
Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 1

 9. INTRODUCCIÓN AL ESTUDIO DE ALGORITMOS
Y SU COMPLEJIDAD

9. INTRODUCCIÓN AL ESTUDIO DE ALGORITMOS Y SU COMPLEJIDAD .. 1

9.1. DEFINICIÓN DE COMPLEJIDAD Y SU MEDIDA... 1
9.1.1. Introducción... 1
9.1.2. Concepto de talla de un problema ... 2

9.2. RECUPERACIÓN DE INFORMACIÓN.. 3
9.2.1. Búsqueda secuencial .. 3
9.2.2. Búsqueda dicotómica ... 6

9.3. EL PROBLEMA DE LA ORDENACIÓN. MÉTODOS DE ORDENACIÓN INTERNA ... 7
9.3.1. Inserción .. 7
9.3.2. Selección .. 9
9.3.3. Intercambio (o burbuja)... 9
9.3.4. Quick-sort .. 10
Cuadro resumen* ... 11

BIBLIOGRAFÍA ESPECÍFICA... 11

9.1." Definición de complejidad y su medida

9.1.1. Introducción

Objetivo: Determinar qué algoritmo es mejor dentro de una familia de algoritmos que resuelven el
mismo problema.

Se define coste o complejidad temporal de un algoritmo al tiempo empleado por éste para ejecutarse y
a partir de unos datos de entrada obtener unos resultados.

Se define coste o complejidad espacial de un algoritmo al espacio ocupado en memoria (suma total del
espacio que ocupan las variables del algoritmo) antes, durante y después de ejecutarlo.

A partir de la definición -> Problemas a la hora de evaluar la eficiencia de una manera objetiva.

Dependencias en la medida de estos costes con: el lenguaje de programación, la máquina en donde se
ejecute, el compilador utilizado, etc. Además de depender de los datos de entrada (número de datos,
valor de las variables iniciales, ...), la forma de realizar llamadas a otras funciones de librería, variables
auxiliares (del propio lenguaje) ...

Intentaremos evitar estos problemas midiendo (o previendo) sobre el algoritmo (y las instrucciones
contenidas en él) el tiempo que tardará en terminar la tarea. De manera que lo que vamos a medir no
será un valor temporal exacto (en segundos) sino un valor estimado en unidades de tiempo que
dependerán de la maquina, la implementación o el compilador, pero que para una misma máquina
siempre serán las mismas.

Así y todo este coste será difícil de evaluar debido a que diferentes operaciones cuestan un tiempo
diferente (i*i / i^2), existen llamadas a funciones de librería de las que a priori no conocemos el tiempo
de ejecución, diferencias de tiempo para la misma operación con diferentes tipos de datos, acceso a
perifericos, ...

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 2

Lo que intentaremos hacer será una estimación aproximada de los costes agrupando los tiempos de
ejecución en grupos

 Operaciones aritméticas: vq
 Asignaciones: vc
 Comparaciones: ve

Ejemplo: Realizar un algoritmo que calcule

∑
=

=
100

1i
xy

a.- Si realizamos el algoritmo, basándonos exclusivamente en el enunciado del problema,
tendríamos:

y ← 0
i ← 1
Mientras (i ≤ 100) Hacer

y ← y + x
i ← i + 1

Fin_mientras

Si realizamos el estudio del número de asignaciones, operaciones y comparaciones que se
realizan tendríamos:

y ← 0 vc

i ← 1 vc

Mientras (i ≤ 100) Hacer ve

y ← y + x vq"-"vc ?"322","*ve"-"4vq"-"4vc+

i ← i + 1 vq"-"vc

100∗








Fin_mientras ve (Comparación para salir del bucle)

Que si sumamos nos dará:
Tiempo1 = 2ta + 100 * (tc + 2to + 2ta) + tc = 202 ta + 202 to + 101 tc

b.- Si estudiamos el problema, podemos ver que sumar cien veces la ‘x’ es similar a
multiplicar ‘x’ por 100, de manera que:

xxy
i

⋅==∑
=

100
100

1

Y el algoritmo de resolución quedaría como sigue:

y ← 100 * x

Y el análisis nos daría:
Tiempo2 = to + ta

Que es mejor tiempo que el obtenido para el primer algoritmo.

A partir de los valores obtenidos en el ejemplo, podemos determinar que a partir de los tiempos que
hemos obtenido, podemos afirmar que el segundo algoritmo es ‘mejor’ que el primero,
independientemente de la máquina que utilicemos o del compilador que tengamos.

9.1.2. Concepto de talla de un problema

A parte de la problemática debida al hecho de medir el tiempo de ejecución del algoritmo en función
de las operaciones elementales, también existe el hecho de que el coste del algoritmo puede depender

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 3

de los datos de entrada del algoritmo. Diferentes datos de entrada pueden llevar a tiempos de ejecución
distintos.

Ejemplo: Realizar un algoritmo que calcule

∑
=

=
n

i
iy

1

En este caso el algoritmo tendrá como entrada el valor de ‘n’ y como salida el valor de ‘y’
y ← 0 vc

i ← 1 vc

Mientras (i ≤ n) Hacer ve

y ← y + i vq"-"vc ?"p","*ve"-"4vq"-"4vc+

i ← i + 1 vq"-"vc

n∗








Fin_mientras ve (Comparación para salir del bucle)

Si al igual que antes sumamos los tiempos de las operaciones elementales, obtendremos:
Tiempo1 = 2ta + n * (tc + 2to + 2ta) + tc

Evidentemente, el tiempo total que consumirá el algoritmo para obtener el resultado va a
depender de el valor ‘n’

Llamaremos talla de un problema al valor o conjunto de valores asociados a la entrada del problema y
que representa una medida del tamaño del problema respecto de otras entradas posibles.

9.2. Recuperación de información
Uno de los principales problemas con los que nos tenemos que enfrentar cuando tenemos una gran
cantidad de información es la búsqueda de un elemento concreto en el conjunto de datos.

Un problema típico en algoritmia es la búsqueda. Existen dos métodos básicos de búsqueda en un
conjunto: La búsqueda secuencial y la búsqueda dicotómica.

9.2.1. Búsqueda secuencial

La búsqueda secuencial se aplica cuando no existe ningún conocimiento previo sobre la ordenación de
los elementos del conjunto en donde se va a realizar la búsqueda.

La búsqueda secuencial se basa en ir recorriendo uno a uno los elementos del conjunto en busca del
elemento deseado.

La idea general del algoritmo sería la siguiente:
1. Suponemos que no hemos encontrado el elemento.
2. Desde el primer elemento hasta el último elemento del conjunto

2.a. Comprobamos si el elemento que buscamos es el que estamos comprobando del conjunto
Si lo es la suposición inicial es falsa y si que hemos encontrado el elemento.

Basado en este algoritmo podemos escribir una función en C++ que nos devuelva si un elemento ‘x’
está o no entre un conjunto de valores guardados en un vector ‘v’.

/*
* La constante la fijamos correctamente en nuestro problema
*/
const int TAM = .??.;

typedef int Vector [TAM];

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 4

bool BusquedaSecuencial (Vector v, int n, int x)
{

int i;
bool enc = false;

for (i = 0; i < n; i++)
if (v[i] == x)

enc = true;

return enc;
}

O lo que sería lo mismo cambiando el bucle ‘for’ por un bucle ‘while’:

const int TAM = .??.;

typedef int Vector [TAM];

bool BusquedaSecuencial (Vector v, int n, int x)
{

int i;
bool enc = false;

i = 0;
while (i < n)
{

if (v[i] == x)
enc = true;

i = i + 1;
}

return enc;
}

Si estudiamos el algoritmo (sólo la parte esencial, es decir la parte que realiza la búsqueda):

enc = false; vc

i = 0; vc

while (i < n) { ve

if (v[i] == x) ve

enc = true vc

n∗








i = i + 1; vq"-"vc

} ve (Comparación para salir del bucle)

Podemos ver que dependiendo de los valores de ‘x’ y de los elementos contenidos dentro del vector,
puede que se realicen más o menos pasos en la ejecución del algoritmo (entraremos en la asignación
contenida en el ‘if’ o no entraremos), y que el tiempo total de ejecución no depende sólo de la talla
del problema o de la implementación del algoritmo, sino que depende de los parámetros con que se
llame a la función.

En este punto es donde aparece el concepto de mejor caso, peor caso y caso medio. Diremos que
estamos en el mejor caso, cuando los parámetros del problema nos lleven a realizar el menor número
de pasos posibles, y al tiempo que tarda el algoritmo en resolver el problema lo representaremos por
Tm. Diremos que estamos en el peor de los casos cuando los parámetros del problema nos lleven a
realizar el máximo número de pasos posibles, y al tiempo que tarda el algoritmo en resolver el

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 5

problema lo representaremos por Tp. El caso medio vendrá expresado por la media de pasos en función
de todos los casos posibles (básicamente se realizará una estadística de los posibles casos y se hará la
media de todos estos casos estadísticos). El tiempo medio lo representaremos por Tµ.

En el caso que nos ocupa, el mejor de los casos será cuando en ningún momento entremos en el ‘if’ es
decir, el elemento ‘x’ no se encuentra en el vector. En ese caso tendremos, sumando los valores de
cada una de las líneas, excepto la correspondiente a la asignación:

Tm = 2ta + n * (2tc + to + ta) + tc

Agrupando términos en función de la dependencia que tienen en ‘n’ obtendríamos:
Tm = (2tc + to + ta) * n + (tc + 2ta) = A * n + B

Siendo A y B constantes independientes del algoritmo.

El peor de los casos sería el vector que hiciese que siempre pasasemos por la asignación (vector
compuesto totalmente por el valor ‘x’ buscado.) En esta situación el valor obtenido sería:

Tp = 2ta + n * (2tc + to + 2ta) + tc

Al igual que antes, agrupando términos en función de la dependencia que tienen en ‘n’, obtendremos:
Tm = (2tc + to + 2ta) * n + (tc + 2ta) = A’ * n + B

La diferencia básica entre un caso y otro, estriva en las constantes A y A’ (A’ > A) aunque el tiempo
sigue siendo función lineal de la talla del problema.

Búsqueda secuencial con parada

Este algoritmo es susceptible de ser mejorado: Si en un momento dado hemos encontrado el elemento
buscado, ya no tiene sentido seguir la búsqueda en el resto del vector. Con esta modificación, al salir
del bucle deberemos comprobar por que motivo hemos salido del bucle: Si porque no hemos
encontrado el elemento o porque hemos llegado al final del vector. Así, la parte del la función que
realiza la búsqueda quedaría como sigue:

i = 0;
while ((i < n) && (v[i] != x))

i = i + 1;

if (i == n)
enc = false;

else
enc = true;

Búsqueda secuencial con centinela

En este algoritmo vemos que una de las condiciones que hay que comprobar es que el índice
permanezca en el rango adecuado (es decir, entre 0 y n-1) y la búsqueda no siga fuera de este rango.
Esta comprobación no sería necesaria si estuviesemos seguros de encontrar el elemento.

Podemos estar seguros de encontrar el elemento, si en un momento determinado lo ponemos en una
posición del vector, por ejemplo, en la posición ‘n’.

Con ello, la condición de que el índice permanezca en el vector no es necesaria, y el algoritmo tendría
una comparación menos cada vez que se pasa por el bucle.

v[n] = x;
i = 0;
while (v[i] != x)

i = i + 1;

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 6

if (i == n)
enc = false;

else
enc = true;

Búsqueda secuencial con vector ordenado

Si tenemos información adicional sobre los elementos contenidos en el vector, podemos aprovechar
esta información para mejorar el algoritmo de búsqueda.

Si sabemos que el vector está ordenado, si empezamos la búsqueda desde el primer elemento, una vez
superemos un elemento mayor que el buscado, ya no tiene sentido seguir buscando por el resto del
vector. Si además añadimos el centinela, la búsqueda quedaría como sigue:

v[n] = x;
i = 0;
while (v[i] <= x)

i = i + 1;

if (i == n)
enc = false;

else
enc = true;

9.2.2. Búsqueda dicotómica

El hecho de que el vector esté ordenado, se puede aprovechar mejor.

Si en vez de empezar la búsqueda desde el primer elemento, comenzamos la búsqueda desde el centro
del vector, podemos determinar, si no hemos encontrado el elemento, en que mitad del vector se
encuentra el elemento, descartando de la búsqueda la otra mitad. Aplicando sucesivamente a las
mitades del vector donde es posible encontrar el elemento, llegaremos o a un subvector de un solo
elemento o al elemento buscado.

El algoritmo de búsqueda quedaría como sigue:

/*
* La constante la fijamos correctamente en nuestro problema
*/
const int TAM = .??.;

typedef int Vector [TAM];

bool BusquedaDicotomica (Vector v, int n, int x)
{

int izq, der, cen;
bool enc = false;

izq = 0;
der = n – 1;
cen = (izq + der) / 2;
/*
* Mientras no encontremos el elemento en el centro del subvector
* y ademas, existan mas de dos elementos en el subvector continuamos
* la búsqueda
*/
while ((v[cen] != x) && (izq < der))
{

if (v[i] < x)
der = cen - 1;

else

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 7

izq = cen + 1;
cen = (izq + der) / 2;

}

/*
* Cuando salimos del bucle, podemos salir o por haber encontrado el
* elemento o por haber llegado a un subvector de un solo elemento
*/
if (v[cen] == x)

enc = true;
else

enc = false;

return enc;
}

En este algoritmo en el mejor de los casos el elemento a buscar estaría situado en el centro del vector y
el coste no dependería de la cantidad de elementos contenidos en el vector. Tendríamos para el mejor
de los casos un coste constante.

En el peor de los casos tendríamos una división sucesiva de el vector en mitades, hasta llegar a una
mitad de un solo elemento. El número de veces que es posible dividir por dos un valor ‘n’ es ni4p. En
informática siempre que se hable de logaritmos, hablaremos de logaritmos en base dos, de manera que,
en el peor de los casos, hablaremos de un coste logarítmico.

En el caso medio el cote también es logarítmico, pero la constante que afecta al termino es la mitad
que en el caso anterior.

9.3. El problema de la ordenación. Métodos de ordenación interna

9.3.1. Inserción

El algoritmo de inserción se basa en la idea de ir insertando en la parte ordenada del vector, uno a uno,
los elementos de la parte desordenada. De esta manera el algoritmo general que nos ordenaría un
vector ‘vec’ de ‘n_ele’ elementos sería el siguiente:

Fgufg i ← 1 Jcuvc n Jcegt
 InsertarEnLaParteOrdenada (v[i])
Hkpafgufg

Y la inserción, considerando que la parte ordenada esta formada por los ‘i-1’ primeros elementos,
sería básicamente:

aux ← vec[i]
k ← (i - 1)
Okgpvtcu (k ≥ 0) && (aux < vec[k]) Jcegt

vec[k + 1] ← vec[k]
k ← k - 1

Hkpaokgpvtcu
vec[k + 1] ← aux

Con estas consideraciones la función en C++ quedaría, considerando, al igual que en la búsqueda, que
sólo una parte del vector contiene información ‘relevante’:

void OrdenarInsercion (int v[TAM], int n)
{

int i, j;
int i_aux;

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 8

for (i = 1; i < n; i++)
{

i_aux = v[i];
j = i - 1;
while ((j >= 0) && (v[j] > i_aux))
{

v[j + 1] = v[j];
j = j - 1;

}
v[j + 1] = i_aux;

}
}

Ordenación por inserción con centinela

La idea es la misma que en la búsqueda secuencial con centinela. Si seguro que encontramos una
posición dentro del vector para el nuevo elemento, no es necesario comprobar que el índice no se sale
del rango válido. En este caso, el elemento hay que situarlo al inicio del vector, y la comprobación ‘k
≥ 0’ no es necesaria:

Fgufg i ← 1 Jcuvc n Jcegt
vec[-1] ← aux
k ← (i - 1)
Okgpvtcu (aux < vec[k]) Jcegt

vec[k + 1] ← vec[k]
k ← k - 1

Hkpaokgpvtcu
vec[k + 1] ← vec[-1]

Hkpafgufg

Esto, en C++ es incorrecto. No podemos utilizar la posición ‘-1’.

La forma correcta de utilizar el centinela, sería desplazando los elementos una posición a la izquierda
para poder ‘abrir’ un hueco para el centinela, y, una vez ordenado el vector, desplazar la información a
su lugar original.

void OrdenarInsercionCentinela (int v[TAM], int n)
{

int i, j;
int i_aux;

for (i = 0; i < n – 1; i++)
v[i + 1] = v[i];

for (i = 1; i < n; i++)
{

j = i - 1;
/* recordar que la utilización de la posición ‘-1’ es incorrecta */
v[0] = v[i];

while (v[j] > v[-1])
{

v[j + 1] = v[j];
j = j - 1;

}
v[j + 1] = v[0];

}

for (i = 0; i < n – 1; i++)
v[i] = v[i + 1];

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 9

}

Este trabajo adicional es lineal, mientras que la ordenación, en el caso general, es cuadrática, de
manera que el coste del algoritmo aumenta, pero el orden de complejidad sigue siendo cuadrático.

9.3.2. Selección

El algoritmo de selección se basa en la idea de ir seleccionando para cada una de las posiciones del
vector el elemento que debería estar en esa posición (en la primera posición el menor, en la segunda el
menor de los restantes y así sucesivamente hasta el último que ya está en su lugar.)

Fgufg i ← 0 Jcuvc n – 1 Jcegt
pos_min ← BuscarElMinimoDeLosDesordenados
Uk (pos_min ≠ i) Gpvqpegu

 v[i] ↔ v[pos_min]
Hkpauk

HkpaFgufg

La búsqueda del mínimo es fácil:

pos_min ← i
Fgufg j ← i + 1 Jcuvc n Jcegt

Uk (v[j] < v[pos_min])"Gpvqpegu
pos_min ← j

Hkpauk
Hkpafgufg

La función en C++ que realizaría esta ordenación sería:

void OrdenarSeleccion (int v[TAM], int n)
{

int i, j, pos_min;
int i_aux;

for (i = 0; i < n - 1; i++)
{

pos_min = i;
for (j = i + 1; j < n; j++)

if (v[j] < v[pos_min])
pos_min = j;

if (pos_min != i)
{

i_aux = v[i];
v[i] = v[pos_min];
v[pos_min] = i_aux;

}
}

}

9.3.3. Intercambio (o burbuja)

La idea básica de este algoritmo es ir comparando dos a dos los elementos y situarlos en el orden
correcto dentro de la secuencia. Si imaginamos el vector en posición vertical, el método consiste en
llevar los elementos más ligeros (los que contienen claves de ordenación más pequeñas) hacia arriba, o
al contrario llevar los elementos más pesados hacia abajo. Todo depende de la dirección en que se
hacen las comparaciones. En cualquier caso, en cada pasada un elemento se compara con el siguiente,

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 10

situandolos en el orden adecuado que deberían tener según sus pesos. Al finalizar la pasada i-esima el
elemento ‘i’ quedará en la posición adecuada según su peso.

Si hacemos las comparaciones en forma ascendente tendremos el algoritmo que va subiendo los
elementos más ligeros:

void OrdenarBurbuja (int v[TAM], int n)
{

int i, j;
int i_aux;

for (i = 0; i < n - 1; i++)
{

for (j = n - 1; j > i - 1; j--)
{

if (v[j - 1] < v[j])
{

i_aux = v[j];
v[j] = v[j + 1];
v[j + 1] = i_aux;

}
}

}
}

Si, por el contrario, hacemos las comparaciones en forma descendente tendremos el algoritmo que va
bajando los elementos más pesados:

void OrdenarBurbuja (int v[TAM], int n)
{

int i, j;
int i_aux;

for (i = 0; i < n - 1; i++)
{

for (j = 0; j < n - i - 1; j++)
{

if (v[j] > v[j + 1])
{

i_aux = v[j];
v[j] = v[j + 1];
v[j + 1] = i_aux;

}
}

}
}

9.3.4. Quick-sort

En este algoritmo se trata de ir agrupando los elementos en dos subgrupos: Un grupo de elementos
‘pequeños’ y otro grupo de elementos ‘grandes’ respecto de una referencia, que llamaremos pivote, y
que será un elemento cualquiera del vector (generalmente el elemento central del vector). Una vez
tenemos los dos subconjuntos, volvemos a aplicar la misma idea a cada uno de los subconjuntos por
separado, hasta obtener subconjuntos de un solo elemento.

void OrdenarQuickSort (int v[TAM], int n)
{

QuickSortRec (v, 0, n - 1);
}

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema9. Introducción al estudio de algoritmos y su complejidad 11

void QuickSortRec (int v[TAM], int izq, int der)
{

int i, j, i_aux, piv;

piv = v[(izq + der) / 2];
i = izq;
j = der;

while (i < j)
{

while (v[i]<piv) i++;
while (v[j]>piv) j--;
if (i <= j)
{

i_aux = v[i];
v[i] = v[j];
v[j] = i_aux;
i++;
j--;

}
}

if (izq < j)
QuickSortRec (v, izq, j);

if (i < der)
QuickSortRec (v, i, der);

}

Cuadro resumen*

asignaciones comparaciones

mejor medio peor mejor medio peor

inserción

selección

burbuja

quick-sort

*Rellenar con lo visto en clase. Recordar que se pueden tener en cuenta todas las operaciones involucradas en
el algoritmo, o sólo las operaciones que involucren elementos del vector.

Bibliografía específica
 “Introducció a l'anàlisi i disseny d'algorismes”

Francesc J. Ferri, Jesús V. Albert, Gregorio Martín. Ed. Universitat de València. 1998.

 “Estructuras de datos y algoritmos”
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. Ed. Addison Wesley Iberoamericana. 1988.

