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9.1. Definicion de complejidad y su medida

9.1.1. Introduccion

Objetivo: Determinar qué algoritmo es mejor dentro de una familia de algoritmos que resuelven el
mismo problema.

Se define coste o complejidad temporal de un algoritmo al tiempo empleado por éste para ejecutarse y
a partir de unos datos de entrada obtener unos resultados.

Se define coste o complejidad espacial de un algoritmo al espacio ocupado en memoria (suma total del
espacio que ocupan las variables del algoritmo) antes, durante y después de ejecutarlo.

A partir de la definicion -> Problemas a la hora de evaluar la eficiencia de una manera objetiva.

Dependencias en la medida de estos costes con: el lenguaje de programacion, la maquina en donde se
ejecute, el compilador utilizado, etc. Ademés de depender de los datos de entrada (niimero de datos,
valor de las variables iniciales, ...), la forma de realizar llamadas a otras funciones de libreria, variables
auxiliares (del propio lenguaje) ...

Intentaremos evitar estos problemas midiendo (o previendo) sobre el algoritmo (y las instrucciones
contenidas en €l) el tiempo que tardard en terminar la tarea. De manera que lo que vamos a medir no
sera un valor temporal exacto (en segundos) sino un valor estimado en unidades de tiempo que
dependeran de la maquina, la implementacion o el compilador, pero que para una misma maquina
siempre seran las mismas.

Asi y todo este coste serd dificil de evaluar debido a que diferentes operaciones cuestan un tiempo
diferente (i*1/1"2), existen llamadas a funciones de libreria de las que a priori no conocemos el tiempo
de ejecucion, diferencias de tiempo para la misma operacion con diferentes tipos de datos, acceso a
perifericos, ...
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Lo que intentaremos hacer sera una estimacion aproximada de los costes agrupando los tiempos de
ejecucion en grupos

—> Operaciones aritméticas: t,

-> Asignaciones: t,

- Comparaciones: t,

Ejemplo: Realizar un algoritmo que calcule

100

y=>x
i=1

a.- Si realizamos el algoritmo, basdndonos exclusivamente en el enunciado del problema,
tendriamos:
y <0
i1
Mientras (i < 100) Hacer
y~yt+X
i~ i+1
Fin_mientras
Si realizamos el estudio del nimero de asignaciones, operaciones y comparaciones que se
realizan tendriamos:

y -0 t

i1 ta

Mientras (i < 100) Hacer te
Yy « y+X t, +t, (100 =100 * (t. + 2t, + 2t,)
i —i+1 t+t,

Fin_mientras t. (Comparacion para salir del bucle)

Que si sumamos nos dara:
Tienpo, = 2t, + 100 * (te + 2t + 2t,) + tc = 202 t, + 202 t, + 101 t,

b.- Si estudiamos el problema, podemos ver que sumar cien veces la ‘x’ es similar a
multiplicar ‘x” por 100, de manera que:

y= % X =100 [k
i=1
Y el algoritmo de resolucidon quedaria como sigue:
y « 100 * x
Y el analisis nos daria:
Tienmpo, = t, + t,
Que es mejor tiempo que el obtenido para el primer algoritmo.

A partir de los valores obtenidos en el ejemplo, podemos determinar que a partir de los tiempos que
hemos obtenido, podemos afirmar que el segundo algoritmo es ‘mejor’ que el primero,
independientemente de la maquina que utilicemos o del compilador que tengamos.

9.1.2. Concepto de talla de un problema

A parte de la problematica debida al hecho de medir el tiempo de ejecucion del algoritmo en funcion
de las operaciones elementales, también existe el hecho de que el coste del algoritmo puede depender
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de los datos de entrada del algoritmo. Diferentes datos de entrada pueden llevar a tiempos de ejecucion
distintos.

Ejemplo: Realizar un algoritmo que calcule
y=2i
i=l

En este caso el algoritmo tendra como entrada el valor de ‘n’ y como salida el valor de ‘y’

y <0 t.

i1 t,

Mientras (i < n) Hacer t
Y« y+i t,+t, W7 =n*(t. + 2t, + 2t,)
i+ t+t,

Fin_mientras t. (Comparacion para salir del bucle)

Si al igual que antes sumamos los tiempos de las operaciones elementales, obtendremos:
Tienpoy = 2t, + n * (t. + 2t, + 2t,) + t.

Evidentemente, el tiempo total que consumird el algoritmo para obtener el resultado va a
depender de el valor ‘n’

Llamaremos talla de un problema al valor o conjunto de valores asociados a la entrada del problema y
que representa una medida del tamafio del problema respecto de otras entradas posibles.

9.2. Recuperacion de informacion

Uno de los principales problemas con los que nos tenemos que enfrentar cuando tenemos una gran
cantidad de informacion es la busqueda de un elemento concreto en el conjunto de datos.

Un problema tipico en algoritmia es la busqueda. Existen dos métodos basicos de busqueda en un
conjunto: La buisqueda secuencial y la busqueda dicotomica.

9.2.1. Busqueda secuencial

La busqueda secuencial se aplica cuando no existe ningiin conocimiento previo sobre la ordenacion de
los elementos del conjunto en donde se va a realizar la busqueda.

La busqueda secuencial se basa en ir recorriendo uno a uno los elementos del conjunto en busca del
elemento deseado.

La idea general del algoritmo seria la siguiente:
1. Suponemos que no hemos encontrado el elemento.
2. Desde el primer elemento hasta el ultimo elemento del conjunto
2.a. Comprobamos si el elemento que buscamos es el que estamos comprobando del conjunto
Si lo es la suposicion inicial es falsa y si que hemos encontrado el elemento.

Basado en este algoritmo podemos escribir una funcion en C++ que nos devuelva si un elemento ‘x’
esta o no entre un conjunto de valores guardados en un vector ‘v’.

/*
* La constante la fijanmps correctanente en nuestro probl ema
*/

const int TAM= .??.;

typedef int Vector [TAM;
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bool BusquedaSecuenci al
0t
int i;
bool enc = fal se;
for (i =0; i <n; i++)
if (v[i] == x)

enc = true;

return enc;

(Vector v,

int n,

int x)

O lo que seria lo mismo cambiando el bucle ‘f or ’ por un bucle ‘whi | e’:

const int TAM = .??.;

typedef int Vector [TAM;

bool

{

BusquedaSecuenci al
int i;

bool enc = fal se;

i = 0;

while (i < n)
{

if (v[i] == x)
enc = true;

return enc;

(Vector v,

int n,

int x)

Si estudiamos el algoritmo (so6lo la parte esencial, es decir la parte que realiza la busqueda):

enc = fal se;
i = 0;
while (i <n) {
if (v[i] == x)
enc = true

a

o

t
t
t
t

t,

to
t

+t,

(n

(Comparacion para salir del bucle)

Podemos ver que dependiendo de los valores de ‘x’ y de los elementos contenidos dentro del vector,
puede que se realicen mas o menos pasos en la ejecucion del algoritmo (entraremos en la asignacion
contenida en el ‘i f’ 0 no entraremos), y que el tiempo total de ejecucion no depende so6lo de la talla
del problema o de la implementacion del algoritmo, sino que depende de los pardmetros con que se

llame a la funcion.

En este punto es donde aparece el concepto de mejor caso, peor caso y caso medio. Diremos que
estamos en el mejor caso, cuando los parametros del problema nos lleven a realizar el menor nimero
de pasos posibles, y al tiempo que tarda el algoritmo en resolver el problema lo representaremos por
T™ Diremos que estamos en el peor de los casos cuando los parametros del problema nos lleven a
realizar el maximo numero de pasos posibles, y al tiempo que tarda el algoritmo en resolver el
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problema lo representaremos por T°. El caso medio vendra expresado por la media de pasos en funcion
de todos los casos posibles (basicamente se realizara una estadistica de los posibles casos y se hara la
media de todos estos casos estadisticos). El tiempo medio lo representaremos por T*.

En el caso que nos ocupa, el mejor de los casos serd cuando en ninglin momento entremos en el ‘i f  es
decir, el elemento ‘X’ no se encuentra en el vector. En ese caso tendremos, sumando los valores de
cada una de las lineas, excepto la correspondiente a la asignacion:

TN = 2t, +n* (2t + t, + ty) + t.

Agrupando términos en funcion de la dependencia que tienen en ‘n’ obtendriamos:
T = (2t +tg +ty) *n+ (tg +2ty) =A* n + B

Siendo Ay B constantes independientes del algoritmo.

El peor de los casos seria el vector que hiciese que siempre pasasemos por la asignacioén (vector
compuesto totalmente por el valor ‘x’ buscado.) En esta situacion el valor obtenido seria:

TP = 2t, +n* (2t +t, + 2t,) + t.

Al igual que antes, agrupando términos en funcion de la dependencia que tienen en ‘n’, obtendremos:
T = (2t, +ty + 2t,) * n+ (t. + 2t,) = A * n + B

La diferencia bésica entre un caso y otro, estriva en las constantes Ay A (A" > A) aunque el tiempo
sigue siendo funcion lineal de la talla del problema.

Busqueda secuencial con parada

Este algoritmo es susceptible de ser mejorado: Si en un momento dado hemos encontrado el elemento
buscado, ya no tiene sentido seguir la bisqueda en el resto del vector. Con esta modificacion, al salir
del bucle deberemos comprobar por que motivo hemos salido del bucle: Si porque no hemos
encontrado el elemento o porque hemos llegado al final del vector. Asi, la parte del la funcion que
realiza la biisqueda quedaria como sigue:

i = 0;
while ( (i <n) & (v[i] '=x) )
i =i + 1;

if (i == n)
enc = fal se;

el se
enc

true;

Busqueda secuencial con centinela

En este algoritmo vemos que una de las condiciones que hay que comprobar es que el indice
permanezca en el rango adecuado (es decir, entre 0 y n- 1) y la busqueda no siga fuera de este rango.
Esta comprobacion no seria necesaria si estuviesemos seguros de encontrar el elemento.

Podemos estar seguros de encontrar el elemento, si en un momento determinado lo ponemos en una
posicion del vector, por ejemplo, en la posicion ‘n’.

Con ello, la condicion de que el indice permanezca en el vector no es necesaria, y el algoritmo tendria
una comparacion menos cada vez que se pasa por el bucle.

vin] = x;

i = 0;

while (v[i] !'= x)
i =i + 1;
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if (i ==n)
enc = fal se;
el se
enc = true;

Busqueda secuencial con vector ordenado

Si tenemos informacion adicional sobre los elementos contenidos en el vector, podemos aprovechar
esta informacion para mejorar el algoritmo de busqueda.

Si sabemos que el vector esta ordenado, si empezamos la busqueda desde el primer elemento, una vez
superemos un elemento mayor que el buscado, ya no tiene sentido seguir buscando por el resto del
vector. Si ademas afiadimos el centinela, la busqueda quedaria como sigue:

vin] = x;

i = 0;

while (v[i] <= x)
i =i + 1;

if (i ==n)
enc = fal se;

el se
enc

true;

9.2.2. Busqueda dicotomica

El hecho de que el vector esté ordenado, se puede aprovechar mejor.

Si en vez de empezar la busqueda desde el primer elemento, comenzamos la busqueda desde el centro
del vector, podemos determinar, si no hemos encontrado el elemento, en que mitad del vector se
encuentra el elemento, descartando de la busqueda la otra mitad. Aplicando sucesivamente a las
mitades del vector donde es posible encontrar el elemento, llegaremos o a un subvector de un solo

elemento o al elemento buscado.

El algoritmo de buisqueda quedaria como sigue:

/*
* La constante la fijanmps correctanente en nuestro probl ema
*/

const int TAM= .??.;

typedef int Vector [TAM;

bool BusquedaDi cotomica (Vector v, int n, int x)

{
int izq, der, cen;
bool enc = fal se;

izq = 0;
der = n — 1;
cen = (izq + der) / 2;

/*
* Mentras no encontrenos el elenento en el centro del subvector

* y ademas, existan mas de dos el enentos en el subvector continuanos

* | a busqueda

*/
while ( (v[cen] !'=x) && (izqgq < der) )
{

if (v[i] <x)
der = cen - 1;
el se
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izq = cen + 1;
cen = (izq + der) / 2;

}

/*
* Cuando salinos del bucle, podenos salir o por haber encontrado el
* elenento o por haber |legado a un subvector de un solo el enmento
*/
if (v[cen] == x)

enc = true;
el se

enc = false;

return enc;

En este algoritmo en el mejor de los casos el elemento a buscar estaria situado en el centro del vector y
el coste no dependeria de la cantidad de elementos contenidos en el vector. Tendriamos para el mejor
de los casos un coste constante.

En el peor de los casos tendriamos una division sucesiva de el vector en mitades, hasta llegar a una
mitad de un solo elemento. El nimero de veces que es posible dividir por dos un valor ‘n’ es Igyn. En
informatica siempre que se hable de logaritmos, hablaremos de logaritmos en base dos, de manera que,
en el peor de los casos, hablaremos de un coste logaritmico.

En el caso medio el cote también es logaritmico, pero la constante que afecta al termino es la mitad
que en el caso anterior.

9.3. El problema de la ordenacion. Métodos de ordenacion interna

9.3.1. Insercion

El algoritmo de insercion se basa en la idea de ir insertando en la parte ordenada del vector, uno a uno,
los elementos de la parte desordenada. De esta manera el algoritmo general que nos ordenaria un
vector ‘vec’ de ‘n_ele’ elementos seria el siguiente:

Desde i - 1 Hasta n Hacer
InsertarEnLaParteOrdenada (v[i])
Fin_desde

Y la insercion, considerando que la parte ordenada esta formada por los ‘i - 1’ primeros elementos,
seria basicamente:

aux — vec]i]

k< (i-1)

Mientras (k = 0) && (aux < vec[k]) Hacer
veclk + 1] - veclk]
k- k-1

Fin_mientras

veclk + 1] - aux

Con estas consideraciones la funcion en C++ quedaria, considerando, al igual que en la busqueda, que
s6lo una parte del vector contiene informacion ‘relevante’:

void Ordenarlnsercion (int v[TAM, int n)
{

int i, j;

int i_aux;
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for (i =1, i < n; i++)
{
i _aux = v[i];
=i -1
while ( (j >=0) & (v[j] > i_aux) )

vij + 1] = v[jl;
=1L

v[j + 1] =i _aux;

Ordenacion por insercion con centinela

La idea es la misma que en la busqueda secuencial con centinela. Si seguro que encontramos una
posicion dentro del vector para el nuevo elemento, no es necesario comprobar que el indice no se sale
del rango valido. En este caso, el elemento hay que situarlo al inicio del vector, y la comprobacién ‘k
> 0’ no es necesaria:

Desde i - 1 Hasta n Hacer
vec[-1] — aux
k- (i-1)
Mientras (aux < vec[k]) Hacer
veclk + 1]  veclk]
k - k-1
Fin_mientras
veclk + 1] — vec[-1]
Fin_desde

Esto, en C++ es incorrecto. No podemos utilizar la posicion ‘-1°.

La forma correcta de utilizar el centinela, seria desplazando los elementos una posicion a la izquierda
para poder ‘abrir’ un hueco para el centinela, y, una vez ordenado el vector, desplazar la informacién a
su lugar original.

voi d OrdenarlnsercionCentinela (int v[TAM, int n)

L
int i, j;
int i_aux;
for (i =0; i <n—=1; i++)

vii + 1] = v[i];

for (i =1; i < n; i++)

0t
=0 - L
/* recordar que la utilizacién de la posicién ‘-1 es incorrecta */
v[0] = v[il];

while (v[j] > v[-1])
{

v[j +1] = v[j];
=i
vij + 1] = v[0];
}
for (i =0; i <n—=1; i++)

vii] = v[i + 1];
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Este trabajo adicional es lineal, mientras que la ordenacion, en el caso general, es cuadratica, de
manera que el coste del algoritmo aumenta, pero el orden de complejidad sigue siendo cuadrético.

9.3.2. Seleccion

El algoritmo de seleccion se basa en la idea de ir seleccionando para cada una de las posiciones del
vector el elemento que deberia estar en esa posicion (en la primera posicion el menor, en la segunda el
menor de los restantes y asi sucesivamente hasta el ultimo que ya esté en su lugar.)

Desde i — 0 Hasta n — 1 Hacer
pos_min — BuscarEIMinimoDelLosDesordenados
Si (pos_min # i) Entonces
V[i] & v[pos_min]
Fin_si
Fin_Desde

La busqueda del minimo es facil:

pos_min < i
Desde j — i + 1 Hasta n Hacer
Si (v[j] < v[pos_min]) Entonces
pos_min - j
Fin_si
Fin_desde

La funcion en C++ que realizaria esta ordenacion seria:

voi d Ordenar Sel eccion (int vV[TAM, int n)

{
int i, j, pos_mn;
int i_aux;
for (i =0; i <n - 1; i++)
{
pos mn = i;
for (j =1 +1; j <n; j++)
if (v[j] < v[pos_mn])
pos_mn = j;
if (pos_min !=1i)
{
i _aux = v[i];
v[i] = v[pos_min];
v[pos_min] =i _aux;
}
}
}

9.3.3. Intercambio (o burbuja)

La idea basica de este algoritmo es ir comparando dos a dos los elementos y situarlos en el orden
correcto dentro de la secuencia. Si imaginamos el vector en posicion vertical, el método consiste en
llevar los elementos mas ligeros (los que contienen claves de ordenacion mas pequenas) hacia arriba, o
al contrario llevar los elementos mas pesados hacia abajo. Todo depende de la direccidon en que se
hacen las comparaciones. En cualquier caso, en cada pasada un elemento se compara con el siguiente,
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situandolos en el orden adecuado que deberian tener segun sus pesos. Al finalizar la pasada i-esima el
elemento ‘i’ quedard en la posicién adecuada segun su peso.

Si hacemos las comparaciones en forma ascendente tendremos el algoritmo que va subiendo los
elementos mas ligeros:

void OrdenarBurbuja (int v[TAM, int n)

.
int i, j;
int i_aux;
for (i =0; i <n - 17 i+4)
for (j =n-1;j >i - 1; j--)
i{f (v[j - 1] <v[ijl)
i _aux = v[j];
vij] = v[j + 1];
v[j + 1] = i_aux;
}
}
}

Si, por el contrario, hacemos las comparaciones en forma descendente tendremos el algoritmo que va
bajando los elementos mas pesados:

void OrdenarBurbuja (int v[TAM, int n)

t
int i, j;
int i_aux;
for (| =0; i <n - 1; i++)
{
for (j =0; j <n - i - 1; j++)
i{f (v[jl > v[j +1])
i _aux = v[j];
vijl = vlj + 1];
vij + 1] =i _aux;
}
}
}
}

9.3.4. Quick-sort

En este algoritmo se trata de ir agrupando los elementos en dos subgrupos: Un grupo de elementos
‘pequeiios’ y otro grupo de elementos ‘grandes’ respecto de una referencia, que llamaremos pivote, y
que sera un elemento cualquiera del vector (generalmente el elemento central del vector). Una vez
tenemos los dos subconjuntos, volvemos a aplicar la misma idea a cada uno de los subconjuntos por
separado, hasta obtener subconjuntos de un solo elemento.

voi d Ordenar Qui ckSort (int v[TAM, int n)

QuickSortRec (v, 0, n - 1);
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voi d Qui ckSortRec (int v[TAM,
{

int i, j, i_aux, piv;
= v[(izq + der) [/ 2];
i zq;

pi
i
i der;

n <

while (i
{
while (v[i]<piv) i++
while (v[j]>piv) j--;
if (i <=1j)
L
i _aux =
v[i]
vlj]
i ++;
i--;

<)

v[i];
vijl;
i _aux;

}

if (izq <j)

Qui ckSort Rec (v,
if (i < der)

Qui ckSortRec (v, i,

i zq,

Cuadro resumen*

asignaciones

mejor medio

i)
der);

i nt

peor

i zq,

int der)

mejor

comparaciones

medio peor

insercion

seleccion

burbuja

quick-sort

*Rellenar con lo visto en clase. Recordar que se pueden tener en cuenta todas las operaciones involucradas en
el algoritmo, o solo las operaciones que involucren elementos del vector.
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