Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

12. COLAS

12.0 INTRODUCCTON ...ttt bbbt 31
12.1 FUNDAMENTOS ..ottt sttt st s s e b e bbb e b e e b sa e en e b e ene e s aeaesa e 31
12.2. REPRESENTACION DE LAS COLAS EN G ..ottt s 32
Implementacion mediante estructuras estaticas: Colas liNEAlesc.ccococuvieciniiiiniiniiiiiiiiieeeeee s 35
Implementacion mediante estructuras estaticas: Colas CiFCUIATEScccooioueiiieiiiiiiiiieeee et 38
Implementacion mediante estructuras dindmicas: Colas enlazadascccocevoiiiiiiiiiiiniiiniiieee e, 41

12.0 Introduccion

En este tema y en el siguiente veremos las estructuras de datos lineales pilas y colas. Las pilas y las
colas son dos de las estructuras de datos mas utilizadas. Se trata de dos casos particulares de las
estructuras lineales generales (secuencias o listas) que, debido a su amplio ambito de aplicacion,
conviene ser estudiadas de manera independiente. En este tema veremos concretamente las pilas, su
utilizacion y su implementacion mas habitual en C++.

12.1 Fundamentos

Las colas son secuencias de elementos caracterizadas porque las operaciones de insercion y borrado se
realizan sobre extremos opuestos de la secuencia. La insercion se produce en el "final" de la secuencia,
mientras que el borrado se realiza en el otro extremo, el "inicio" de la secuencia.

Las restricciones definidas para una cola hacen que el primer elemento que se inserta en ella sea,
igualmente, el primero en ser extraido de la estructura. Si una serie de elementos A, B, C, D, E se
insertan en una cola en ese mismo orden, entonces los elementos iran saliendo de la cola en el ordenen
que entraron. Por esa razon, en ocasiones, las colas se conocen con el nombre de listas o secuencias
FIFO (First In First Out, el primero que entra es el primero que sale).

Estructura Cola
4| Blc|D|E|F]|. |

— —

i Borrado Insercion

Las colas, al igual que las pilas, resultan de aplicacion habitual en muchos problemas informaticos.
Quizas la aplicacion méas comun de las colas es la organizacion de tareas de un ordenador. En general,
los trabajos enviados a un ordenador son "encolados" por éste, para ir procesando secuencialmente
todos los trabajos en el mismo orden en que se reciben. Cuando el ordenador recibe el encargo de
realizar una tarea, ésta es almacenada al final de la cola de trabajos. En el momento que la tarea que
estaba realizando el procesador acaba, éste selecciona la tarea situada al principio de la cola para ser
ejecutada a continuacion. Todo esto suponiendo la ausencia de prioridades en los trabajos. En caso
contrario, existira una cola para cada prioridad. Del mismo modo, es necesaria una cola, por ejemplo, a
la hora de gestionar eficientemente los trabajos que deben ser enviados a una impresora (o a casi
cualquier dispositvo conectado a un ordenador). De esta manera, el ordenador controla el envio de
trabajos al dispositivo, no enviando un trabajo hasta que la impresora no termine con el anterior.

Tema 12. Colas 31

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Andlogamente a las pilas, es necesario definir el conjunto de operaciones basicas para especificar
adecuadamente una estructura cola. Estas operaciones serian:
- Crear una cola vacia.
- Determinar si la cola esta vacia, en cuyo caso no es posible eliminar elementos.
- Acceder al elemento inicial de la cola.
- Insertar elementos al final de la cola.
- Eliminar elementos del inicio de la cola.
Al igual que realizamos con las pilas, haremos una declaracion un poco mas formal de estas
operaciones y los axiomas que las caracterizan:
Estructura
Cola (Valor) {*Valor serd el tipo de datos que podremos guardar en la cola *}
Operaciones
CREAR_COLA () - Cola
ENCOLAR (Cola, Valor) - Cola
DESENCOLAR (Cola) - Cola, Valor
PRIMERO_COLA (Cola) - Valor
COLA_VACIA (Cola) - Logico
Axiomas
[7queue [7Cola, x [7Valor se cumple que:
COLA_VACIA (CREAR_COLA ()) - cierto
COLA_VACIA (ENCOLAR (queue, x)) - falso
DESENCOLAR (CREAR_COLA ()) - error
PRIMERO_COLA (CREAR_COLA ()) - error
x siCOLA_VACIA(queue) =true

PRIMERO_COLA (ENCOLAR (queue, X)) — {PRIMERO COLA (queue)sino

Estos axiomas vienen a decir basicamente lo siguiente:

Una cola recien creada (CREAR_COLA) esta vacia, mientras que una cola en la que, al menos, hemos
puesto un elemento no esta vacia.

Tanto intentar eliminar un elemento, como consultar el primer elemento de una cola recien creada,
produce un error.

Y finalmente la consulta de una cola en la que hemos insertado un nuevo elemento ‘x’, devolvera ‘x’ si
la cola estaba vacia, o el primero de la cola si la cola ya contenia otros elementos.

12.2. Representacion de las Colas en C++
Al igual que con las pilas, el primer paso de la implementacion sera decidir el prototipo de los métodos
que vamos a utilizar.

La idea basica sera seguir en la misma linea del tema anterior, buscando la maxima similitud entre las
operaciones de pilas y colas.

Asi las operaciones del interfaz que tendremos seran las siguientes, recordando que las operaciones
que puedan devolver errores, devolveran un boolean.

Tema 12. Colas 32

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1
class Col a

public:
Col a (void);
bool Encolar (Valor);
bool Desencol ar (Valor &;
bool PrinmeroCola (Valor &);
bool Col aVacia (void);

private:
. ?2.

i
Para determinar concretamente cada una de estas operaciones y su implementacioén, es necesario

especificar un tipo de representacion para las colas. Dependiendo de esta representacion tendremos
diferentes implementaciones.

Ejemplo de utilizacion de colas

Con la interfaz propuesta ya somos capaces de utilizar la clase cola, y podemos realiza un ejemplo.

Realizar una funcion en C++ que nos diga el numero de elementos que contiene una cola
pasada como parametro.

Para saber el numero de elementos tendremos que ir desencolandolos de la cola y contando
los elementos hasta que la cola se quede vacia. Para asegurarnos que la cola no queda
modificada podemos pasarla por valor, o pasarla por referencia y si en algun momento la
modificamos, devolverla antes de terminar la funcion a su valor original.

El algoritmo en este segundo caso seria:

Algoritmo ContarElementos
Entradas: Cola que;

Salidas: Cola que;
Entero num_ele;

Variables Cola q_aux;
Entero x;
Inicio
g_aux = CrearCola ()
num_ele =0
Mientras (No ColaVacia(que)) Hacer
x = Desencolar (que)
Encolar (g_aux, x)
num_ele = num_ele + 1
Fin_mientras

Mientras (No ColaVacia (q_aux)) Hacer
Encolar (que, Desencolar (q_aux))
Fin_mientras
Devolver (num_ele)
Fin

Tema 12. Colas 33

Ricardo Ferris Castell

El organigrama correspondiente a este algoritmo seria el siguiente:

@a‘ g_aux = CrearCola() ‘

‘ num_ele = num_ele + 1 ‘
num_ele =0 T

¢ ‘ Encolar (q_aux, x)‘
[}

o ColaVacia(que)*

x = Desencolar (que) ‘

| No
i%‘ Encolar (que, Desencolar (q_aux) ‘

o ColaVacia(que)

INo

‘ Devolver (num_ele) ‘

®)

Si aplicamos la interfaz que hemos definido para la clase cola en C++, podemos realizar la
funcion en C++:

int ContarEl ementos (Cola & que)

{
int num el e;
Col a g_aux;
Val or x;
numele = 0;
while (!que. Col avVacia ())
b _aux = que. Desencol ar (x);
b _aux = g_aux. Encol ar (x);
num el e++;
}
while (!qg_aux.ColaVacia ())
{
b_aux = g_aux. Desencol ar (x);
b_aux = que. Encol ar (x);
}
return numel e;
}

No tenemos en cuenta el posible error del método Desencol ar, porque para llegar a esa
llamada hemos tenido en cuenta que la cola no esté vacia. El error de Encol ar tampoco lo
hemos tenido en cuenta porque si los elementos cabian en la cola original, también van a
caber en la cola auxiliar.

Aunque podriamos controlar la cola vacia a través del error que devuelve la funcion
desencolar:

int ContarEl enentos (Cola & que)
{

int num el e;
Col a g_aux;
Val or x;

numele = 0;

whil e (!que. Desencolar (x))

Tema 12. Colas

Algoritmos y Estructuras de Datos 1

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1
{

b _aux = g_aux. Encol ar (x);
num el e++;

}

whil e (!qg_aux. Desencolar (x))
b _aux = que. Encol ar (x);

return num el e;

Implementacion mediante estructuras estaticas: Colas lineales

La representacion de una cola finita en forma de vector es una tarea algo mas compleja que la realizada
para el caso de las pilas. Ademas de un array unidimensional, son necesarias un par de variables que
indiquen donde esta el inicio de la cola y donde el final.

Sisonini yfin las dos variables que apuntan a los extremos de la estrutura, normalmente se adopta
el convenio de que la variable i ni sea siempre la posicion real del primer elemento y que la variable
fi n siempre apunte a la siguiente posicion de la cola donde podemos insertar nueva informacion. De
esta manera, se cumplird que i ni =fi n siy s6lo si la cola estd vacia, y la condicion inicial para indicar
que se ha creado una cola vacia serd i ni =f i n=0.

Tal como hicimos con la definicion del tipo pila, la definicion ‘compacta’ del tipo cola seria:

cl ass Col a

{
publi c:
.27,
private:
Vect or info;
int ini, fin;
}s

Con este esquema de representacion, se puede pasar a especificar el conjunto de operaciones
necesarias para definir una cola:

Operacion CREAR COLA

Esta operacion consistird en definir la variable del tipo nuevo declarado, Cola (array que permitira
almacenar la informacion y las varibles que apuntaran a los extremos de la estructura) e iniciar los
valores de manera que se indique explicitamente que la cola, tras la creacion, estéd vacia.

(1) Variables
queue: Pila;

(2) Asignacién de pila vacia
queue.ini « 0
queue.fin « 0

Esta operacion, en C++, se convierte en el constructor por defecto:

O
Col a: : Col a (void)
{
ini = 0;
fin = 0;
}
O

Tema 12. Colas 35

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Operacion COLA VACIA

Con las condiciones establecidas, basta comprobar si los valores del inicio y el final de la cola son
iguales:

Algoritmo Cola_Vacia
Entrada
queue: Cola
Salida
(CIERTO, FALSO)
Inicio
Si (queue.ini = queue.fin) entonces
Devolver (CIERTO)
Sino
Devolver (FALSO)
Fin_si
Fin

O
bool Col a:: Col avaci a (voi d)
{
bool b_aux;
if (ini == fin)
b _aux = true;
el se
b aux = fal se;
return b_aux;
}
O
O lo que seria lo mismo, devolver directamente la comparacion i ni == fin.
O
bool Col a:: Col avaci a (voi d)
{
return ini == fin;
}
O

Operacion de insercion de informacion (ENCOLAR)

Al igual que en las pilas, la insercion de elementos estd condicionada por la representacion que se hace
de la estructura. Al representar la cola con un array (tamafio finito), es preciso comprobar previamente
si existe espacio disponible en la cola para almacenar mas informacion. En el caso en que se pueda
insertar la nueva informacién, la colocaremos en el lugar correspondiente dentro del vector y
actualizaremos las marcas de inicio y final de la cola.

Algoritmo Encolar

Entradas
x: Valor {* elemento que desea insertar *}
queue: Cola de Valor
Salidas
queue
Inicio
{* comprobar si en la cola se pueden insertar mas elementos *}

Tema 12. Colas 36

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

{* esto es necesario por el tipo de representacion de la estructura y
Si (queue.fin = MAX) entonces
Error "cola llena"

Sino
queue.info [queue.fin] « x
queue.fin — queue.fin + 1
Fin_sino

Fin

0
bool Col a:: Encol ar (Val or x)
{
bool error;
if (fin == MAX)
error = true;
el se
{
error = fal se;
info [fin] = X
fin++;
}
return error;
}
i
Operacion de consulta de informacion (PRIMERO COLA)
La consulta se hace a través de la posicion que indica el campo | ni , y s6lo si la cola no esta vacia.
Algoritmo Primero_Cola
Entradas
queue: Cola de Valor
Salidas
Valor
Inicio
{* comprobar si existe informacién en la cola y
{* esta operacion no depende de la representacion, siempre es necesaria *}
Si (Cola_Vacia (queue)) entonces
Error “cola vacia”
sino
Devolver (queue.info [queue.ini])
Fin_si
Fin
0

bool Col a:: PrinmeroCola (Valor & x)
{

bool error;

if (ColaVacia ())
error = true;
el se

{
Tema 12. Colas 37

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

error = fal se;
x = info[ini];
}

return error;

Operacion de eliminacion de informacion (DESENCOLAR)

Para eliminar elementos de la estructura, es preciso determinar si realmente hay informacion que
extraer, sino el algoritmo debe detectar el error, independientemente de la representacién concreta de
la cola.

Algoritmo Desencolar
Entradas
queue: Cola de Valor
Salidas
queue: Cola, x: Valor
Inicio
{* comprobar si se pueden eliminar elementos de la cola *}
{* esta operacién no depende de la representacion, siempre es necesaria *}
Si (Cola_Vacia (queue)) entonces
Error “cola vacia”
sino
X « queue.info [queue.ini]
{* Esta operacién no seria realmente necesaria *}
queue.ini — queue.ini + 1
Fin_si
Fin

bool Col a: : Desencol arCol a (Val or & x)
{

bool error;

if (ColaVacia ())
error = true;

el se

{
error = fal se;
x = info[ini];
i ni ++;

}

return error;

Implementacion mediante estructuras estaticas: Colas circulares

Hay que tener en cuenta que, de hecho, la condicion de cola llena (queue. fi n = MAX), considerada en
la operacion de insercidon, no indica necesariamente que existan n elementos en la cola, ya que es
posible que exista espacio libre, por haber ido borrando elementos en las primeras posiciones del
array.

Una solucién obvia a este problema podria ser desplazar todos los elementos hacia la izquierda, cada
vez que se produce una operacion de borrado, hasta alcanzar el principio del array. Sin embargo, ésto

Tema 12. Colas 38

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

no resulta demasiado eficiente, sobre todo cuando existen muchos elementos en la cola y la
operaciones de borrado e insercion son muy frecuentes.

Por lo tanto, la representacion de una cola especificada por las anteriores operaciones, puede dar lugar,
en general, a una utilizacion ineficiente del espacio reservado para la estructura.

Una representacion mas eficiente se obtiene viendo el array donde guardamos la informacion
contenida en la cola como si fuese circular. De esa manera, cuando se de el caso queue. Fi n=MAX, sera
posible insertar nuevos elementos en la cola si los primeros elementos del array estan libres.

Para trabajar de forma sencilla con esta representacion sera conveniente definir una operacion auxiliar
que nos lleve de un indice a su siguiente dentro de la nueva secuencia circular de indices. Esta
operacion se limitard a incrementar el indice si éste es menor que MAX y a volver a empezar en cero si
se alcanza el valor de MAX.

Algoritmo Siguiente
Entradas
ind: 0..MAX -1
Salidas
0..MAX -1
Inicio
{* La operacién mod devuelve el valor del resto de la division entera entre ind y MAX *}
Devolver ((ind + 1) mod MAX)
Fin

El método si gui ent e quedara, en la declaracion del interfaz de la clase, como un método privado, y
su codificacion en C++ serd como sigue:

0
int Cola::Siguiente (int ind)
{
return (ind + 1) % MAX;
}
0
Con esta nueva representacion, la comprobaciéon de si una cola estd o no vacia se mantiene
(queue.ini = queue.fin). Sin embargo, el resto de operaciones cambia ligeramente, ya que los

elementos ya no se insertaran o consultaran en la posicion incrementada del indice, sino en la posicion
“siguiente” siguiendo el patron circular.

En primer lugar la iniciacion de la estrucutra puede seguir haciéndose asignando los indices de inicio y
fin de cola a cero.

Apoyandonos en la funcion auxiliar siguiente, los algoritmo de insercion, consulta y borrado quedarian
de la siguiente forma:

Algoritmo Encolar

Entradas
x: Valor {* elemento que se desea insertar *}
queue: Cola de Valor

Salidas
queue

Inicio
{* comprobar si en la cola se pueden insertar mas elementos 3
{* esto es necesario por el tipo de representacion de la estructura 3
Si (Siguiente (queue.fin) = queue.ini) entonces

Error "cola llena"

Tema 12. Colas 39

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Sino
queue.info [queue.fin] « x
queue.fin — Siguiente (queue.fin)
Fin_sino

Fin

Destacar en este algoritmo la siguiente consideracion: Si consideraramos la posibilidad de insertar
elementos en el vector hasta ocupar todos los elementos posibles del array tendriamos que la
condicion de cola llena y cola vacia seria la misma (queue.ini = queue.fin). Por ello,
habitualmente se mantiene un elemento vacio entre la Gltima posicion ocupada y la Gltima, de manera
que la consicion de cola vacia se mantiene, mientras que la de cola llena se transforma en:
Si gui ente (queue.fin) = queue.ini.

Si deseasemos utilizar ese hueco, de manera que la condicion de cola llena y cola vacia no pudiese
distinguirse, seria necesario afiadir una variable logica que nos indicase el estado real de la cola (si
vacia o llena), sabiendo que s6lo podemos llenar una cola tras hacer inserciones o sélo podemos
dejarla vacia tras eliminar elementos.

El algoritmo propuesto traducido a C++ quedara:

int Cola::Encolar (Valor x)

{

bool error;

if (Siguiente (fin) ==ini)
error = true;
el se

{

error = fal se;

info[fin] = x;
fin = Siguiente (fin);
}

return error;

0
El método Pri ner oCol a no cambia de ninguna manera, y el método Desencol ar so6lo cambia en el
avance del indice ‘i ni’

Algoritmo Desencolar
Entradas
queue: Cola de Valor
Salidas
queue
Inicio
{* comprobar si se pueden eliminar elementos de la cola 3
{* esta operacién no depende de la representacion, siempre es necesaria *}
Si (Cola_Vacia (queue)) entonces
Error “cola vacia”

sino
X < queue.info [queue.ini]
{* Esta operacién no seria realmente necesaria *}
queue.lni — Siguiente (queue.Ini)

Fin_si

Fin

Tema 12. Colas 40

Ricardo Ferris Castell

Algoritmos y Estructuras de Datos 1

O

bool Col a:: Desencol arCol a (Val or & Xx)
bool error;

if (ColaVacia ())
error = true,
el se
{
error = fal se;
x = info[ini];
ini = Siguiente (ini);
}

return error;

Implementacion mediante estructuras dinamicas: Colas enlazadas

Creacion de una cola: Constructor por defecto

Al igual que en el caso de pilas, desarrollaremos tres pasos para la creacion de la cola dinamica:

(1) Definicion de los tipos necesarios:

Tipo
Nodo_cola = Registro
Info: Valor
Sig : Puntero_a_Nodo_cola
Fin_reg

Tipo
Cola = Registro
Ini, Fin: Puntero_a_Nodo_cola
Fin_reg

(2) Declaracion de una variable de este nuevo tipo (cola):

Var
queue: Cola

(3) Iniciacion de la estructura como vacia:

Algoritmo Iniciar_Cola
Entradas

queue: Cola de Valor
Salidas

queue
Inicio

queu.ini « NULO

queu.fin -« NULO
Fin

En C++, estos pasos se resumirian en la declaracion de la variable:

Col a que;

Tema 12. Colas

41

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

La declaracion de los tipos necesarios:

O
struct nodo
{
Val or info;
Puntero sig;
b
typedef nodo * Puntero;
0
La inclusion de la informacion necesaria en la parte privada de la clase:
0
class Col a
{
publi c:
. ??.
private:
Puntero ini, fin;
b
g
Y la implementacion del método constructor por defecto de la clase:
0
Col a:: Col a (void)
{
ini = NULL;
fin = NULL;
}
0

Creacion de una cola: Constructor de copia

Ya comentamos en Pilas la necesidad, en el caso de representacion de informacion con estructuras
dindmicas, del constructor de copia.

Cuando se pasa un parametro por valor, se realiza una copia de la informacion contenida en la variable
que se pasa por valor, pero solo de la informacién contenida en él1.

Asi, si la variable contiene punteros a diferentes espacios de memoria, el paso por valor, en principio
realizara una copia de estos valores sin mas, de manera que la memoria referenciada seguira siendo la
misma, y no tendremos una copia real de la informacion guardada.

Si queremos tener una copia de toda la informacion, deberemos incluir entre los métodos de la clase, el
constructor de copia.

El contructor de copia es un método que es llamado automaticamente cada vez que se realiza un paso
de parametros por valor del objeto en concreto. Si existe el constructor de copia, éste es llamado, sino
se realiza solo la copia de la informacion contenida en el objeto.
El prototipo del constructor de copia es:

Nonbre _de | a clase (const Nonbre de |a clase &)

Al igual que el constructor por defecto, no devuelve ninglin valor, ni siquiera voi d. Tiene como
nombre, el nombre de la clase, y como unico pardmetro un objeto por referencia constante, que sera el
objeto del que queremos realizar una copia.

En el caso que tenemos, colas, el constructor de copia podria ser:

Tema 12. Colas 42

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

O
Col a: : Col a (const Cola & que)
{
Puntero p_aux, g_aux,
ini = NULL;
p_aux = que.ini;
while (p_aux !'= NULL)
{
g_aux = new Nodo;
g_aux->i nfo = p_aux->i nfo;
if (ini == NULL)
ini = g_aux;
el se
fin->sig = g_aux;
fin = g_aux;
}
}
|

Comprobacion de cola vacia

De nuevo, la estructura estara vacia si y solo si inicio no apunta a ningiin nodo de la cola (es decir,
apunta a NULO.)

Algoritmo Cola_Vacia
Entrada
queue: Cola
Salida
(CIERTO, FALSO)
Inicio
Si (queue.ini = NULO) entonces
Devolver (CIERTO)
Sino
Devolver (FALSO)
Fin_si
Fin

O
bool Col a:: Col avaci a (voi d)
{
return ini == NULL;
}
O

Acceso al primer elemento de la cola

Se puede acceder a este elemento de la cola mediante el puntero inicio que lo referencia.

Algoritmo Primero_Cola
Entradas

queue: Cola de Valor
Salidas

Valor
Inicio

Tema 12. Colas 43

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

{* comprobar si existe informacién en la cola i
{* esta operacion no depende de la representacion, siempre es necesaria *}

Si (Cola_Vacia (queue)) entonces
Error “cola vacia”
sino
Devolver (queue.info [queue.ini])
Fin_si
Fin

bool Col a:: PrimeroCola (Valor & x)
bool error;

if (ColaVacia ())
error = true;
el se
{
error = fal se;
X = ini->info;
}

return error;

Operacion de insercion

Al igual que en cualquier otra estructura dinamica, la insercién consta basicamente de tres pasos: El
primero de reserva del espacio necesario para el nuevo elemento; el segundo de asignacion del valor a

insertar; y finalmente, el tercero de enlace del nuevo elemento en la estructura dindmica.

Algoritmo Encolar
Entrada
queue: Cola de Valor
x: Valor
Salida
queue
Variable
p_aux: puntero a Nodo_cola
Inicio
p_aux — Crear_Espacio
p_aux”.Info « x
p_aux*.Sig —« NULO
Si (Cola_Vacia (queue) entonces
queue.lni — p_aux
Sino
queue.Fin?.Sig « p_aux
Fin_si
queue.Fin « p_aux
fin

La traduccién a C++ es inmediata:

Tema 12. Colas

44

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

bool Col a:: Encol ar (Val or x)

{

bool error;
Puntero p_aux;

error = fal se;
p_aux = new Nodo;
p_aux->info = x;
p_aux->sig = NULL;
if (ColaVacia ())
ini = p_aux;
el se
fin->sig = p_aux;
fin = p_aux;

return error;

Operacion de eliminacion de un elemento

Como en cualquier estructura dindmica, la eleiminacion de informacion se realiza basicamente en tres
pasos: (1) Obtener la informacion del elemento a borrar; (2) desenlazar el elemento de la estructura; y
(3) finalmente liberar el espacio ocupado por el elemento para dejarlo accesible para futuras llamadas.

Algoritmo Desencolar

Entrada
queue: Cola de Valor
Salida
queue
x: Valor
Variable
p_aux: puntero a Nodo_Cola
Inicio
Si1) (Cola_Vacia (queue) entonces
Error “cola_vacia"
Sin0(1)
{173
X < queue.Ini*.Info
{*27}
p_aux — queue.lni
queue.lni - p_aux®.Sig
{* si tras borrar se vacia la cola, hay poner Fin a nulo *}
Si(z) (Cola_Vacia (queue) entonces
queue.Fin - NULO
Fin_Si(z)
{*37
Liberar_Espacio (p-aux)
Fin_si(1)
Fin

Tema 12. Colas 45

Ricardo Ferris Castell

Algoritmos y Estructuras de Datos 1

bool Col a: : Desencol ar (Val or & Xx)

{
bool error;
Puntero p_aux;
if (ColaVacia ())
error = true;
el se
{
error = fal se;
X = ini->info;
p_aux = ini;
ini = ini->sig;
di spose p_aux;
}
return error;
}

Operacion de borrado de la estructura: Destructor de la clase

Una variable, cuando acaba el bloque donde esta declarada, termina su existencia y es liberado el
espacio que ocupa en memoria. Es decir, el sistema marca como libre ese espacio y lo deja disponible
para su reutilizacion.

En el caso de los objetos ocurre exactamente lo mismo, el espacio de datos que ocupa el objeto es
liberado por el sistema.

En el caso en que toda la informacion guardada por el objeto este declarada dentro del objeto
(estructuras estaticas) no existe ningiin porblema: La memoria ocupada es liberada.

Las cosas son ligeramente diferentes en el caso en que parte de la informacion guardada por el objeto
no esté totalmente en el interior del objeto, sino que el objeto contenga enlaces a la memoria ocupada
por la informacién (caso dinamico). En este caso, la memoria que se libera cuando acaba el bloque
donde esta declarado el objeto tan solo es la contenida en el objeto, es decir, solo los enlaces que
enlazan con la memoria donde esta la informacion. Con esto, la memoria ocupada por la informacion
queda ‘ocupada’, mientras que las referencias de acceso para acceder a ella desaparecen.

Esto es una cosa que debemos evitar, liberando antes de que desaparezca el ambito de la variable, la
memoria ocupada por la informacion.

Un algoritmo que libera toda la memoria ocupada por una cola dindmica podria ser:

Algoritmo LiberarCola
Entrada
queue: Cola de Valor
Salida
queue
Variable
p_aux: puntero a Nodo_cola
Inicio
Mientras (No Cola_Vacia (queue) hacer
p_aux « que.ini
que.ini — que.ini*.sig
Liberar (p_aux)
fin_mientras

Tema 12. Colas

46

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

fin

En C++, para facilitar este proceso existe el método ‘destructor’ de la clase.

Al igual que los constructores, que son llamadso automaticamente cada vez que es necesario, el
destructor de la clase es llamado siempre que vaya a desaparecer el objeto. Si existe lo ejecuta y libera
elespacio ocupado por el objeto, y si no existe se limita a liberar el espacio ocupado por el objeto.

Asi como puede haber varios constructores, solo puede haber un destructor y su prototipo es:

~Nonbre_De_La_C ase (void)

No devuleve ningun tipo, ni siquiera voi d, igual que el constructor por defecto. Tiene como nombre el
simbolo ‘~’ seguido del nombre de la clase. Y como pardmetros s6lo puede tener voi d.

O
Col a: : ~Col a (voi d)
{
Puntero p_aux;
while (!ColaVacia())
{
p_aux = ini;
ini =ini->sig;
di spose (p_aux);
}
}
O

Tema 12. Colas

47

