
UML Activity Diagrams: Versatile Roadmaps for
Understanding System Behavior

by Ben Lieberman
Senior Software Architect
Blueprint Technologies

The core purpose of software
development is to provide solutions to
customers' real problems. Use cases1
are a vital aspect of a technique that
has been used successfully to ensure
that development projects actually focus
on these problems. They are used to
discover, capture, and present customer
requirements in a form that is
accessible to developers, testers, and
other stakeholders in a development
project. To detail a use case, it is critical
to capture basic, alternate, and
exceptional flows of execution, which
represent major and minor threads of
execution the system encounters as it
processes customer requests.

Using the "standard" use-case form,2 these flows can be captured using
plain English to describe sequential activities (see Figure 1). These
descriptions are quite detailed, however, and they can be difficult to
decipher -- especially within a complex set of use-case scenarios.

This article describes another way to capture these flows: by using Unified
Modeling Language (UML) Activity Diagrams that depict the flows as
"roadmaps" of system functional behavior. These roadmaps are analogous
to AAA (Automobile Association of America) roadmaps, in that they show
what routes you can take but do not indicate whether you will take them.
An AAA map, moreover, supplies only enough information to identify
locations of interest, leaving detailed descriptions of the road for companion
travel guides. Similarly, Activity Diagrams show a comprehensive summary
of use-case flows but leave the design details up to other artifacts.

We will also take a brief look at other ways to use Activity Diagrams during
the development lifecycle.

jprince
http://www.therationaledge.com/content/apr_01/t_uml_bl.html

jprince
Copyright Rational Software 2001

Basic Flow:

1. The User requests login to the system.

2. The User enters login ID and password.

3. The System validates the User's permissions.

4. The User is presented initial system menu choices.

5. [...the use case continues...]

Alternate Flow:

1. In Step 2 the User requests a new password.

2. The User enters the login ID, and new and old passwords.

3. The System validates the User's Permissions and continues at
Basic Flow Step 4.

Exceptional Flow:

1. In Step 3 of the Basic Flow and Step 2 of the Alternate Flow the
User enters either an invalid login ID or an incorrect password.

2. The System returns an error condition with the string "The User
login ID and/or password is incorrect."

3. Processing resumes at Step 2 of the Basic Flow.

Figure 1: Textual Descriptions of Basic, Alternate, and Exceptional Use-Case Flows

Activity Diagram Overview

The primary consumers of Activity Diagrams are the customer stakeholder,
testing team, and software development staff. For them, these diagrams
form the visual "blueprints" for the functionality of the system, as described
and detailed in the use cases. Tracing paths (threads of execution) through
these Activity Diagrams enables all stakeholders in the process to
understand and monitor the development of system functionality.

The latest Unified Modeling Language (UML) specification, version 1.3,3
describes Activity Diagrams4 as a mechanism to capture business
workflows, processing actions, and use-case flows of execution. Although
the Rational Unified Process (RUP®) uses Activity Diagrams to detail

activities for each of the nine workflows recommended for software
development (Figure 2), it offers few other examples of Activity Diagram
applications.

Figure 2: A Rational Unified Process Activity Diagram Illustrating the Requirements
Workflow

In fact, Activity Diagrams can be used for many purposes: diagramming
use-case flows; modeling complex business operations or processes (such
as the one in Figure 2); depicting data and information flows; and even
computing algorithms.5 In addition, as we will discuss, they can be used
later in the development lifecycle for system impact analyses and to
develop and track test cases. For a brief introduction to the standard icons
and stereotypes used in Activity Diagrams, see the Sidebar below.

Example Use Case: Maintain User Profile

To understand the practical utility of Activity Diagrams for mapping use-
case flows, let's walk through a realistic example of a use case for
maintaining a user profile within a travel reservations system. To gather the

Activity Diagram Icons and Stereotypes

In constructing Activity Diagrams, it is helpful
to use colored icons (and UML stereotypes) to
indicate specific activities and visually
differentiate various steps in a flow. This is
particularly important for Off-Page icons
(pointers to additional diagrams) that link to
separate use-case scenarios.6

Action is the primary
diagram element. This
icon represents activities

performed by the System or Actor. Since it is
the most common icon, it typically has either a
neutral color or no color at all.

Presentation activities are
indicated by the
<<presentation>>
stereotype. This stereotype

indicates that there is a conversation between
the use-case Actor and the System. It
represents a special category of Action activities
and is used to abstract user interface details.

Exception activity occurs
when there is an
exceptional flow in the use
case, and is indicated by

the <<exception>> stereotype. This usually
represents an error condition but may also
represent unusual or unexpected system
behavior. If the exception is an error condition,
then it is useful to summarize the error inside
the icon (see Figures 4 through 7). The icon is
also useful to indicate system logging and
recovery activities.

Data Entry activity is
indicated by the <<data
entry>> stereotype, which

represents significant Actor interaction with the
System for the purpose of adding, modifying, or
removing data. Data Entry activities can range
from simple field editing to complex visual
rendering changes. This icon should be used
with care to avoid cluttering the visual model
with low-level data manipulation details. See
"Set a Level of Abstraction" below for
suggestions.

information needed for
this use case, typically
the System Analyst
would conduct interviews
with the subject matter
experts to gain an
understanding of the
problem domain.7 The
analyst could actually
capture the information
from these interviews
directly in an Activity
Diagram, or she could
first write up a textual
description of her
findings and then create
an Activity Diagram to
illustrate it.

In our example, we will
use Rational Rose to
illustrate the
development of an
Activity Diagram based
on a use case for
maintaining an
information profile for a
specific customer. The
use case establishes the
initial boundary points for
entry and exit; each step
in the use-case flow will
be shown as a set of
activities and activity
flows.

Figure 3 shows two
activities from a simple
use-case: 1) The user
modifies his customer
profile (a Presentation
activity); 2) The system
updates the information
to a persistent store
(shown here as a
database icon). Note that
there is no need to show
all the processing steps
at this stage; a typical
session takes a top-down
approach, starting broad
and then narrowing the
focus. Additionally, rather
than representing the

The <<connector>>
stereotype represents
connections to flows
diagrammed elsewhere.
The use of Activity

Diagrams often leads to the creation of large
and complex models, so it is useful to indicate
alternate flow or extension points in use-case
scenarios (see Figures 4 through 7). The Off-
Page icons for this stereotype can be used to
automatically link to another diagram (e.g., to a
separate Rational Rose diagram using an
embedded link). If desired, the extension to a
Rose (Unified Modeling Language) diagram can
lead to a "subactivity" diagram embedded
within the activity itself. One caution, however:
This approach can rapidly produce a very
"deep" model with multiple embedded layers.
Such a model runs contrary to the ideal of a
high-level "road-map," which shows an
overview and leaves the details for the textual
description of the use-case. Although you can
use this icon to indicate <<extends>> and
<<includes>> use-case relationships, often
these are best represented in the main use case
diagram. If they are depicted on the Activity
Diagram, then they should be shown as coming
off Decision Points (diamonds) with guard
conditions to <<connector>> activities.

These are
additional
icons.

It would be easy to expand our list of Activity
Diagram stereotypes and icons, but this
represents a fairly complete and simple set for
modeling use-case activity flows. Since the
purpose of these diagrams is to enhance
understanding of complex use-case flows,
adding new icons (and stereotypes) should be
done with caution.

concept of persistence as
a separate icon, it can be
embodied right in the
activity name (e.g., Save
to Persistent Store).
Persistence is a very
important part of almost
every system, and it is
often beneficial to show
explicitly where it occurs.
This information is of
particular value to the
Test team who need to
determine where and
when in a test case the
information in the
Persistent Store needs to
be verified.

Arrows are used to
indicate transitions from
one action to another.
The guard conditions on
the transitions from the
User Modifies Profile
action indicate the
possible paths presented
to the Actor, shown here
as [OK] and [Cancel].

Paths Must Have
Entry and Exit
Points

Since we are modeling
process flow, we must
include a path through
the functionality that
allows the user to enter
and then exit the
functional area to move
to another. If such a path
does not exist, then
there is a very serious
error in the model (and
possibly in the system
itself).

Figure 3: Initial Activity Diagram for the Maintain User Profile Use Case

Now, let's consider the same use case again, with the additional
requirement that security must be in place for the viewing of sensitive
information. Figure 4 shows the resulting diagram.

Figure 4: Addition of Security Flows to the Maintain User Profile Use Case

Leave the Details for Other Artifacts

Note that we have added two more icons to the diagram to represent a
Decision Point and an Exception, respectively. Also note that the Decision
Point asks if the user has valid access privileges but does not detail the
permission criteria. That level of detail will be found in the use-case textual
description. In addition, the login ID and password data elements are
indicated next to the User Enters Security Data activity. Data elements
important to the use-case flow should be indicated in a note as shown, with
the remaining data left to the use-case text for full elaboration.

Finally, the diagram indicates that the Security Access Denied Exception will
return to the System Presents Security Screen Presentation activity until
the Try Count exceeds three attempts; then the use case will end. Note that
the Exception is declarative, but the specific actions (e.g., display of an
error dialog box or message) at this juncture are detailed in the Exceptional
Flow section of the use-case document and Graphical User Interface (GUI)

design screen shots (if they exist).

Set a Level of Abstraction

Next, let's explore some additional processing requirements. We will
assume that the user needs to change his name and address, and that the
system needs to assign him a customer priority category (e.g., VIP, Senior
Citizen, Employee, etc.). The diagram now appears as shown in Figure 5.
We have added some Data Entry activities to indicate the user's ability to
change certain data elements. This may not represent the complete set of
editable data elements, but it does include elements important to the
processing flow. Note that the Data Entry begins and ends within the
Presentation activity. This implies that the user may repeat these actions as
often as necessary. This approach is intuitive for system users, who expect
that the system will return to a "wait" state after they perform an action.

Figure 5: Addition of Data Modification Flows and Validation Steps to the Maintain
User Profile Use Case

Click here to view full size image.

Now let's add more complexity to the model: We will assume a mandatory
field for the customer name that must be correctly filled in before the user
can exit the use case, as shown in Figure 6. We note the Name field next to
the Presentation activity to show that it is important to the use-case flow.
We have added a new Exception for when the customer name is not
specified, and indicated that the Exception will reenter the main flow at the
User Modifies Profile activity.

Finally, we will indicate that the User Modifies Profile activity can modify
information about the user's travel preferences (assuming that this is part
of the customer profile). We add the Off-Page (<<Connector>>) activity to
indicate a link to another use case or use-case scenario. The name of the
Off-Page activity should match the name of the use case or scenario
referred to.

By now, the diagram has grown quite complex, so we can re-factor to
further abstract activities. For example, we can collect all of the Data Entry
activities into one activity or split portions of the diagram to separate
illustrations and then connect them with an Off-Page activity. In addition,
some of the activities (such as System Validates Entry) may be further
elaborated in a separate diagram that we indicate by simply applying the
Off-Page icon (<<connector>> stereotype).

Figure 6: Inclusion of Travel Information and Use Case Connectivity in the Maintain
User Profile Use Case

Click here to view full size image.

As a final example of this type of diagram, Figure 7 shows how UML
Swimlanes can be used effectively to show interactions among the various
actors and the system. This is not vital (the previous diagrams do not show
this, for example), but it can increase understanding of which participant in
the use case is responsible for which activities.

The example in Figure 7 is a credit card payment submission. The use case
begins with a Presentation to the customer that specifies the credit card
payment; the customer then enters and submits her card details. The
system validates these values and either returns to the customer if there is
an error or submits the payment to the Credit Card Service. If the card
payment is accepted, then the system notifies the customer of success. If
not, then the error is logged, and the customer is notified of the failure
(and perhaps directed to handle the payment some other way). Note that it
is easy to add features such as error handling if the Credit Card Service is
unavailable, and also additional system accounting activities.

Figure 7. Use Of Swimlanes in an Activity Diagram to Indicate Actor/System
Boundaries and Responsibilities

Click here to view full size image.

Using Activity Diagrams: Freedoms and Restrictions

As is evident from the variety of uses discussed above, Activity Diagrams
allow for a great deal of freedom. They encourage the creator to use the
right level of detail to "tell a story" about the system functionality. A model
is a communication device, after all, so it requires an adequate level of
detail to address the problem to be solved. Clarity and brevity are
important to avoid visual overload, but a model should present key features
of the use-case flows.

In creating Activity Diagrams, you should also observe a few key
guidelines:

● Don't attempt to show system design elements. A common
mistake when doing use-case specification is to move into the
solution space before adequately defining the customer's true needs.

A core principle of use-case specification is to focus on functionality
the customer desires. If you create activities such as "Send Update
Command to Profile Manager" or "Obtain Oracle Database
Connection," then you are violating this key principle. The use-case
Activity Diagram should serve as a guide to further analysis and
design, not as a repository for design information.

● Don't substitute activity diagrams for use-case descriptions.
The use-case flow diagrams are intended to summarize and
supplement textual descriptions in the use cases, not replace them.

● Limit the level of complexity for each diagram action. As we
saw in the example of the Maintain User Profile Use Case (Figures 4-
7), the addition of more than three Data Entry activities should be
collected into a common activity or split off into a separate diagram
(as for the Travel Preference information in Figure 6). Use the
following rules of thumb to limit complexity:

● If there are more than three possible paths (alternate or
exceptional), then use additional Activity Diagrams to promote
understanding.

● Use additional Activity Diagrams if the processing requires
specific data elements.

● Use Swimlanes to separate concerns, particularly for
Actor/System interfaces. See Figure 7 and the related
discussion under "Set a Level of Abstraction" above.

● Do not use Activity Diagrams in this context to capture detailed
system processing. Under no circumstances should low-level
design information appear on these diagrams.

● Display as much of a use case as possible in a single diagram. If
you are constrained by printable page size, then consider
purchasing a large-carriage printer rather than forcing a
complex diagram to fit 8.5 x 11 inch paper. Alternatively, make
use of the Off-Page icon (<<connector>> stereotype) to
logically separate models.

● Use a tool to maintain consistency for your models. Currently,
no tool will automatically update Activity Diagrams linked to use
cases, but most tools (e.g., Rational Rose 2001) will allow you
to embed a diagram into the use-case model.

● Maintain your models. To have maximum benefit, your Activity
Diagrams must be updated when use cases are modified. You can
ensure this will happen by inserting the diagrams directly into the
use cases as appendices. Moreover, the diagrams should be
maintained in the same repository as the use cases. Rational Rose
allows Activity Diagrams to be collected under a particular use case
and for the textual representation of that use case to be linked to the
same model location. This facilitates the update process and
enhances the likelihood that the models will not become outdated.

More Uses for Activity Diagrams

We have looked carefully at how to use Activity Diagrams for mapping flows
of execution through a use case, but there are other applications for them
as well during the development lifecycle. These are explained briefly below.

System impact analysis. During system maintenance and enhancement,
the development staff receives many requests to locate and repair system
"issues" or faults, as well as add new functionality. Use-case Activity
Diagrams can be used to access the likely functional impact these changes
will have on the system. By tracking Activity Diagram flows into the
analysis and design models (e.g., by tracing to object sequence diagrams),
you can quickly identify modules and subsystems that will be affected by
proposed system changes. The changes can then be reflected in the activity
models by changing the outlines of the activities to a different color (e.g.,
red) or thickness. This allows the test and architecture teams to rapidly
assess what testing resources are necessary as well as the level of potential
system breakage.

Test case development. Test cases are derived from use cases.8
Therefore, use-case Activity Diagrams can be used to create specific
scenarios for each test case. This can be done by tracing a thread of
execution from entry to exit through each diagram, one for each test
scenario. Activity Flow Diagrams are an excellent means for the test
designer to scope the test for expected system behavior.

Test case coverage tracking. If the test team is not using automated
methods to track use-case test coverage, then they can use Activity
Diagrams to show the progress of a testing effort. They can designate paths
as major and minor to indicate testing priority. They can also highlight the
diagrams to indicate which activities they covered with each test. In this
way, the Activity Diagrams can provide a visual representation of test
progress for each functional area of the system.

Overall: A Highly Useful Design Artifact

The UML is an excellent design and architecture language that has become
the de facto standard for software system description. As we have seen,
UML Activity Diagrams are particularly well suited for the discovery and
visualization of complex functional process flows based on system use
cases. Displaying these flows visually greatly improves the level of
communication and understanding between the development staff and the
customer. In addition, the test team can use these diagrams to directly aid
in the creation of the test plan and test cases. Overall, Activity Diagrams
represent a useful addition to the collection of design artifacts available to
the software engineer.

Appendix

Rational Rose Activity Diagram "Colorizer" Script

This Rational Rose script (for Version 2000e and higher) will automatically
add fill colors to the icons for Activity Views on each Activity Diagram
included in a use-case model (Use Case View root package).

Want more information and advice on creating better use-case
descriptions? See "Managing Use-Case Details" in this issue of The
Rational Edge.

1 See Ivar Jacobson, Magnus Christerson, et al., Object-Oriented Software Engineering: A Use-
Case Driven Approach. Harlow, Essex, England: Addison-Wesley, 1992. See also Dean
Leffingwell and Don Widrig Managing Software Requirements, A Unified Approach. Boston:
Addison-Wesley, 2000.

2 See Ivar Jacobson, Magnus Christerson, et al., Object-Oriented Software Engineering: A Use-
Case Driven Approach. Harlow, Essex, England: Addison-Wesley, 1992. See also Dean
Leffingwell and Don Widrig, Managing Software Requirements, A Unified Approach. Boston:
Addison-Wesley, 2000.

3 See http://www.rational.com/uml/index.jsp for detailed information.

4 See Grady Booch, James Rumbaugh, et al., The Unified Modeling Language, User Guide.
Reading, MA: Addison-Wesley, 1999. Also see James RA: Addison-Wesley, 1999.

5 See Grady Booch, James Rumbaugh, et al., The Unified Modeling Language, User Guide.
Reading, MA: Addison-Wesley, 1999.

6 For a Rational Rose script to automate the application of color to activity model elements,
see the "Appendix".

7 See Dean Leffingwell and Don Widrig Managing Software Requirements, A Unified Approach.
Boston: Addison-Wesley, 2000.

8 The Rational Unified Process, 2000.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided. Thank
you!

Copyright Rational Software 2001 | Privacy/Legal Information

