Estructuras de datos Tema 6 Pagina 101

TEMA 6

6.1. FUNDAMENTOS Y TERMINOLOGIA BASICA........ccuiiiiiiiiiiiiiiiiiiiiciccnc s 101
6.2. REPRESENTACION DE GRATFOSoouiiiiiiiiiiiiiiiiiiii ittt s s 103
Representacion mediante matrices: Matrices de AdyACENCIA....................cc.ccovvuevcieiiaiiieiieeieeieeeeee e 103
Representacion mediante punteros: Listas de AdYACENCIAcccocceieiiiiiiieiieiieeeeeeee e 104
Representacion mediante punteros: Matrices diSPETSASccowcuivoeiiiiieiieei ettt 106
6.3. OPERACIONES BASICAS CON GRAFOScotiiiiiiiieiieiiteiietee ettt 107
Creacion del @rafo: Crear G AFOc.cccooi ittt ettt ettt 108
Iniciacion del grafo: Matrices de adYaCeNCIacuevueeiiriiriirieiieieeteeete ettt sttt b ettt e sbe s 108
Iniciacion del grafo: Listas de adyaCeNCIA.ciuerueieirieiiitirie ettt ettt st et s e bbb et e s e eneeneeean 109
Iniciacion del grafo: MatriCeSs dISPETSAScccuiruieiirtieiertieierieetent ettt et ettt et st e b e s bt estesbe et e sbeeseesbeeatenbeesbenbeentenbesaeeneeenean 109
Afiadir nodos al grafo: ANAAIF INOGO..................ccooioiiiiiiiieeeee ettt 109
Afadir Nodo: Matrices de adyacencia, Listas de adyacencia, Matrices diSPersas.........coceevverueeruerueeienienienienieenieniesneneennees 109
Afiadir arcos al @rafo: ANAAIT ATCOcccccoiiciiiiiiiiiiiiieee ettt 110
ANadir Arco: Matrices A€ AdYACETICIA ..c..eeuvitiriieieitieieet ettt ettt b et s b et esbe et e s beeee e s bt ea b e bt esbenbeentenbesbeenaeebean 110
ANadir Arco: LiStas de AdyaCENCIA.coueiuiirtieiiiieitieeet ettt ettt et b et sb et e bt et e s bt e st e bt s at et e bt e b sbeentesaean 111
ADNAdIT ATCO: MALTICES QISPEISASeveuveuriuieiiitirtiteteit ettt sttt ettt et sttt e bttt be et es e eaeea e eb e et et es e bt eae st e eb e e e s entenesuenaenne 111
Eliminar nodos del grafo: ELMINar_INOGOc..ccocoveeieiiiiiiiiiecieeie ettt esa e saae s 112
Eliminar Nodo: Matrices de adyaCeIICIA.c.cvuirtirietiiriiriertiteieiteit ettt ettt ettt sttt ettt st b et et ene et b naen 112
Eliminar Nodo: Matrices de adyacencia, Listas de adyacencia, Matrices dispersas................ iError!Marcador no definido.
Eliminar Nodo: Listas de AdyaCENCIAccveruieieriereieiertieiesieetesteetetesteetesteestesseestessessaessesssensesssesssansensesssessesssensesseessenses 112
Eliminar NOdo: MatriCes QISPEISASc.veueitiruiriiieienietieteete et eseettett et stestetesee st ese et e beteaeeseeseaseebesbenseneeseeneseeesenseneeneeseesenean
6.4. OTRAS OPERACIONES CON GRAFOS......c.couiiiiiiiiiiiiiiiitiiteiiitt ittt
RECOFFIAO A GFASOS ...ttt ettt ettt b e e ettt be e e nseeaeeere s
Recorrido en anchura 0 BFS (Breadth FirSt SEArch)oouecueeieiieieiieciieieieseeie st ete e testesiaensesseesesseessesseensessesssensens

Recorrido en profundidad o DFS (Depth First Search)

6.1. Fundamentos y terminologia basica

Un grafo, G, es un par, compuesto por dos conjuntos V y A. Al conjunto V se le llama conjunto de
vértices o nodos del grafo. A es un conjunto de pares de vértices, estos pares se conocen
habitualmente con el nombre de arcos o ejes del grafo. Se suele utilizar la notacion G = (V, A)
para identificar un grafo.

Existen dos clase de grafos: dirigidos y no dirigidos. En un grafo no dirigido el par de vértices que
representa un arco no esta ordenado. Por lo tanto, los pares (v1, v2) y (v2, v1) representan el
mismo arco. En un grafo dirigido cada arco esta representado por un par ordenado de vértices
<v1, v2>, de forma que <v1,v2> y <v2, v1> representan dos arcos diferentes.

Ejemplos de grafos (dirigidos y no dirigidos):
G1=(V1,Al)

V1={12,3,4} Al={(1,2), (1,3),(1,4),(2,3),(2,4),(3,4)}
G2 = (V2,A2)

V2={12,3,4,5,6} A2={(1,2),(1,3),(2,4),(2,5),3,6)}
G3 =(V3,A3)

V3={1,2,3} A3={<1,2>,<2,1>,<2,3>}

Estructuras de datos Tema 6 Pagina 102

Graficamente estas tres estructuras de vértices y arcos se pueden representar de la siguiente manera:
L—Q ®/?@

Figura 1. Ejemplos de grafos

—_—

Los grafos permiten representar conjuntos de objetos arbitrariamente relacionados. Se puede asociar
el conjunto el vértices con el conjunto de objetos y el conjunto de arcos con las relaciones que se
establecen entre ellos.

Los grafos son modelos matematicos de numerosas situaciones reales: un mapa de carreteras, la red
de ferrocarriles, el plano de un circuito eléctrico, el esquema de la red telefonica de una compaiiia,
etc.

El nimero de distintos pares de vértices (vi,vj), con vi # vj,en un grafo con n vértices es
n(n-1)/2. Este el nimero maximo de arcos en un grafo no dirirgido de n vértices. Un grafo no
dirigido que tenga exactamente n(n-1)/2 arcos se dice que un grafo completo. En el caso de un
grafo dirigido de n vértices el nimero maximo de arcos es n(n-1).

Algunas definiciones basicas en grafos:

- Orden de un grafo: Es el nimero de nodos (vértices) del grafo.
- Grado de un nodo: Es el numero de ejes (arcos) que inciden sobre el nodo.

- Grafo simétrico: Es un grafo dirigido tal que si existe la relacion <u, v> entonces existe
<v, u>,con u,v V.

- Grafo no simétrico: Es un grafo que no cumple la propiedad anterior.

- Grafo reflexivo: Es el grafo que cumple que para todo nodo u [V existe la relacion (u,
uy O A

- Grafo transitivo: Es aquél que cumple que si existen las relaciones (u, v) y (v, z) U
A entonces (u,z) U A

- Grafo completo: Es el grafo que contiene todos los posibles pares de relaciones, es decir,
para cualquier par de nodos u,v [V, u # v,existe (u,v) 0 A

- Camino: Un camino en el grafo G es una sucesion de vértices y arcos: vy, aj, Vi, as, Va,
..., 8, Vi tal que los extremos del arco a; son los vértices vi.; y v;.

- Longitud de un camino: Es el nimero de arcos que componen el camino.
- Camino cerrado (circuito): Camino en el que coinciden los vértices extremos (vo = V).

- Camino simple: Camino donde sus vértices son distintos dos a dos, salvo a lo sumo los
extremos vo y V.

- Camino elemental: Camino donde sus arcos son distintos dos a dos.
- Camino euleriano: Camino simple que contiene todos los arcos del grafo.
- Grafo euleriano: Es un grafo que tiene un camino euleriano cerrado.

- Grafo conexo: Es un grafo no dirigido tal que para cualquier par de nodos existe al menos
un camino que los une.

- Grafo fuertemente conexo: Es un grafo dirigido tal que para cualquier par de nodos existe
un camino que los une.

Estructuras de datos Tema 6 Pagina 103

- Punto de articulacion: Es un nodo que si desaparece provoca que se cree un grafo no
conexo.

6.2. Representacion de grafos

Existen tres maneras basicas de representar los grafos: Mediante matrices; mediante listas y
mediante matrices dispersas. Cada representacion tiene unas ciertas ventajas € inconvenientes
respecto de las demas, que comentaremos mds adelante.

Representacion mediante matrices: Matrices de adyacencia

Un grafo es un par compuesto por dos conjuntos: Un conjunto de nodos; y un conjunto de
relaciones entre los nodos.

La representacion que realicemos en C++ tendrd que ser capaz de guardar esta informacioén en
memoria.

La forma mas facil de guardar la informacion de los nodos es mediante la utilizacion de un vector
que indexe los nodos, de manera que los arcos entre los nodos se pueden ver como relaciones entre
los indices. Esta relacion entre indices se pueden guardar en una matriz, que llamaremos de
adyacencia.

En base a esto, un grafo se puede representar en C++ como:

const int MAX _NODCS = .?7?.;

typedef .?7?. Val or _Nodo;
typedef .??. Val or_Arco;

struct Arco

{
Val or _Arco | nfo; /* I nformaci 6n asoci ada a cada arco */
bool Exi ste;
b
struct Nodo
Val or _Nodo | nf o; /* I nfornaci 6n asoci ada a cada nodo */
bool Exi ste;
b
class Gafo
{
publi c:
private:
Nodo Nodos [MAX NODCS];
Arco Arcos [MAX_NODGS] [MAX_NODOS] ;
s

Con esta representacion tendremos que reservar al menos del orden de n? ' espacios' de memoria
para la informacién de los arcos, y las operaciones relacionadas con el grafo implicaran,
habitualmente, recorrer toda la matriz, con lo que el orden de las operaciones sera, en general,
cuadratico, aunque tengamos un numero de relaciones entre los nodos mucho menor que n?.

En cambio, con esta representacion es muy facil determinar, a partir de dos nodos, si estdn o no
relacionados: So6lo hay que acceder al elemento adecuado de la matriz y comprobar el valor que
guarda.

Ejemplo de representacion:

Estructuras de datos Tema 6 Pagina 104
A ¥

) \ /@

F Gl

\ < \@m

Figura 2 Ejemplo de grafo no dirigido

~

Supongamos el grafo representado en la figura 2. A partir de ese grafo la informacion que
guardariamos, con esta representacion, seria:

GRAFO,

Nodos 1 2 3 4 5 6 7 8 9 10 11 12
Existe| T T T T
Info | 4 B C | D | E| F| G| H| I J ? ?

N
N
~
~
~
e
e

Ar cos Exi ste 1 2 3 4 5 6 7 8 9 10 11 12
/Info

1 F? | F2? | F? | V| F? | F? | F? | F? | F? | F?
2 F2?2 | F? | F? | F? |\ Vg | F2? | FE? | F/? | F/? | F?
3 F?2 | F2? | F? | F? |\ Vi | F? | F? | F? | F? | F?
4 Via | F7? | F/? | F/?2 | F/2 | V/b | Ve | F? | F? | F/?
S F?2 |\ Vg | Vi | F? | F2? | F? | F? | V/h | F? | Vik
6 F? | F2? | F? | Vb | F? | F? | F? | F? | Vd| F?
7 F? | F2? | F? | Ve | E?2 | F? | F2?2 | V/f | Vie | F/?
8 F? | F2? | F? | F? |\ V/h | F? | V/f | F? | F? | V/g
9 F2? | F? | F? | F? | F? | Vid | Ve | F/? | F/? | F/?
10 F? | F? | F? | F? \V/ik | F? | F? | Vig | F? | F/?
11
12

Representacion mediante punteros: Listas de adyacencia

En las listas de adyacencia se intenta evitar justamente el reservar espacio para aquellos arcos que
no continene ningun tipo de informacion. El sustituto obvio a los vectores con 'huecos' son las
listas.

En las listas de adyacencia lo que haremos serd guardar por cada nodo, ademas de la informacion
que pueda contener el propio nodo, una lista dindmica con los nodos a los que se puede acceder
desde ¢l. La informacion de los nodos se puede guardar en un vector, al igual que antes, o en otra
lista dindmica. Si elegimos la representacion en un vector para los nodos, tendriamos la siguiente
definicion de grafo en C++:

Estructuras de datos Tema 6 Pagina 105

const int MAX NODCS = .?7.;

typedef .?7?. Val or _Nodo;
typedef .?7?. Val or_Arco;

typedef struct Arco * Punt_Arco;
struct Arco

Val or _Arco | nfo; {* Informaci 6n asociada a cada arco *}
i nt Desti no;
Punt _Arco Sig_Arco;

}

struct Nodo

Val or _Nodo Info; {* Infornmaci 6n asoci ada a cada nodo *}
bool Exi ste;
Punt _Arco Lista Arcos;

}
class Grafo
{
publi c:
private:
Nodo Nodos [MAX_ NODCS] ;
s

En general se estd guardando menor catidad de elementos, solo se reservard memoria para aquellos
arcos que efectivamente existan, pero como contrapartida estamos guardando mas espacio para cada
uno de los arcos (estamos anadiendo el indice destino del arco y el puntero al siguiente elemento de
la lista de arcos.)

Las tareas relacionadas con el recorrido del grafo supondran so6lo trabajar con los vértices existentes
en el grafo, que puede ser mucho menor que n. Pero comprobar las relaciones entre nodos no es tan
directo como lo era en la matriz, sino que supone recorrer la lista de elementos adyacentes
perteneciente al nodo analizado.

Ademas, sélo estamos guardando realmente la mitad de la informacion que guardabamos en el caso
anterior, ya que las relaciones inversas (;qué relaciones llegan a un cierto nodo?) en este caso no se
guardan, y averiguarlas supone recorrer todas las listas de todos los nodos.

Ejemplo de representacion:

La representacion en esta estructura del grafo de la figura 2 seria:

Estructuras de datos

Tema 6 Padgina 106

Grafo

Nodos 1

[aalt s win

[s/3) e wn

s/

—>\t/al i >[6/p[> [1/c/ > NIL

273} 373l] »la/m] L s[10/ | e i

—|4/b|+—9/d|+—> NIL

[ael| l8/el o+ (o/e[} v wim

—*5/h[| [1/£ > [10/g | > NIL

O 0o g9 o U b W DN

—>6/d|+—>|7/e| > NIL

[
o

g H | "M E 0| Q|W|» Info

> [5/%| >[8/g /> NIL

=
=

[y
N

NN NN N 8) Y Existe

Representacion mediante punteros: Matrices dispersas

Para evitar uno de los problemas que teniamos con las listas de adyacencia, que era la dificultad de
obtener las relaciones inversas, podemos utilizar las matrices dispersas, que contienen tanta
informacion como las matrices de adyacencia, pero, en principio, no ocupan tanta memoria como
las matrices, ya que al igual que en las listas de adyacencia, sélo representaremos aquellos enlaces

que existen en el grafo.

La estructura de datos en C++ para esta estructura sera:

const int MAX_NODCS = .

typedef Val or _Nodo
typedef Val or _Arco

L2770,
2?0,

??.,

)

typedef struct Arco * Punt_Arco;

struct Arco

/* I nformaci 6n asoci ada a cada arco */

[* I nformaci 6n asoci ada a cada nodo */

{
Val or _Arco | nfo;
int Oigen;
int Destino;
Punt _Arco Sig_Arco_Salida;
Punt _Arco Sig Arco_Entrada;
}
struct Nodo
{
Val or _Nodo | nf o;
bool Exi ste;
Punt _Arco Lista Arcos_Salida;
Punt _Arco Lista Arcos_Entrada;
}
class Grafo
{

publi c:

private:

Estructuras de datos

Tema 6 Pagina 107

Nodo Nodos[MAX_ NODCS] ;

Ejemplo de representacion:

La representacion mediante matrices dispersas del grafo mostrado en la figura 2 sera:

Nodos &
::
1\
]
ml
(o}
0
<
3 s ! Lista Arcos_Entrada
4 @ 1 2 3 4 5 6 7 8 o 10 11 12
MoH A | \ | \ L [] | | \ \ [T]
1. 7|a L e N7
2 T|B /‘
3/ T|c >
4| T|p | iy / [EETETT,
5/ T|E |- 52%534/U / / /=58 I
0 o N N = Yy ¢
7.T|G / / /=7 4|y / »[7 8 [{][7 l9 [
8 T H / / 5 [, >8 |7 [
9/ T|1 / / / >0 [6 J;\ [7 1]
10 7|a (103 1] N m,n
11| F NIL NéL NIL
12| F
6.3. Operaciones bdsicas con grafos

Las operaciones sobre grafos seran similares a las definidas para otros tipos de estructuras.
Basicamente tendremos operaciones de creacion de la estructura y de almacenamiento, consulta y

eliminacion de informacion en la estructura.
Las operaciones seran pues:

Iniciar la estructura:
Crear_Grafo -> Grafo

Consultas sobre el grafo:
Grafo_Vacio (Grafo) -> Booleano
Grafo_Lleno (Grafo) -> Booleano

Consultas sobre la informacion guardada en el grafo:
Numero_de Nodos (Grafo) -> Entero
Numero_de_Arcos (Grafo) -> Entero
Obtener_Valor_Arco (Grafo, Arco) -> Valor_Arco

Meétodos de modificacion del grafo:
Anadir_Nodo (Grafo, Nodo) -> Grafo

Estructuras de datos Tema 6 Pagina 108

Anadir_Arco (Grafo, Arco) -> Grafo
Eliminar_Nodo (Grafo, Nodo) -> Grafo
Eliminar_Arco (Grafo, Arco) -> Grafo

Con estas operaciones la parte publica de la clase nos quedara:

class Grafo

{
publi c:
Gafo (void);
Gafo (const Grafo &)
bool Grafo_Vacio (void);
bool Grafo_Lleno (void);
i nt Nunero_de_Nodos (void);
int Nunero_de Arcos (void);
bool Obtener_Valor Arco (Arco, Valor Arco &);
bool Anadir_Nodo (Val or _Nodo);
bool Anadir_ Arco (Val or _Nodo, Val or_Nodo, Valor_ Arco);
bool Elim nar_Nodo (Val or_Nodo);
bool Elim nar_Arco (Val or_Nodo, Val or _Nodo);
private:
s

Creacion del grafo: Crear_Grafo
La creacion del grafo supondra tres pasos, al igual que en el resto de estructuras.

Un primer paso de definicion de tipos capaces de soportar nuestra estructura. Un segundo paso de
declaracion de una variable de ese nuevo tipo. Y finalmente la aplicacion de un subprograma que
inicie la estructura a vacia.

Las definiciones en C++ ya han sido hechas. Faltaria implementar las funciones de iniciacion para
cada una de las implementaciones del grafo (con arrays, con listas y con matrices dispersas).

Iniciacion del grafo: Matrices de adyacencia

La iniciacion la haremos con el constructor por defecto de la clase:

G afo::Gafo (void)
{

int i, j;
for (i = 0; i < MAX_NODCS; i++)
Nodos [i].Existe = fal se;

/*
* Real nente no haria falta iniciar a FALSE |la nmatriz de arcos,
* pero habria que tenerlo en cuenta a la hora de dar de alta
* nuevos nodos
*/
for (j =0; j < MAX_NODCS; j++)

Arcos [i][]].Existe = fal se;

Estructuras de datos Tema 6 Pagina 109

}

Iniciacion del grafo: Listas de adyacencia

Gafo::Gafo (void)

.
int i, j;
for (i =0; i < MAX_NODGCS; i++)
Nodos [i].Existe = fal se;
/*
* Realnente no haria falta iniciar a NULL las |istas de arcos,
* pero habria que tenerlo en cuenta a la hora de dar de alta
* nuevos nodos
*/
Nodos [i].Lista Arcos = NULL;
}
}

Iniciacion del grafo: Matrices dispersas

Gafo:: Gafo (void)

{
int i, |
for (i = 0; i < MAX_NODCS; i++)
Nodos [i].Existe = fal se;
/*
* Real nente no haria falta iniciar a NULL las |istas de arcos
* de salida y las listas de arcos de entrada pero habria que
* tenerlo en cuenta a la hora de dar de alta nuevos nodos
*/
Nodos [i].Lista Arcos_Salida = NULL;
Nodos [i].Lista Arcos_Entrada = NULL;
}
}

Anadir nodos al grafo: Anadir Nodo

El proceso de afiadir un nodo al grafo se limitara en todos los casos a marcar el nodo referido como
existente, y a asignar un valor determinado a la informacion que contiene el nodo.

Anadir Nodo: Matrices de adyacencia, Listas de advacencia, Matrices dispersas

bool Anadir_Nodo (Val or _Nodo x)
{

int i_aux;
bool b_aux;

i _aux = 0;

while ((Nodos [i_aux].Existe == true) && (i _aux < MAX_NODCS))
i _aux++;

if (i == MAX_NODOS)

b _aux = fal se;

Estructuras de datos Tema 6 Pdgina 110

el se

{

b _aux = true;

Nodos [i _aux].Existe := TRUE
gr.Nodos [x.Nodo].Info := x.Info;
End;
End;

Anadir arcos al grafo: Anadir_Arco

Afadir un arco al grafo serd una operacion que dependera fuertemente de la representacion del
grafo, aunque, en cualquier caso habré que realizar las siguientes tareas:

1.- Mirar si los nodos origen y destino del arco existen, y el arco que queremos afnadir no existe
todavia en el grafo.

2.- Marcar como existente el arco (poniendo a TRUE el valor adecuado en la matriz de
adyacencia, o creando el elemento adecuado de la lista en los casos de listas de adyacencia y
matrices dispersas)

3.- Asignar el valor o peso adecuado al arco.

Matrices de adyacencia

bool Anadir_Arco (Val or _Nodo orig, Valor_Nodo dest, Valor_ Arco x)
{

int i_aux, j_aux;
bool b_aux;

i _aux = 0;
while ((i_aux < MAX NODOS) && (Nodos [i_aux].Existe) &&
(

Nodos [i _aux].Info !'= orig))
i _aux++;

if (i_aux == MAX_NODOS)
b _aux = fal se;

el se
{
j _aux = 0;
while ((j_aux < MAX NODOS) && (Nodos [j _aux].Existe) &&

(Nodos [j_aux].Info !'= dest))
j _aux++;

if (j_aux == MAX_NODCS)
b _aux = fal se;
el se

if (Arcos [i_aux][j_aux].Existe)
b _aux = fal se;

el se

{
b_aux = true;
Arcos [i_aux][j _aux].Existe
Arcos [i_aux][j_aux].Info =

= true;
X,

}

return b_aux;

Estructuras de datos Tema 6 Pagina 111

Listas de adyacencia

bool Anadir_Arco (Val or _Nodo orig, Valor_Nodo dest, Valor_Arco x)
{

int i_aux, j_aux;
bool b_aux;

i _aux = 0;
while ((i_aux < MAX NODCS) && (Nodos [i_aux].Existe) &&
(Nodos [i_aux].Info = orig))
i _aux++;
if (i_aux == MAX_NODOS)
b_aux = fal se;
el se
L
j_aux = 0;
while ((j_aux < MAX_NODOS) && (Nodos [j_aux].Existe) &&

(Nodos [j_aux].Info !'= dest))
j _aux++;

if (j_aux == MAX_NODOS)
b _aux = fal se;
el se
{
p_aux = Nodos [i _aux].Lista_ Arcos;
while ((p_aux !'= NULL) && (p_aux->Destino !=j _aux))
p_aux = p_aux->Sig;

if (p_aux == NULL)
b _aux = fal se;
el se

{

b_aux true;

p_aux = new Arco

p_aux->Info = x;

p_aux->Destino = j _aux;

p_aux->Sig = Nodos [i _aux].Lista_Arcos;
Nodos [i _aux].Lista_Arcos = p_aux->Sig;

}

return b_aux;

Matrices dispersas

Function Anadir_Arco (Var gr: Gafo, x: Tipo_Arco): Bool ean
Var
aux_p : Punt_Arco;
anadi r: Bool ean;
Begi n
If ((Not gr.Notos [x.Origen].Existe) OR
(Not gr.Nodos [x.Destino].Existe)) Then
anadir := FALSE
El se
Begi n
aux_p := gr.Nodos [x.Origen].Lista Arcos_Salida;
While ((aux_p <> NIL) AND (aux_p.Destino <> x.Destino)) Do
aux_p := aux_p”".Sig Arco_Salida;
If (aux_p = NIL) Then

Estructuras de datos Tema 6 Pagina 112

Anadir := TRUE
El se
Anadir := FALSE
End;
If (Anadir = TRUE) Then
Begi n
New (aux_p);
aux_p.Info := x.Info;
aux_p. Origen 1= x.Oigen;
aux_p. Destino : = x.Destino;

aux_p.Sig Arco_Salida := gr.Nodos [x.Origen].Lista Arcos_Sali da;
gr.Nodos [x.Origen].Lista Arcos_Salida := aux_p;
aux_p.Sig_Arco _Entrada := gr.Nodos [x.Destino].Lista Arcos Entrada;
gr.Nodos [x.Destino].Lista Arcos_Entrada : = aux_p;
End;
Anadir _Arco := Anadir;
End;

Eliminar nodos del grafo: Eliminar Nodo

El problema de eliminar informacion del grafo es un poco mas complejo que el almacenamiento de
informacion. Eliminar un nodo supone, por un lado, decir que ese nodo ya no pertenece al grafo, y
por otro, eliminar cualquier arco que tuviese como origen o como destino ese nodo.

Matrices de adyacencia

bool Elim nar_Nodo (Val or_Nodo x)

.

int i_aux;

bool b_aux;

i _aux = 0;

while ((i_aux < MAX NODOS) && (Nodos [i _aux].Existe) &&

(Nodos [i_aux].Info != x))

i _aux++;

if (i_aux == MAX_NODOS)
b _aux = fal se;

el se

{
b _aux = true;
Nodos [i _aux].Existe = fal se;
for (j_aux = 0; j_aux < MAX_NODCS; j_aux++)
{

Arcos [i_aux, j_aux].Existe = false;
Arcos [j_aux, i_aux].Existe = fal se;

}

}

return b_aux;

}

Eliminar Nodo: Listas de advacencia

Para eliminar los elementos de la lista de adyacencia nos apoyaremos en algunas operaciones vistas
en el tema 4, Listas. Utilizaremos la funcion que elimina una cierta posicion de la lista,
El i mi nar _Posi ci on, y la que nos dice si una lista estd o no vacia, Li sta_Vaci a.

Function Elimnar_Nodo (Var gr: Gafo; x: Tipo_Nodo);

Estructuras de datos Tema 6 Pagina 113

Var
aux_pl, aux_p2: Punt_Arco;
aux_nod : Indice;
aux_b . Bool ean;
Begi n

If (Not gr.Nodos [x.Nodos].Existe) Then
El i mi nar _Nodo : = FALSE

El se

Begi n
El i mi nar _Nodo : = TRUE;
gr. Nodos [x.Nodo].Existe := FALSE;
aux_pl := gr.Nodos [x.Nodo].Lista_Arcos;
While (aux_pl <> NIL) Do

Begi n
aux_p2 : = aux_pl;
aux_pl := aux_pl”. Sig_Arco;
Di spose (aux_p2);

End;
gr.Nodos [x.Nodo].Lista Arcos := NL;

For aux_nod :
Begi n
If ((gr.Nodos [aux_nod].Existe) AND
(Not Lista Vacia (gr.Nodos [aux_nod].Lista Arcos)) Then
Begi n
aux_pl := gr.Nodos [aux_nod].Lista_ Arcos;
VWhile ((aux_pl <> NIL) AND (aux_pl.Destino <> x.Destino)) Do
aux_pl := aux_pl”. Sig_Arco;
If (aux_pl.Destino = x.Destino) Then
aux_b := Elinmna_ Posicion (gr.Nodos [aux_nod].Lista_Arcos,
aux_pl);

1 To MAX_NODOS Do

End;
End;
End;
End;

Eliminar Nodo: Matrices dispersas

6.4. Otras Operaciones con grafos

Recorrido de grafos

Recorrer un grafo supone intentar alcanzar todos los nodos que estén relacionados con uno dado
que tomaremos como nodo de salida.

Existen basicamente dos tacticas para recorrer un grafo: El recoorrido en anchura; y el recorrido en
profundidad.

Recorrido en anchura o BFS (Breadth First Search)

El recorrido en anchura supone recorrer el grafo, a partir de un nodo dado, en niveles, es decir,
primero los que estan a una distancia de un arco del nodo de salida, después los que estan a dos
arcos de distancia, y asi sucesivamente hasta alcanzar todos los nodos a los que se pudiese llegar
desde el nodo salida.

El algoritmo general de recorrido en anchura es el siguiente:

Algoritmo Recorrido_En_Anchura (BFS)

Estructuras de datos Tema 6 Pagina 114

Entradas
gr : Grafo {* Grafo a recorrer *}
nodo_salida: Indice {* Origen del recorrido *}
Variables

queue: Cola de Indice
aux_nod1, aux_nod2: Indice

Inicio
Iniciar_Cola (queue)
Procesar (nodo_salida)
Visitado [nodo_salida] - CIERTO
Encolar (queue, nodo_salida)
Mientras no Cola_Vacia (queue) hacer
aux_nod1 ~ Desencolar (queue)
Para todos los nodos, aux_nod2, adyacentes a aux_nod1 hacer
Si no Visitado [aux_nod2] entonces
Procesar (aux_nod2)
Visitado [aux_nod2] - CIERTO
Encolar (queue, aux_nod2)
fin_si
fin_para
fin_mientras
fin

La diferencia a la hora de implementar el algorimo general en Pascal para cada una de las
implementaciones de la estructura de datos grafo, residird en la manera de averiguar los diferentes
nodos adyacentes a uno dado. En el caso de las matrices de adyacencia se tendran que comprobar si
los enlaces entre los nodos existen en la matriz. En los casos de las listas de adyacencia y de las
matrices dispersas solo habra que recorrer las listas de enlaces que parten del nodo en cuestion para
averiguar qué nodos son adyacentes al estudiado.

Recorrido en profundidad o DFS (Depth First Search)

A diferencia del algoritmo anterior, el recorrido en profundidad trata de buscar los caminos que
parten desde el nodo de salida hasta que ya no es posible avanzar mas. Cuando ya no puede
avanzarse mas sobre el camino elegido, se vuelve atras en busca de caminos alternativos, que no se
estudiaron previamente.

El algoritmo es similar al anterior, pero utilizando, para guardar los nodos accesibles desde uno
dado una pila.

Algoritmo Recorrido_En_Profundidad (DFS)

Entradas
gr : Grafo {* Grafo a recorrer *}
nodo_salida: Indice {* Origen del recorrido *}
Variables

stack: Pila de Indice
aux_nod1, aux_nod2: Indice

Inicio
Iniciar_Pila (stack)
Procesar (nodo_salida)
Visitado [nodo_salida] - CIERTO
Apilar (stack, nodo_salida)
Mientras no Pila_Vacia (stack) hacer
aux_nod1 -~ Desapilar (stack)
Para todos los nodos, aux_nod2, adyacentes a aux_nod1 hacer
Si no Visitado [aux_nod2] entonces

Estructuras de datos Tema 6 Pagina 115

Procesar (aux_nod2)
Visitado [aux_nod2] - CIERTO
Encolar (queue, aux_nod2)
fin_si
fin_para
fin_mientras
fin

La utilizacion de la pila se puede sustituir por la utilizacion de la recurrencia, de manera que el
algoritmo quedaria como sigue:

Algoritmo Recorrido_En_Profundidad (DFS)

Entradas
gr : Grafo {* Grafo a recorrer *}
nodo_salida: Indice {* Origen del recorrido *}
Variables

aux_nod2: Indice

Inicio
Procesar (nodo_salida)
Visitado [nodo_salida] - CIERTO
Para todos los nodos, aux_nod2, adyacentes a nodo_salida hacer
Si no Visitado [aux_nod2] entonces
Recorrido_En_Profundidad (gr, aux_nod2)
fin_si
fin_para
fin

DETERMINACION DE COMPONENTES CONEXAS

Componente conexa:

Subgrafo conexo méaximo (mayor nimero posibles de vértices) de un grafo no dirigido.

Algoritmo Componentes

Entrada G : Grafo
Variables i:1..n
Inicio

desde i(11 hasta n hacer GJi].visitadolIfalso
desde ilJ1 hasta n hacer :
si no GJi].visitado entonces:
DFS(i)
Escribir los vértices visitados en este
recorrido y los arcos
fin_si
fin_desde
Fin

Estructuras de datos Tema 6 Pagina 116

Arbol de expansién (arborescencia o spanning tree) de un grafo G:
Arbol formado con arcos de G y que contiene todos los vértices de G.

Un arbol de expansion de G es un subgrafo minimo (menor nimero posible de arcos) conexo, G', de
G tal que V(G')=V(G).

Arbol de expansion minimo (minimal spanning tree) de un grafo G:
Arbol de expansion de un grafo con menor coste asociado.

Aplicaciones: Redes de comunicaciones.

