
Estructuras de datos Tema 6 Página 101

TEMA 6

GRAFOS

6.1. FUNDAMENTOS Y TERMINOLOGÍA BÁSICA..101
6.2. REPRESENTACIÓN DE GRAFOS ..103

Representación mediante matrices: Matrices de adyacencia..103
Representación mediante punteros: Listas de adyacencia ..104
Representación mediante punteros: Matrices dispersas ...106

6.3. OPERACIONES BÁSICAS CON GRAFOS ...107
Creación del grafo: Crear_Grafo ...108

Iniciación del grafo: Matrices de adyacencia .. 108
Iniciación del grafo: Listas de adyacencia... 109
Iniciación del grafo: Matrices dispersas .. 109

Añadir nodos al grafo: Anadir_Nodo..109
Añadir Nodo: Matrices de adyacencia, Listas de adyacencia, Matrices dispersas... 109

Añadir arcos al grafo: Anadir_Arco ...110
Añadir Arco: Matrices de adyacencia ... 110
Añadir Arco: Listas de adyacencia.. 111
Añadir Arco: Matrices dispersas ... 111

Eliminar nodos del grafo: Eliminar_Nodo..112
Eliminar Nodo: Matrices de adyacencia.. 112
Eliminar Nodo: Matrices de adyacencia, Listas de adyacencia, Matrices dispersas................¡Error!Marcador no definido.
Eliminar Nodo: Listas de adyacencia .. 112
Eliminar Nodo: Matrices dispersas ... 113

6.4. OTRAS OPERACIONES CON GRAFOS..113
Recorrido de grafos ...113

Recorrido en anchura o BFS (Breadth First Search) .. 113
Recorrido en profundidad o DFS (Depth First Search) .. 114

6.1. Fundamentos y terminología básica

Un grafo, G, es un par, compuesto por dos conjuntos V y A. Al conjunto V se le llama conjunto de
vértices o nodos del grafo. A es un conjunto de pares de vértices, estos pares se conocen
habitualmente con el nombre de arcos o ejes del grafo. Se suele utilizar la notación G = (V, A)

para identificar un grafo.

Existen dos clase de grafos: dirigidos y no dirigidos. En un grafo no dirigido el par de vértices que
representa un arco no está ordenado. Por lo tanto, los pares (v1, v2) y (v2, v1) representan el
mismo arco. En un grafo dirigido cada arco está representado por un par ordenado de vértices
<v1,v2>, de forma que <v1,v2> y <v2,v1> representan dos arcos diferentes.

Ejemplos de grafos (dirigidos y no dirigidos):

G1 = (V1,A1)
V1={1,2,3,4} A1={ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) }

G2 = (V2,A2)
V2={1,2,3,4,5,6} A2={ (1, 2), (1, 3), (2, 4), (2, 5), (3, 6) }

G3 = (V3,A3)
V3={1,2,3} A3={ <1, 2>, <2, 1>, <2, 3> }

Estructuras de datos Tema 6 Página 102

Gráficamente estas tres estructuras de vértices y arcos se pueden representar de la siguiente manera:

Figura 1. Ejemplos de grafos

Los grafos permiten representar conjuntos de objetos arbitrariamente relacionados. Se puede asociar
el conjunto el vértices con el conjunto de objetos y el conjunto de arcos con las relaciones que se
establecen entre ellos.

Los grafos son modelos matemáticos de numerosas situaciones reales: un mapa de carreteras, la red
de ferrocarriles, el plano de un circuito eléctrico, el esquema de la red telefónica de una compañía,
etc.

El número de distintos pares de vértices (vi,vj), con vi ≠ vj, en un grafo con n vértices es
n(n-1)/2. Este el número máximo de arcos en un grafo no dirirgido de n vértices. Un grafo no
dirigido que tenga exactamente n(n-1)/2 arcos se dice que un grafo completo. En el caso de un
grafo dirigido de n vértices el número máximo de arcos es n(n-1).

Algunas definiciones básicas en grafos:

- Orden de un grafo: Es el número de nodos (vértices) del grafo.
- Grado de un nodo: Es el número de ejes (arcos) que inciden sobre el nodo.
- Grafo simétrico: Es un grafo dirigido tal que si existe la relación <u, v> entonces existe

<v, u>, con u,v ∈ V.
- Grafo no simétrico: Es un grafo que no cumple la propiedad anterior.
- Grafo reflexivo: Es el grafo que cumple que para todo nodo u ∈ V existe la relación (u,

u) ∈ A.
- Grafo transitivo: Es aquél que cumple que si existen las relaciones (u, v) y (v, z) ∈

A entonces (u,z) ∈ A.
- Grafo completo: Es el grafo que contiene todos los posibles pares de relaciones, es decir,

para cualquier par de nodos u,v ∈ V, u ≠ v,existe (u,v) ∈ A.
- Camino: Un camino en el grafo G es una sucesión de vértices y arcos: v0, a1, v1, a2, v2,

..., ak, vk; tal que los extremos del arco ai son los vértices vi-1 y vi.
- Longitud de un camino: Es el número de arcos que componen el camino.
- Camino cerrado (circuito): Camino en el que coinciden los vértices extremos (v0 = vk).
- Camino simple: Camino donde sus vértices son distintos dos a dos, salvo a lo sumo los

extremos v0 y vk.
- Camino elemental: Camino donde sus arcos son distintos dos a dos.
- Camino euleriano: Camino simple que contiene todos los arcos del grafo.
- Grafo euleriano: Es un grafo que tiene un camino euleriano cerrado.
- Grafo conexo: Es un grafo no dirigido tal que para cualquier par de nodos existe al menos

un camino que los une.
- Grafo fuertemente conexo: Es un grafo dirigido tal que para cualquier par de nodos existe

un camino que los une.

Estructuras de datos Tema 6 Página 103

- Punto de articulación: Es un nodo que si desaparece provoca que se cree un grafo no
conexo.

6.2. Representación de grafos

Existen tres maneras básicas de representar los grafos: Mediante matrices; mediante listas y
mediante matrices dispersas. Cada representación tiene unas ciertas ventajas e inconvenientes
respecto de las demás, que comentaremos más adelante.

Representación mediante matrices: Matrices de adyacencia
Un grafo es un par compuesto por dos conjuntos: Un conjunto de nodos; y un conjunto de
relaciones entre los nodos.

La representación que realicemos en C++ tendrá que ser capaz de guardar esta información en
memoria.

La forma más fácil de guardar la información de los nodos es mediante la utilización de un vector
que indexe los nodos, de manera que los arcos entre los nodos se pueden ver como relaciones entre
los índices. Esta relación entre índices se pueden guardar en una matriz, que llamaremos de
adyacencia.

En base a esto, un grafo se puede representar en C++ como:

const int MAX_NODOS = .??.;

typedef .??. Valor_Nodo;
typedef .??. Valor_Arco;

struct Arco
{

Valor_Arco Info; /* Información asociada a cada arco */
bool Existe;

};

struct Nodo
{

Valor_Nodo Info; /* Información asociada a cada nodo */
bool Existe;

};

class Grafo
{

public:
...

private:
Nodo Nodos [MAX_NODOS];
Arco Arcos [MAX_NODOS][MAX_NODOS];

};

Con esta representación tendremos que reservar al menos del orden de n2 'espacios' de memoria
para la información de los arcos, y las operaciones relacionadas con el grafo implicarán,
habitualmente, recorrer toda la matriz, con lo que el orden de las operaciones será, en general,
cuadrático, aunque tengamos un número de relaciones entre los nodos mucho menor que n2.

En cambio, con esta representación es muy fácil determinar, a partir de dos nodos, si están o no
relacionados: Sólo hay que acceder al elemento adecuado de la matriz y comprobar el valor que
guarda.

Ejemplo de representación:

Estructuras de datos Tema 6 Página 104

Figura 2. Ejemplo de grafo no dirigido

Supongamos el grafo representado en la figura 2. A partir de ese grafo la información que
guardariamos, con esta representación, sería:

GRAFO:

Nodos 1 2 3 4 5 6 7 8 9 10 11 12

Existe T T T T T T T T T T F F
Info A B C D E F G H I J ? ?

Arcos Existe
/Info

1 2 3 4 5 6 7 8 9 10 11 12

1 F/? F/? F/? V/a F/? F/? F/? F/? F/? F/?
2 F/? F/? F/? F/? V/j F/? F/? F/? F/? F/?
3 F/? F/? F/? F/? V/i F/? F/? F/? F/? F/?
4 V/a F/? F/? F/? F/? V/b V/c F/? F/? F/?
5 F/? V/j V/i F/? F/? F/? F/? V/h F/? V/k
6 F/? F/? F/? V/b F/? F/? F/? F/? V/d F/?
7 F/? F/? F/? V/c F/? F/? F/? V/f V/e F/?
8 F/? F/? F/? F/? V/h F/? V/f F/? F/? V/g
9 F/? F/? F/? F/? F/? V/d Ve F/? F/? F/?
10 F/? F/? F/? F/? V/k F/? F/? V/g F/? F/?
11

12

Representación mediante punteros: Listas de adyacencia
En las listas de adyacencia se intenta evitar justamente el reservar espacio para aquellos arcos que
no continene ningún tipo de información. El sustituto obvio a los vectores con 'huecos' son las
listas.

En las listas de adyacencia lo que haremos será guardar por cada nodo, además de la información
que pueda contener el propio nodo, una lista dinámica con los nodos a los que se puede acceder
desde él. La información de los nodos se puede guardar en un vector, al igual que antes, o en otra
lista dinámica. Si elegimos la representación en un vector para los nodos, tendríamos la siguiente
definición de grafo en C++:

Estructuras de datos Tema 6 Página 105
const int MAX_NODOS = .??.;

typedef .??. Valor_Nodo;
typedef .??. Valor_Arco;

typedef struct Arco * Punt_Arco;

struct Arco
{

Valor_Arco Info; {* Información asociada a cada arco *}
int Destino;
Punt_Arco Sig_Arco;

}

struct Nodo
{

Valor_Nodo Info; {* Información asociada a cada nodo *}
bool Existe;
Punt_Arco Lista_Arcos;

}

class Grafo
{

public:
...

private:
Nodo Nodos [MAX_NODOS];

};

En general se está guardando menor catidad de elementos, sólo se reservará memoria para aquellos
arcos que efectivamente existan, pero como contrapartida estamos guardando más espacio para cada
uno de los arcos (estamos añadiendo el índice destino del arco y el puntero al siguiente elemento de
la lista de arcos.)

Las tareas relacionadas con el recorrido del grafo supondrán sólo trabajar con los vértices existentes
en el grafo, que puede ser mucho menor que n2. Pero comprobar las relaciones entre nodos no es tan
directo como lo era en la matriz, sino que supone recorrer la lista de elementos adyacentes
perteneciente al nodo analizado.

Además, sólo estamos guardando realmente la mitad de la información que guardábamos en el caso
anterior, ya que las relaciones inversas (¿qué relaciones llegan a un cierto nodo?) en este caso no se
guardan, y averiguarlas supone recorrer todas las listas de todos los nodos.

Ejemplo de representación:

La representación en esta estructura del grafo de la figura 2 sería:

Estructuras de datos Tema 6 Página 106

Representación mediante punteros: Matrices dispersas
Para evitar uno de los problemas que teníamos con las listas de adyacencia, que era la dificultad de
obtener las relaciones inversas, podemos utilizar las matrices dispersas, que contienen tanta
información como las matrices de adyacencia, pero, en principio, no ocupan tanta memoria como
las matrices, ya que al igual que en las listas de adyacencia, sólo representaremos aquellos enlaces
que existen en el grafo.

La estructura de datos en C++ para esta estructura será:
const int MAX_NODOS = .??.;

typedef Valor_Nodo = .??.;
typedef Valor_Arco = .??.;

typedef struct Arco * Punt_Arco;

struct Arco
{

Valor_Arco Info; /* Información asociada a cada arco */
int Origen;
int Destino;
Punt_Arco Sig_Arco_Salida;
Punt_Arco Sig_Arco_Entrada;

}

struct Nodo
{

Valor_Nodo Info; /* Información asociada a cada nodo */
bool Existe;
Punt_Arco Lista_Arcos_Salida;
Punt_Arco Lista_Arcos_Entrada;

}

class Grafo
{

public:
...

private:

Estructuras de datos Tema 6 Página 107
Nodo Nodos[MAX_NODOS];

}

Ejemplo de representación:

La representación mediante matrices dispersas del grafo mostrado en la figura 2 será:

6.3. Operaciones básicas con grafos

Las operaciones sobre grafos serán similares a las definidas para otros tipos de estructuras.
Básicamente tendremos operaciones de creación de la estructura y de almacenamiento, consulta y
eliminación de información en la estructura.

Las operaciones serán pues:

Iniciar la estructura:
Crear_Grafo -> Grafo

Consultas sobre el grafo:
Grafo_Vacio (Grafo) -> Booleano
Grafo_Lleno (Grafo) -> Booleano

Consultas sobre la información guardada en el grafo:
Numero_de_Nodos (Grafo) -> Entero
Numero_de_Arcos (Grafo) -> Entero
Obtener_Valor_Arco (Grafo, Arco) -> Valor_Arco
...

Métodos de modificación del grafo:
Añadir_Nodo (Grafo, Nodo) -> Grafo

Estructuras de datos Tema 6 Página 108

Añadir_Arco (Grafo, Arco) -> Grafo
Eliminar_Nodo (Grafo, Nodo) -> Grafo
Eliminar_Arco (Grafo, Arco) -> Grafo

Con estas operaciones la parte pública de la clase nos quedará:
...

class Grafo
{

public:
Grafo (void);
Grafo (const Grafo &)

bool Grafo_Vacio (void);
bool Grafo_Lleno (void);

int Numero_de_Nodos (void);
int Numero_de_Arcos (void);
bool Obtener_Valor_Arco (Arco, Valor_Arco &);

bool Anadir_Nodo (Valor_Nodo);
bool Anadir_Arco (Valor_Nodo, Valor_Nodo, Valor_Arco);

bool Eliminar_Nodo (Valor_Nodo);
bool Eliminar_Arco (Valor_Nodo, Valor_Nodo);

private:
...

};

Creación del grafo: Crear_Grafo
La creación del grafo supondrá tres pasos, al igual que en el resto de estructuras.

Un primer paso de definición de tipos capaces de soportar nuestra estructura. Un segundo paso de
declaración de una variable de ese nuevo tipo. Y finalmente la aplicación de un subprograma que
inicie la estructura a vacía.

Las definiciones en C++ ya han sido hechas. Faltaría implementar las funciones de iniciación para
cada una de las implementaciones del grafo (con arrays, con listas y con matrices dispersas).

Iniciación del grafo: Matrices de adyacencia
La iniciación la haremos con el constructor por defecto de la clase:

Grafo::Grafo (void)
{

int i, j;

for (i = 0; i < MAX_NODOS; i++)
{

Nodos [i].Existe = false;

/*
* Realmente no haría falta iniciar a FALSE la matriz de arcos,
* pero habría que tenerlo en cuenta a la hora de dar de alta
* nuevos nodos
*/
for (j = 0; j < MAX_NODOS; j++)
Arcos [i][j].Existe = false;

Estructuras de datos Tema 6 Página 109
}

}

Iniciación del grafo: Listas de adyacencia

Grafo::Grafo (void)
{

int i, j;

for (i = 0; i < MAX_NODOS; i++)
{

Nodos [i].Existe = false;

/*
* Realmente no haría falta iniciar a NULL las listas de arcos,
* pero habría que tenerlo en cuenta a la hora de dar de alta
* nuevos nodos
*/
Nodos [i].Lista_Arcos = NULL;

}
}

Iniciación del grafo: Matrices dispersas

Grafo::Grafo (void)
{

int i, j;

for (i = 0; i < MAX_NODOS; i++)
{

Nodos [i].Existe = false;

/*
* Realmente no haría falta iniciar a NULL las listas de arcos
* de salida y las listas de arcos de entrada pero habría que
* tenerlo en cuenta a la hora de dar de alta nuevos nodos
*/
Nodos [i].Lista_Arcos_Salida = NULL;
Nodos [i].Lista_Arcos_Entrada = NULL;

}
}

Añadir nodos al grafo: Anadir_Nodo
El proceso de añadir un nodo al grafo se limitará en todos los casos a marcar el nodo referido como
existente, y a asignar un valor determinado a la información que contiene el nodo.

Añadir Nodo: Matrices de adyacencia, Listas de adyacencia, Matrices dispersas

bool Anadir_Nodo (Valor_Nodo x)
{

int i_aux;
bool b_aux;

i_aux = 0;
while ((Nodos [i_aux].Existe == true) && (i_aux < MAX_NODOS))

i_aux++;

if (i == MAX_NODOS)
b_aux = false;

Estructuras de datos Tema 6 Página 110
else
{

b_aux = true;
Nodos [i_aux].Existe := TRUE;
gr.Nodos [x.Nodo].Info := x.Info;

End;
End;

Añadir arcos al grafo: Anadir_Arco
Añadir un arco al grafo será una operación que dependerá fuertemente de la representación del
grafo, aunque, en cualquier caso habrá que realizar las siguientes tareas:

1.- Mirar si los nodos origen y destino del arco existen, y el arco que queremos añadir no existe
todavía en el grafo.

2.- Marcar como existente el arco (poniendo a TRUE el valor adecuado en la matriz de
adyacencia, o creando el elemento adecuado de la lista en los casos de listas de adyacencia y
matrices dispersas)

3.- Asignar el valor o peso adecuado al arco.

Matrices de adyacencia

bool Anadir_Arco (Valor_Nodo orig, Valor_Nodo dest, Valor_Arco x)
{

int i_aux, j_aux;
bool b_aux;

i_aux = 0;
while ((i_aux < MAX_NODOS) && (Nodos [i_aux].Existe) &&

(Nodos [i_aux].Info != orig))
i_aux++;

if (i_aux == MAX_NODOS)
b_aux = false;

else
{

j_aux = 0;
while ((j_aux < MAX_NODOS) && (Nodos [j_aux].Existe) &&

(Nodos [j_aux].Info != dest))
j_aux++;

if (j_aux == MAX_NODOS)
b_aux = false;

else
{

if (Arcos [i_aux][j_aux].Existe)
b_aux = false;

else
{

b_aux = true;
Arcos [i_aux][j_aux].Existe = true;
Arcos [i_aux][j_aux].Info = x;

}
}

}

return b_aux;
}

Estructuras de datos Tema 6 Página 111

Listas de adyacencia

bool Anadir_Arco (Valor_Nodo orig, Valor_Nodo dest, Valor_Arco x)
{

int i_aux, j_aux;
bool b_aux;

i_aux = 0;
while ((i_aux < MAX_NODOS) && (Nodos [i_aux].Existe) &&

(Nodos [i_aux].Info != orig))
i_aux++;

if (i_aux == MAX_NODOS)
b_aux = false;

else
{

j_aux = 0;
while ((j_aux < MAX_NODOS) && (Nodos [j_aux].Existe) &&

(Nodos [j_aux].Info != dest))
j_aux++;

if (j_aux == MAX_NODOS)
b_aux = false;

else
{

p_aux = Nodos [i_aux].Lista_Arcos;
while ((p_aux != NULL) && (p_aux->Destino != j_aux))

p_aux = p_aux->Sig;

if (p_aux == NULL)
b_aux = false;

else
{

b_aux = true;

p_aux = new Arco;
p_aux->Info = x;
p_aux->Destino = j_aux;
p_aux->Sig = Nodos [i_aux].Lista_Arcos;
Nodos [i_aux].Lista_Arcos = p_aux->Sig;

}
}

}

return b_aux;
}

Matrices dispersas

Function Anadir_Arco (Var gr: Grafo, x: Tipo_Arco): Boolean;
Var

aux_p : Punt_Arco;
anadir: Boolean;

Begin
If ((Not gr.Notos [x.Origen].Existe) OR

(Not gr.Nodos [x.Destino].Existe)) Then
anadir := FALSE;

Else
Begin

aux_p := gr.Nodos [x.Origen].Lista_Arcos_Salida;
While ((aux_p <> NIL) AND (aux_p.Destino <> x.Destino)) Do

aux_p := aux_p^.Sig_Arco_Salida;
If (aux_p = NIL) Then

Estructuras de datos Tema 6 Página 112
Anadir := TRUE

Else
Anadir := FALSE

End;

If (Anadir = TRUE) Then
Begin

New (aux_p);
aux_p.Info := x.Info;
aux_p.Origen := x.Origen;
aux_p.Destino := x.Destino;
aux_p.Sig_Arco_Salida := gr.Nodos [x.Origen].Lista_Arcos_Salida;
gr.Nodos [x.Origen].Lista_Arcos_Salida := aux_p;
aux_p.Sig_Arco_Entrada := gr.Nodos [x.Destino].Lista_Arcos_Entrada;
gr.Nodos [x.Destino].Lista_Arcos_Entrada := aux_p;

End;
Anadir_Arco := Anadir;

End;

Eliminar nodos del grafo: Eliminar_Nodo
El problema de eliminar información del grafo es un poco más complejo que el almacenamiento de
información. Eliminar un nodo supone, por un lado, decir que ese nodo ya no pertenece al grafo, y
por otro, eliminar cualquier arco que tuviese como origen o como destino ese nodo.

Matrices de adyacencia

bool Eliminar_Nodo (Valor_Nodo x)
{

int i_aux;
bool b_aux;

i_aux = 0;
while ((i_aux < MAX_NODOS) && (Nodos [i_aux].Existe) &&

(Nodos [i_aux].Info != x))
i_aux++;

if (i_aux == MAX_NODOS)
b_aux = false;

else
{

b_aux = true;

Nodos [i_aux].Existe = false;
for (j_aux = 0; j_aux < MAX_NODOS; j_aux++)
{

Arcos [i_aux, j_aux].Existe = false;
Arcos [j_aux, i_aux].Existe = false;

}
}

return b_aux;
}

Eliminar Nodo: Listas de adyacencia
Para eliminar los elementos de la lista de adyacencia nos apoyaremos en algunas operaciones vistas
en el tema 4, Listas. Utilizaremos la función que elimina una cierta posición de la lista,
Eliminar_Posicion, y la que nos dice si una lista está o no vacia, Lista_Vacia.

Function Eliminar_Nodo (Var gr: Grafo; x: Tipo_Nodo);

Estructuras de datos Tema 6 Página 113
Var

aux_p1, aux_p2: Punt_Arco;
aux_nod : Indice;
aux_b : Boolean;

Begin
If (Not gr.Nodos [x.Nodos].Existe) Then

Eliminar_Nodo := FALSE
Else
Begin

Eliminar_Nodo := TRUE;
gr.Nodos [x.Nodo].Existe := FALSE;
aux_p1 := gr.Nodos [x.Nodo].Lista_Arcos;
While (aux_p1 <> NIL) Do
Begin

aux_p2 := aux_p1;
aux_p1 := aux_p1^.Sig_Arco;
Dispose (aux_p2);

End;
gr.Nodos [x.Nodo].Lista_Arcos := NIL;

For aux_nod := 1 To MAX_NODOS Do
Begin

If ((gr.Nodos [aux_nod].Existe) AND
(Not Lista_Vacia (gr.Nodos [aux_nod].Lista_Arcos)) Then

Begin
aux_p1 := gr.Nodos [aux_nod].Lista_Arcos;
While ((aux_p1 <> NIL) AND (aux_p1.Destino <> x.Destino)) Do

aux_p1 := aux_p1^.Sig_Arco;
If (aux_p1.Destino = x.Destino) Then

aux_b := Elimina_Posicion (gr.Nodos [aux_nod].Lista_Arcos,
aux_p1);

End;
End;

End;
End;

Eliminar Nodo: Matrices dispersas

6.4. Otras Operaciones con grafos

Recorrido de grafos
Recorrer un grafo supone intentar alcanzar todos los nodos que estén relacionados con uno dado
que tomaremos como nodo de salida.

Existen básicamente dos tácticas para recorrer un grafo: El recoorrido en anchura; y el recorrido en
profundidad.

Recorrido en anchura o BFS (Breadth First Search)
El recorrido en anchura supone recorrer el grafo, a partir de un nodo dado, en niveles, es decir,
primero los que están a una distancia de un arco del nodo de salida, después los que estan a dos
arcos de distancia, y así sucesivamente hasta alcanzar todos los nodos a los que se pudiese llegar
desde el nodo salida.

El algoritmo general de recorrido en anchura es el siguiente:
Cniqtkvoq Recorrido_En_Anchura (BFS)

Estructuras de datos Tema 6 Página 114

Gpvtcfcu
gr : Grafo {* Grafo a recorrer *}
nodo_salida: Indice {* Origen del recorrido *}

Xctkcdngu
queue: Cola de Indice
aux_nod1, aux_nod2: Indice

Kpkekq
Iniciar_Cola (queue)
Procesar (nodo_salida)
Visitado [nodo_salida] ← EKGTVQ
Encolar (queue, nodo_salida)
Okgpvtcu no Cola_Vacia (queue) jcegt

aux_nod1 ← Desencolar (queue)
Rctc todos los nodos, aux_nod2, adyacentes a aux_nod1 jcegt

Uk no Visitado [aux_nod2] gpvqpegu
Procesar (aux_nod2)
Visitado [aux_nod2] ← EKGTVQ
Encolar (queue, aux_nod2)

hkpauk
hkparctc

hkpaokgpvtcu
hkp

La diferencia a la hora de implementar el algorimo general en Pascal para cada una de las
implementaciones de la estructura de datos grafo, residirá en la manera de averiguar los diferentes
nodos adyacentes a uno dado. En el caso de las matrices de adyacencia se tendrán que comprobar si
los enlaces entre los nodos existen en la matriz. En los casos de las listas de adyacencia y de las
matrices dispersas sólo habrá que recorrer las listas de enlaces que parten del nodo en cuestión para
averiguar qué nodos son adyacentes al estudiado.

Recorrido en profundidad o DFS (Depth First Search)
A diferencia del algoritmo anterior, el recorrido en profundidad trata de buscar los caminos que
parten desde el nodo de salida hasta que ya no es posible avanzar más. Cuando ya no puede
avanzarse más sobre el camino elegido, se vuelve atrás en busca de caminos alternativos, que no se
estudiaron previamente.

El algoritmo es similar al anterior, pero utilizando, para guardar los nodos accesibles desde uno
dado una pila.

Cniqtkvoq Recorrido_En_Profundidad (DFS)

Gpvtcfcu
gr : Grafo {* Grafo a recorrer *}
nodo_salida: Indice {* Origen del recorrido *}

Xctkcdngu
stack: Pila de Indice
aux_nod1, aux_nod2: Indice

Kpkekq
Iniciar_Pila (stack)
Procesar (nodo_salida)
Visitado [nodo_salida] ← EKGTVQ
Apilar (stack, nodo_salida)
Okgpvtcu no Pila_Vacia (stack) jcegt

aux_nod1 ← Desapilar (stack)
Rctc todos los nodos, aux_nod2, adyacentes a aux_nod1 jcegt

Uk no Visitado [aux_nod2] gpvqpegu

Estructuras de datos Tema 6 Página 115

Procesar (aux_nod2)
Visitado [aux_nod2] ← EKGTVQ
Encolar (queue, aux_nod2)

hkpauk
hkparctc

hkpaokgpvtcu
hkp

La utilización de la pila se puede sustituir por la utilización de la recurrencia, de manera que el
algoritmo quedaría como sigue:

Cniqtkvoq Recorrido_En_Profundidad (DFS)

Gpvtcfcu
gr : Grafo {* Grafo a recorrer *}
nodo_salida: Indice {* Origen del recorrido *}

Xctkcdngu
aux_nod2: Indice

Kpkekq
Procesar (nodo_salida)
Visitado [nodo_salida] ← EKGTVQ
Rctc todos los nodos, aux_nod2, adyacentes a nodo_salida jcegt

Uk no Visitado [aux_nod2] gpvqpegu
Recorrido_En_Profundidad (gr, aux_nod2)

hkpauk
hkparctc

hkp

DETERMINACIÓN DE COMPONENTES CONEXAS

 Componente conexa:

Subgrafo conexo máximo (mayor número posibles de vértices) de un grafo no dirigido.

Algoritmo Componentes

Entrada G : Grafo
Variables i : 1..n

Inicio
desde i�1 hasta n hacer G[i].visitado�falso
desde i�1 hasta n hacer :

si no G[i].visitado entonces:
DFS(i)
Escribir los vértices visitados en este

recorrido y los arcos
fin_si

fin_desde
Fin

Estructuras de datos Tema 6 Página 116

 Árbol de expansión (arborescencia o spanning tree) de un grafo G:

Árbol formado con arcos de G y que contiene todos los vértices de G.

Un árbol de expansión de G es un subgrafo mínimo (menor número posible de arcos) conexo, G', de
G tal que V(G')=V(G).

Árbol de expansión mínimo (minimal spanning tree) de un grafo G:

Árbol de expansión de un grafo con menor coste asociado.

Aplicaciones: Redes de comunicaciones.

