‘ cvs checkout ’, abandoning any changes. (Can delete working directory; no effect on
repository.)

remove
Remove files from the source repository, pending a ‘ cvs commit ’ on the same files. (Does not
directly affect repository; changes working directory.)

rtag Explicitly specify a symbolic tag for particular revisions of files in the source repository. See also
‘ cvs tag ’. (Changes repository directly; does not require or affect working directory.)

3

CVS(1) CVS(1)

status Show current status of files: latest version, version in working directory, whether working version
has been edited and, optionally, symbolic tags in the RCS file. (Does not change repository or
working directory.)

tag Specify a symbolic tag for files in the repository. By default, tags the revisions that were last syn-
chronized with your working directory. (Changes repository directly; uses working directory
without changing it.)

update Bring your working directory up to date with changes from the repository. Merges are performed
automatically when possible; a warning is issued if manual resolution is required for conflicting
changes. (Changes working directory; does not change repository.)

COMMON COMMAND OPTIONS
This section describes the command_options that are available across several cvs commands. Not all com-
mands support all of these options; each option is only supported for commands where it makes sense.
However, when a command has one of these options you can count on the same meaning for the option as
in other commands. (Other command options, which are listed with the individual commands, may have
different meanings from one cvs command to another.) Warning: the history command is an exception; it
supports many options that conflict even with these standard options.

−D date_spec
Use the most recent revision no later than date_spec (a single argument, date description specify-
ing a date in the past). A wide variety of date formats are supported, in particular ISO
("1972-09-24 20:05") or Internet ("24 Sep 1972 20:05"). The date_spec is interpreted as being in
the local timezone, unless a specific timezone is specified. The specification is ‘‘sticky’’ when you
use it to make a private copy of a source file; that is, when you get a working file using −D, cvs
records the date you specified, so that further updates in the same directory will use the same date
(unless you explicitly override it; see the description of the update command). −D is available
with the checkout, diff, history, export, rdiff, rtag, and update commands. Examples of valid
date specifications include:

1 month ago
2 hours ago
400000 seconds ago
last year
last Monday
yesterday
a fortnight ago
3/31/92 10:00:07 PST
January 23, 1987 10:05pm
22:00 GMT

−f When you specify a particular date or tag to cvs commands, they normally ignore files that do not
contain the tag (or did not exist on the date) that you specified. Use the −f option if you want files
retrieved even when there is no match for the tag or date. (The most recent version is used in this
situation.) −f is available with these commands: checkout, export, rdiff, rtag, and update.

−k kflag
Alter the default processing of keywords. The −k option is available with the add, checkout, diff,
export, rdiff, and update commands. Your kflag specification is ‘‘sticky’’ when you use it to cre-
ate a private copy of a source file; that is, when you use this option with the checkout or update
commands, cvs associates your selected kflag with the file, and continues to use it with future
update commands on the same file until you specify otherwise.

Some of the more useful kflags are −ko and −kb (for binary files), and −kv which is useful for an
export where you wish to retain keyword information after an import at some other site.

−l Local; run only in current working directory, rather than recurring through subdirectories. Av ail-
able with the following commands: checkout, commit, diff, export, remove, rdiff, rtag, status,
tag, and update. Warning: this is not the same as the overall ‘ cvs −l ’ option, which you can

4

CVS(1) CVS(1)

specify to the left of a cvs command!

−n Do not run any checkout/commit/tag/update program. (A program can be specified to run on
each of these activities, in the modules database; this option bypasses it.) Av ailable with the
checkout, commit, export, and rtag commands. Warning: this is not the same as the overall ‘ cvs
−n ’ option, which you can specify to the left of a cvs command!

−P Prune (remove) directories that are empty after being updated, on checkout, or update. Normally,
an empty directory (one that is void of revision-controlled files) is left alone. Specifying −P will
cause these directories to be silently removed from your checked-out sources. This does not
remove the directory from the repository, only from your checked out copy. Note that this option
is implied by the −r or −D options of checkout and export.

−p Pipe the files retrieved from the repository to standard output, rather than writing them in the cur-
rent directory. Available with the checkout and update commands.

−r tag Use the revision specified by the tag argument instead of the default ‘‘head’’ revision. As well as
arbitrary tags defined with the tag or rtag command, two special tags are always available:
‘ HEAD ’ refers to the most recent version available in the repository, and ‘ BASE ’ refers to the
revision you last checked out into the current working directory.

The tag specification is ‘‘sticky’’ when you use this option with ‘ cvs checkout ’ or ‘ cvs update ’
to make your own copy of a file: cvs remembers the tag and continues to use it on future update
commands, until you specify otherwise. tag can be either a symbolic or numeric tag. Specifying
the −q global option along with the −r command option is often useful, to suppress the warning
messages when the RCS file does not contain the specified tag. −r is available with the checkout,
commit, diff, history, export, rdiff, rtag, and update commands. Warning: this is not the same
as the overall ‘ cvs −r ’ option, which you can specify to the left of a cvs command!

CVS COMMANDS
Here (finally) are details on all the cvs commands and the options each accepts. The summary lines at the
top of each command’s description highlight three kinds of things:

Command Options and Arguments
Special options are described in detail below; common command options may appear
only in the summary line.

Working Directory, or Repository?
Some cvs commands require a working directory to operate; some require a repository.
Also, some commands change the repository, some change the working directory, and
some change nothing.

Synonyms Many commands have synonyms, which you may find easier to remember (or type) than
the principal name.

add [−k kflag] [−m ’message’] files. . .
Requires: repository, working directory.
Changes: working directory.
Synonym: new
Use the add command to create a new file or directory in the source repository. The files or direc-
tories specified with add must already exist in the current directory (which must have been created
with the checkout command). To add a whole new directory hierarchy to the source repository
(for example, files received from a third-party vendor), use the ‘ cvs import ’ command instead.

If the argument to ‘ cvs add ’ refers to an immediate sub-directory, the directory is created at the
correct place in the source repository, and the necessary cvs administration files are created in your
working directory. If the directory already exists in the source repository, ‘ cvs add ’ still creates
the administration files in your version of the directory. This allows you to use ‘ cvs add ’ to add a
particular directory to your private sources even if someone else created that directory after your
checkout of the sources. You can do the following:

5

CVS(1) CVS(1)

example% mkdir new_directory
example% cvs add new_directory
example% cvs update new_directory

An alternate approach using ‘ cvs update ’ might be:

example% cvs update -d new_directory

(To add any available new directories to your working directory, it’s probably simpler to use ‘ cvs
checkout ’ or ‘ cvs update -d ’.)

The added files are not placed in the source repository until you use ‘ cvs commit ’ to make the
change permanent. Doing a ‘ cvs add ’ on a file that was removed with the ‘ cvs remove ’ com-
mand will resurrect the file, if no ‘ cvs commit ’ command intervened.

You will have the opportunity to specify a logging message, as usual, when you use ‘ cvs commit ’
to make the new file permanent. If you’d like to hav e another logging message associated with
just creation of the file (for example, to describe the file’s purpose), you can specify it with the
‘ −m message ’ option to the add command.

The ‘ -k kflag ’ option specifies the default way that this file will be checked out. The ‘ kflag ’
argument is stored in the RCS file and can be changed with ‘ cvs admin ’. Specifying ‘ -ko ’ is use-
ful for checking in binaries that shouldn’t hav e keywords expanded.

admin [rcs-options] files. . .
Requires: repository, working directory.
Changes: repository.
Synonym: rcs
This is the cvs interface to assorted administrative facilities, similar to rcs(1). This command
works recursively, so extreme care should be used.

checkout [options] modules. . .
Requires: repository.
Changes: working directory.
Synonyms: co, get
Make a working directory containing copies of the source files specified by modules. You must
execute ‘ cvs checkout ’ before using most of the other cvs commands, since most of them operate
on your working directory.

modules are either symbolic names (themselves defined as the module ‘ modules ’ in the source
repository; see cvs(5)) for some collection of source directories and files, or paths to directories or
files in the repository.

Depending on the modules you specify, checkout may recursively create directories and populate
them with the appropriate source files. You can then edit these source files at any time (regardless
of whether other software developers are editing their own copies of the sources); update them to
include new changes applied by others to the source repository; or commit your work as a perma-
nent change to the repository.

Note that checkout is used to create directories. The top-level directory created is always added to
the directory where checkout is invoked, and usually has the same name as the specified module.
In the case of a module alias, the created sub-directory may have a different name, but you can be
sure that it will be a sub-directory, and that checkout will show the relative path leading to each
file as it is extracted into your private work area (unless you specify the −Q global option).

Running ‘ cvs checkout ’ on a directory that was already built by a prior checkout is also permit-
ted, and has the same effect as specifying the −d option to the update command described below.

The options permitted with ‘ cvs checkout ’ include the standard command options −P, −f, −k
kflag , −l, −n, −p, −r tag, and −D date.

In addition to those, you can use these special command options with checkout:

6

CVS(1) CVS(1)

Use the −A option to reset any sticky tags, dates, or −k options. (If you get a working file using
one of the −r, −D, or −k options, cvs remembers the corresponding tag, date, or kflag and contin-
ues using it on future updates; use the −A option to make cvs forget these specifications, and
retrieve the ‘‘head’’ version of the file).

The −j branch option merges the changes made between the resulting revision and the revision
that it is based on (e.g., if the tag refers to a branch, cvs will merge all changes made in that branch
into your working file).

With two -j options, cvs will merge in the changes between the two respective revisions. This can
be used to ‘‘remove’’ a certain delta from your working file.

In addition, each -j option can contain on optional date specification which, when used with
branches, can limit the chosen revision to one within a specific date. An optional date is specified
by adding a colon (:) to the tag. An example might be what ‘ cvs import ’ tells you to do when
you have just imported sources that have conflicts with local changes:

example% cvs checkout -jTAG:yesterday -jTAG module

Use the −N option with ‘ −d dir ’ to avoid shortening module paths in your working directory.
(Normally, cvs shortens paths as much as possible when you specify an explicit target directory.)

Use the −c option to copy the module file, sorted, to the standard output, instead of creating or
modifying any files or directories in your working directory.

Use the −d dir option to create a directory called dir for the working files, instead of using the
module name. Unless you also use −N, the paths created under dir will be as short as possible.

Use the −s option to display per-module status information stored with the −s option within the
modules file.

commit [−lnR] [−m ’log_message’ | −f file] [−r re vision] [files. . .]
Requires: working directory, repository.
Changes: repository.
Synonym: ci
Use ‘ cvs commit ’ when you want to incorporate changes from your working source files into the
general source repository.

If you don’t specify particular files to commit, all of the files in your working current directory are
examined. commit is careful to change in the repository only those files that you have really
changed. By default (or if you explicitly specify the −R option), files in subdirectories are also
examined and committed if they hav e changed; you can use the −l option to limit commit to the
current directory only. Sometimes you may want to force a file to be committed even though it is
unchanged; this is achieved with the −f flag, which also has the effect of disabling recursion (you
can turn it back on with −R of course).

commit verifies that the selected files are up to date with the current revisions in the source reposi-
tory; it will notify you, and exit without committing, if any of the specified files must be made cur-
rent first with ‘ cvs update ’. commit does not call the update command for you, but rather leaves
that for you to do when the time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be written to
one or more logging programs and placed in the source repository file. You can instead specify
the log message on the command line with the −m option, thus suppressing the editor invocation,
or use the −F option to specify that the argument file contains the log message.

The −r option can be used to commit to a particular symbolic or numeric revision. For example,
to bring all your files up to the revision ‘‘3.0’’ (including those that haven’t changed), you might
do:

example% cvs commit -r3.0

7

CVS(1) CVS(1)

cvs will only allow you to commit to a revision that is on the main trunk (a revision with a single
dot). However, you can also commit to a branch revision (one that has an even number of dots)
with the −r option. To create a branch revision, one typically use the −b option of the rtag or tag
commands. Then, either checkout or update can be used to base your sources on the newly cre-
ated branch. From that point on, all commit changes made within these working sources will be
automatically added to a branch revision, thereby not perturbing main-line development in any
way. For example, if you had to create a patch to the 1.2 version of the product, even though the
2.0 version is already under development, you might do:

example% cvs rtag -b -rFCS1_2 FCS1_2_Patch product_module
example% cvs checkout -rFCS1_2_Patch product_module
example% cd product_module
[[hack away]]
example% cvs commit

Say you have been working on some extremely experimental software, based on whatever revision
you happened to checkout last week. If others in your group would like to work on this software
with you, but without disturbing main-line development, you could commit your change to a new
branch. Others can then checkout your experimental stuff and utilize the full benefit of cvs con-
flict resolution. The scenario might look like:

example% cvs tag -b EXPR1
example% cvs update -rEXPR1
[[hack away]]
example% cvs commit

Others would simply do ‘ cvs checkout -rEXPR1 whatever_module ’ to work with you on the
experimental change.

diff [−kl] [rcsdiff_options] [[−r re v1 | −D date1] [−r re v2 | −D date2]] [files. . .]
Requires: working directory, repository.
Changes: nothing.
You can compare your working files with revisions in the source repository, with the ‘ cvs diff ’
command. If you don’t specify a particular revision, your files are compared with the revisions
they were based on. You can also use the standard cvs command option −r to specify a particular
revision to compare your files with. Finally, if you use −r twice, you can see differences between
two revisions in the repository. You can also specify −D options to diff against a revision in the
past. The −r and −D options can be mixed together with at most two options ever specified.

See rcsdiff(1) for a list of other accepted options.

If you don’t specify any files, diff will display differences for all those files in the current directory
(and its subdirectories, unless you use the standard option −l) that differ from the corresponding
revision in the source repository (i.e. files that you have changed), or that differ from the revision
specified.

export [−f lNnQq] −r re v | −D date [−d dir] [−k kflag] module. . .
Requires: repository.
Changes: current directory.
This command is a variant of ‘ cvs checkout ’; use it when you want a copy of the source for mod-
ule without the cvs administrative directories. For example, you might use ‘ cvs export ’ to pre-
pare source for shipment off-site. This command requires that you specify a date or tag (with −D
or −r), so that you can count on reproducing the source you ship to others.

The only non-standard options are ‘ −d dir ’ (write the source into directory dir) and ‘ −N ’ (don’t
shorten module paths). These have the same meanings as the same options in ‘ cvs checkout ’.

The −kv option is useful when export is used. This causes any keywords to be expanded such that
an import done at some other site will not lose the keyword revision information. Other kflags
may be used with ‘ cvs export ’ and are described in co(1).

8

CVS(1) CVS(1)

history [−report] [−flags] [−options args] [files. . .]
Requires: the file ‘ $CVSROOT/CVSROOT/history ’
Changes: nothing.
cvs keeps a history file that tracks each use of the checkout, commit, rtag, update, and release
commands. You can use ‘ cvs history ’ to display this information in various formats.

Warning: ‘ cvs history ’ uses ‘ −f ’, ‘ −l ’, ‘ −n ’, and ‘ −p ’ in ways that conflict with the descrip-
tions in COMMON COMMAND OPTIONS.

Several options (shown above as −report) control what kind of report is generated:

−c Report on each time commit was used (i.e., each time the repository was modified).

−m module Report on a particular module. (You can meaningfully use −m more than once on the
command line.)

−o Report on checked-out modules.

−T Report on all tags.

−x type Extract a particular set of record types X from the cvs history. The types are indicated by
single letters, which you may specify in combination. Certain commands have a single
record type: checkout (type ‘O’), release (type ‘F’), and rtag (type ‘T’). One of four
record types may result from an update: ‘W’, when the working copy of a file is deleted
during update (because it was gone from the repository); ‘U’, when a working file was
copied from the repository; ‘G’, when a merge was necessary and it succeeded; and ’C’,
when a merge was necessary but collisions were detected (requiring manual merging).
Finally, one of three record types results from commit: ‘M’, when a file was modified;
‘A’, when a file is first added; and ‘R’, when a file is removed.

−e Everything (all record types); equivalent to specifying ‘ −xMACFROGWUT ’.

−z zone Use time zone zone when outputting history records. The zone name LT stands for local
time; numeric offsets stand for hours and minutes ahead of UTC. For example, +0530
stands for 5 hours and 30 minutes ahead of (i.e. east of) UTC.

The options shown as −flags constrain the report without requiring option arguments:

−a Show data for all users (the default is to show data only for the user executing ‘ cvs his-
tory ’).

−l Show last modification only.

−w Show only the records for modifications done from the same working directory where
‘ cvs history ’ is executing.

The options shown as −options args constrain the report based on an argument:

−b str Show data back to a record containing the string str in either the module name, the file
name, or the repository path.

−D date Show data since date.

−p repository
Show data for a particular source repository (you can specify several −p options on the
same command line).

−r re v Show records referring to revisions since the revision or tag named re v appears in individ-
ual RCS files. Each RCS file is searched for the revision or tag.

−t tag Show records since tag tag was last added to the history file. This differs from the -r flag
above in that it reads only the history file, not the RCS files, and is much faster.

−u name Show records for user name.

9

CVS(1) CVS(1)

import [−options] repository vendortag releasetag. . .
Requires: Repository, source distribution directory.
Changes: repository.
Use ‘ cvs import ’ to incorporate an entire source distribution from an outside source (e.g., a
source vendor) into your source repository directory. You can use this command both for initial
creation of a repository, and for wholesale updates to the module form the outside source.

The repository argument gives a directory name (or a path to a directory) under the CVS root
directory for repositories; if the directory did not exist, import creates it.

When you use import for updates to source that has been modified in your source repository
(since a prior import), it will notify you of any files that conflict in the two branches of develop-
ment; use ‘ cvs checkout -j ’ to reconcile the differences, as import instructs you to do.

By default, certain file names are ignored during ‘ cvs import ’: names associated with CVS
administration, or with other common source control systems; common names for patch files,
object files, archive files, and editor backup files; and other names that are usually artifacts of
assorted utilities. For an up to date list of ignored file names, see the Cederqvist manual (as
described in the SEE ALSO section of this manpage).

The outside source is saved in a first-level branch, by default ‘ 1.1.1 ’. Updates are leaves of this
branch; for example, files from the first imported collection of source will be revision ‘ 1.1.1.1 ’,
then files from the first imported update will be revision ‘ 1.1.1.2 ’, and so on.

At least three arguments are required. repository is needed to identify the collection of source.
vendortag is a tag for the entire branch (e.g., for ‘ 1.1.1 ’). You must also specify at least one
releasetag to identify the files at the leaves created each time you execute ‘ cvs import ’.

One of the standard cvs command options is available: −m message. If you do not specify a log-
ging message with −m, your editor is invoked (as with commit) to allow you to enter one.

There are three additional special options.

Use ‘ −d ’ to specify that each file’s time of last modification should be used for the checkin date
and time.

Use ‘ −b branch ’ to specify a first-level branch other than ‘ 1.1.1 ’.

Use ‘ −I name ’ to specify file names that should be ignored during import. You can use this
option repeatedly. To avoid ignoring any files at all (even those ignored by default), specify ‘ −I
! ’.

log [−l] rlog-options [files . . .]
Requires: repository, working directory.
Changes: nothing.
Synonym: rlog
Display log information for files. Among the more useful options are −h to display only the
header (including tag definitions, but omitting most of the full log); −r to select logs on particular
revisions or ranges of revisions; and −d to select particular dates or date ranges. See rlog(1) for
full explanations. This command is recursive by default, unless the −l option is specified.

rdiff [−flags] [−V vn] [−r t|−D d [−r t2|−D d2]] modules . . .
Requires: repository.
Changes: nothing.
Synonym: patch
Builds a Larry Wall format patch(1) file between two releases, that can be fed directly into the
patch program to bring an old release up-to-date with the new release. (This is one of the few cvs
commands that operates directly from the repository, and doesn’t require a prior checkout.) The
diff output is sent to the standard output device. You can specify (using the standard −r and −D
options) any combination of one or two revisions or dates. If only one revision or date is specified,
the patch file reflects differences between that revision or date and the current ‘‘head’’ revisions in

10

CVS(1) CVS(1)

the RCS file.

Note that if the software release affected is contained in more than one directory, then it may be
necessary to specify the −p option to the patch command when patching the old sources, so that
patch is able to find the files that are located in other directories.

The standard option flags −f, and −l are available with this command. There are also several spe-
cial options flags:

If you use the −s option, no patch output is produced. Instead, a summary of the changed or added
files between the two releases is sent to the standard output device. This is useful for finding out,
for example, which files have changed between two dates or revisions.

If you use the −t option, a diff of the top two revisions is sent to the standard output device. This
is most useful for seeing what the last change to a file was.

If you use the −u option, the patch output uses the newer ‘‘unidiff’’ format for context diffs.

You can use −c to explicitly specify the ‘ diff −c ’ form of context diffs (which is the default), if
you like.

release [−dQq] modules . . .
Requires: Working directory.
Changes: Working directory, history log.
This command is meant to safely cancel the effect of ‘ cvs checkout’. ’ Since cvs doesn’t lock
files, it isn’t strictly necessary to use this command. You can always simply delete your working
directory, if you like; but you risk losing changes you may have forgotten, and you leave no trace
in the cvs history file that you’ve abandoned your checkout.

Use ‘ cvs release ’ to avoid these problems. This command checks that no un-committed changes
are present; that you are executing it from immediately above, or inside, a cvs working directory;
and that the repository recorded for your files is the same as the repository defined in the module
database.

If all these conditions are true, ‘ cvs release ’ leaves a record of its execution (attesting to your
intentionally abandoning your checkout) in the cvs history log.

You can use the −d flag to request that your working copies of the source files be deleted if the
release succeeds.

remove [−lR] [files . . .]
Requires: Working directory.
Changes: Working directory.
Synonyms: rm, delete
Use this command to declare that you wish to remove files from the source repository. Like most
cvs commands, ‘ cvs remove ’ works on files in your working directory, not directly on the reposi-
tory. As a safeguard, it also requires that you first erase the specified files from your working
directory.

The files are not actually removed until you apply your changes to the repository with commit; at
that point, the corresponding RCS files in the source repository are moved into the ‘ Attic ’ direc-
tory (also within the source repository).

This command is recursive by default, scheduling all physically removed files that it finds for
removal by the next commit. Use the −l option to avoid this recursion, or just specify that actual
files that you wish remove to consider.

rtag [−f alnRQq] [−b] [−d] [−r tag | −D date] symbolic_tag modules . . .
Requires: repository.
Changes: repository.
Synonym: rfreeze
You can use this command to assign symbolic tags to particular, explicitly specified source

11

CVS(1) CVS(1)

versions in the repository. ‘ cvs rtag ’ works directly on the repository contents (and requires no
prior checkout). Use ‘ cvs tag ’ instead, to base the selection of versions to tag on the contents of
your working directory.

In general, tags (often the symbolic names of software distributions) should not be removed, but
the −d option is available as a means to remove completely obsolete symbolic names if necessary
(as might be the case for an Alpha release, say).

‘ cvs rtag ’ will not move a tag that already exists. With the −F option, however, ‘ cvs rtag ’ will
re-locate any instance of symbolic_tag that already exists on that file to the new repository ver-
sions. Without the −F option, attempting to use ‘ cvs rtag ’ to apply a tag that already exists on
that file will produce an error message.

The -b option makes the tag a ‘‘branch’’ tag, allowing concurrent, isolated development. This is
most useful for creating a patch to a previously released software distribution.

You can use the standard −r and −D options to tag only those files that already contain a certain
tag. This method would be used to rename a tag: tag only the files identified by the old tag, then
delete the old tag, leaving the new tag on exactly the same files as the old tag.

rtag executes recursively by default, tagging all subdirectories of modules you specify in the argu-
ment. You can restrict its operation to top-level directories with the standard −l option; or you can
explicitly request recursion with −R.

The modules database can specify a program to execute whenever a tag is specified; a typical use
is to send electronic mail to a group of interested parties. If you want to bypass that program, use
the standard −n option.

Use the −a option to have rtag look in the ‘ Attic ’ for removed files that contain the specified tag.
The tag is removed from these files, which makes it convenient to re-use a symbolic tag as devel-
opment continues (and files get removed from the up-coming distribution).

status [−lRqQ] [−v] [files . . .]
Requires: working directory, repository.
Changes: nothing.
Display a brief report on the current status of files with respect to the source repository, including
any ‘‘sticky’’ tags, dates, or −k options. (‘‘Sticky’’ options will restrict how ‘ cvs update ’ oper-
ates until you reset them; see the description of ‘ cvs update −A . . . ’.)

You can also use this command to anticipate the potential impact of a ‘ cvs update ’ on your work-
ing source directory. If you do not specify any files explicitly, reports are shown for all files that
cvs has placed in your working directory. You can limit the scope of this search to the current
directory itself (not its subdirectories) with the standard −l option flag; or you can explicitly
request recursive status reports with the −R option.

The −v option causes the symbolic tags for the RCS file to be displayed as well.

tag [−lQqR] [−F] [−b] [−d] [−r tag | −D date] [−f] symbolic_tag [files . . .]
Requires: working directory, repository.
Changes: repository.
Synonym: freeze
Use this command to assign symbolic tags to the nearest repository versions to your working
sources. The tags are applied immediately to the repository, as with rtag.

One use for tags is to record a ‘‘snapshot’’ of the current sources when the software freeze date of
a project arrives. As bugs are fixed after the freeze date, only those changed sources that are to be
part of the release need be re-tagged.

The symbolic tags are meant to permanently record which revisions of which files were used in
creating a software distribution. The checkout, export and update commands allow you to
extract an exact copy of a tagged release at any time in the future, regardless of whether files have

12

CVS(1) CVS(1)

been changed, added, or removed since the release was tagged.

You can use the standard −r and −D options to tag only those files that already contain a certain
tag. This method would be used to rename a tag: tag only the files identified by the old tag, then
delete the old tag, leaving the new tag on exactly the same files as the old tag.

Specifying the −f flag in addition to the −r or −D flags will tag those files named on the command
line even if they do not contain the old tag or did not exist on the specified date.

By default (without a −r or −D flag) the versions to be tagged are supplied implicitly by the cvs
records of your working files’ history rather than applied explicitly.

If you use ‘ cvs tag −d symbolic_tag . . . ’, the symbolic tag you specify is deleted instead of being
added. Warning: Be very certain of your ground before you delete a tag; doing this effectively dis-
cards some historical information, which may later turn out to have been valuable.

‘ cvs tag ’ will not move a tag that already exists. With the −F option, however, ‘ cvs tag ’ will re-
locate any instance of symbolic_tag that already exists on that file to the new repository versions.
Without the −F option, attempting to use ‘ cvs tag ’ to apply a tag that already exists on that file
will produce an error message.

The -b option makes the tag a ‘‘branch’’ tag, allowing concurrent, isolated development. This is
most useful for creating a patch to a previously released software distribution.

Normally, tag executes recursively through subdirectories; you can prevent this by using the stan-
dard −l option, or specify the recursion explicitly by using −R.

update [−ACdf lPpQqR] [−d] [−r tag|−D date] files . . .
Requires: repository, working directory.
Changes: working directory.
After you’ve run checkout to create your private copy of source from the common repository,
other developers will continue changing the central source. From time to time, when it is con-
venient in your development process, you can use the update command from within your working
directory to reconcile your work with any revisions applied to the source repository since your
last checkout or update.

update keeps you informed of its progress by printing a line for each file, prefaced with one of the
characters ‘ U A R M C ? ’ to indicate the status of the file:

U file The file was brought up to date with respect to the repository. This is done for any file
that exists in the repository but not in your source, and for files that you haven’t changed
but are not the most recent versions available in the repository.

A file The file has been added to your private copy of the sources, and will be added to the
source repository when you run ‘ cvs commit ’ on the file. This is a reminder to you that
the file needs to be committed.

R file The file has been removed from your private copy of the sources, and will be removed
from the source repository when you run ‘ cvs commit ’ on the file. This is a reminder to
you that the file needs to be committed.

M file The file is modified in your working directory. ‘ M ’ can indicate one of two states for a
file you’re working on: either there were no modifications to the same file in the reposi-
tory, so that your file remains as you last saw it; or there were modifications in the reposi-
tory as well as in your copy, but they were merged successfully, without conflict, in your
working directory.

C file A conflict was detected while trying to merge your changes to file with changes from the
source repository. file (the copy in your working directory) is now the result of merging
the two versions; an unmodified copy of your file is also in your working directory, with
the name ‘.#file.version’, where version is the revision that your modified file started
from. (Note that some systems automatically purge files that begin with ‘ .# ’ if they

13

CVS(1) CVS(1)

have not been accessed for a few days. If you intend to keep a copy of your original file,
it is a very good idea to rename it.)

? file file is in your working directory, but does not correspond to anything in the source reposi-
tory, and is not in the list of files for cvs to ignore (see the description of the −I option).

Use the −A option to reset any sticky tags, dates, or −k options. (If you get a working copy of a
file by using one of the −r, −D, or −k options, cvs remembers the corresponding tag, date, or kflag
and continues using it on future updates; use the −A option to make cvs forget these specifications,
and retrieve the ‘‘head’’ version of the file).

The −jbranch option merges the changes made between the resulting revision and the revision that
it is based on (e.g., if the tag refers to a branch, cvs will merge all changes made in that branch
into your working file).

With two -j options, cvs will merge in the changes between the two respective revisions. This can
be used to ‘‘remove’’ a certain delta from your working file. E.g., If the file foo.c is based on revi-
sion 1.6 and I want to remove the changes made between 1.3 and 1.5, I might do:

example% cvs update -j1.5 -j1.3 foo.c # note the order...

In addition, each -j option can contain on optional date specification which, when used with
branches, can limit the chosen revision to one within a specific date. An optional date is specified
by adding a colon (:) to the tag.

-jSymbolic_Tag:Date_Specifier

Use the −d option to create any directories that exist in the repository if they’re missing from the
working directory. (Normally, update acts only on directories and files that were already enrolled
in your working directory.) This is useful for updating directories that were created in the reposi-
tory since the initial checkout; but it has an unfortunate side effect. If you deliberately avoided
certain directories in the repository when you created your working directory (either through use
of a module name or by listing explicitly the files and directories you wanted on the command
line), then updating with −d will create those directories, which may not be what you want.

Use −I name to ignore files whose names match name (in your working directory) during the
update. You can specify −I more than once on the command line to specify several files to ignore.
By default, update ignores files whose names match certain patterns; for an up to date list of
ignored file names, see the Cederqvist manual (as described in the SEE ALSO section of this man-
page).

Use ‘ −I ! ’ to avoid ignoring any files at all.

Use the ‘ −C ’ option to overwrite locally modified files with clean copies from the repository (the
modified file is saved in ‘.#file.re vision’, however).

The standard cvs command options −f, −k, −l, −P, −p, and −r are also available with update.

FILES
For more detailed information on cvs supporting files, see cvs(5).

Files in home directories:

.cvsrc The cvs initialisation file. Lines in this file can be used to specify default options for each cvs
command. For example the line ‘ diff −c ’ will ensure that ‘ cvs diff ’ is always passed the −c
option in addition to any other options passed on the command line.

.cvswrappers
Specifies wrappers to be used in addition to those specified in the CVSROOT/cvswrappers file in
the repository.

Files in working directories:

14

CVS(1) CVS(1)

CVS A directory of cvs administrative files. Do not delete.

CVS/Entries
List and status of files in your working directory.

CVS/Entries.Backup
A backup of ‘ CVS/Entries ’.

CVS/Entries.Static
Flag: do not add more entries on ‘ cvs update ’.

CVS/Root
Pathname to the repository (CVSROOT) location at the time of checkout. This file is used instead
of the CVSROOT environment variable if the environment variable is not set. A warning message
will be issued when the contents of this file and the CVSROOT environment variable differ. The
file may be over-ridden by the presence of the CVS_IGNORE_REMOTE_ROOT environment vari-
able.

CVS/Repository
Pathname to the corresponding directory in the source repository.

CVS/Tag
Contains the per-directory ‘‘sticky’’ tag or date information. This file is created/updated when you
specify −r or −D to the checkout or update commands, and no files are specified.

CVS/Checkin.prog
Name of program to run on ‘ cvs commit ’.

CVS/Update.prog
Name of program to run on ‘ cvs update ’.

Files in source repositories:

$CVSROOT/CVSROOT
Directory of global administrative files for repository.

CVSROOT/commitinfo,v
Records programs for filtering ‘ cvs commit ’ requests.

CVSROOT/cvswrappers,v
Records cvs wrapper commands to be used when checking files into and out of the repository.
Wrappers allow the file or directory to be processed on the way in and out of CVS. The intended
uses are many, one possible use would be to reformat a C file before the file is checked in, so all of
the code in the repository looks the same.

CVSROOT/editinfo,v
Records programs for editing/validating ‘ cvs commit ’ log entries.

CVSROOT/history
Log file of cvs transactions.

CVSROOT/loginfo,v
Records programs for piping ‘ cvs commit ’ log entries.

CVSROOT/modules,v
Definitions for modules in this repository.

CVSROOT/rcsinfo,v
Records pathnames to templates used during a ‘ cvs commit ’ operation.

CVSROOT/taginfo,v
Records programs for validating/logging ‘ cvs tag ’ and ‘ cvs rtag ’ operations.

MODULE/Attic
Directory for removed source files.

15

CVS(1) CVS(1)

#cvs.lock
A lock directory created by cvs when doing sensitive changes to the source repository.

#cvs.tfl.pid
Temporary lock file for repository.

#cvs.rfl.pid
A read lock.

#cvs.wfl.pid
A write lock.

ENVIRONMENT VARIABLES
CVSROOT

Should contain the full pathname to the root of the cvs source repository (where the RCS files are
kept). This information must be available to cvs for most commands to execute; if CVSROOT is
not set, or if you wish to override it for one invocation, you can supply it on the command line:
‘ cvs −d cvsroot cvs_command . . . ’ You may not need to set CVSROOT if your cvs binary has the
right path compiled in; use ‘ cvs −v ’ to display all compiled-in paths.

CVSREAD
If this is set, checkout and update will try hard to make the files in your working directory read-
only. When this is not set, the default behavior is to permit modification of your working files.

RCSBIN
Specifies the full pathname where to find RCS programs, such as co(1) and ci(1) (CVS 1.9 and
older).

CVSEDITOR
Specifies the program to use for recording log messages during commit. If not set, the VISUAL
and EDITOR environment variables are tried (in that order). If neither is set, a system-dependent
default editor (e.g., vi) is used.

CVS_IGNORE_REMOTE_ROOT
If this variable is set then cvs will ignore all references to remote repositories in the CVS/Root file.

CVS_RSH
cvs uses the contents of this variable to determine the name of the remote shell command to use
when starting a cvs server. If this variable is not set then ‘ rsh ’ is used.

CVS_SERVER
cvs uses the contents of this variable to determine the name of the cvs server command. If this
variable is not set then ‘ cvs ’ is used.

CVSWRAPPERS
This variable is used by the ‘ cvswrappers ’ script to determine the name of the wrapper file, in
addition to the wrappers defaults contained in the repository (CVSROOT/cvswrappers) and the user’s
home directory (˜/.cvswrappers).

AUTHORS
Dick Grune

Original author of the cvs shell script version posted to comp.sources.unix in the volume6 release
of December, 1986. Credited with much of the cvs conflict resolution algorithms.

Brian Berliner
Coder and designer of the cvs program itself in April, 1989, based on the original work done by
Dick.

Jeff Polk
Helped Brian with the design of the cvs module and vendor branch support and author of the
checkin(1) shell script (the ancestor of ‘ cvs import ’).

16

CVS(1) CVS(1)

And many others too numerous to mention here.

SEE ALSO
The most comprehensive manual for CVS is Version Management with CVS by Per Cederqvist et al.
Depending on your system, you may be able to get it with the info cvs command or it may be available as
cvs.ps (postscript), cvs.texinfo (texinfo source), or cvs.html.

For CVS updates, more information on documentation, software related to CVS, development of CVS, and
more, see:

http://www.cyclic.com http://www.loria.fr/˜molli/cvs-index.html

ci(1), co(1), cvs(5), cvsbug(8), diff(1), grep(1), patch(1), rcs(1), rcsdiff(1), rcsmerge(1), rlog(1).

17

