
Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 31

12. COLAS

12.0 INTRODUCCIÓN .. 31
12.1 FUNDAMENTOS .. 31
12.2. REPRESENTACIÓN DE LAS COLAS EN C++... 32

Implementación mediante estructuras estáticas: Colas lineales .. 35
Implementación mediante estructuras estáticas: Colas circulares .. 38
Implementación mediante estructuras dinámicas: Colas enlazadas .. 41

12.0 Introducción

En este tema y en el siguiente veremos las estructuras de datos lineales pilas y colas. Las pilas y las
colas son dos de las estructuras de datos más utilizadas. Se trata de dos casos particulares de las
estructuras lineales generales (secuencias o listas) que, debido a su amplio ámbito de aplicación,
conviene ser estudiadas de manera independiente. En este tema veremos concretamente las pilas, su
utilización y su implementación más habitual en C++.

12.1 Fundamentos

Las colas son secuencias de elementos caracterizadas porque las operaciones de inserción y borrado se
realizan sobre extremos opuestos de la secuencia. La inserción se produce en el "final" de la secuencia,
mientras que el borrado se realiza en el otro extremo, el "inicio" de la secuencia.

Las restricciones definidas para una cola hacen que el primer elemento que se inserta en ella sea,
igualmente, el primero en ser extraido de la estructura. Si una serie de elementos A, B, C, D, E se
insertan en una cola en ese mismo orden, entonces los elementos irán saliendo de la cola en el ordenen
que entraron. Por esa razón, en ocasiones, las colas se conocen con el nombre de listas o secuencias
FIFO (First In First Out, el primero que entra es el primero que sale).

Estructura Cola
A B C D E F ...

→
Borrado

→
Inserción

Las colas, al igual que las pilas, resultan de aplicación habitual en muchos problemas informáticos.
Quizás la aplicación más común de las colas es la organización de tareas de un ordenador. En general,
los trabajos enviados a un ordenador son "encolados" por éste, para ir procesando secuencialmente
todos los trabajos en el mismo orden en que se reciben. Cuando el ordenador recibe el encargo de
realizar una tarea, ésta es almacenada al final de la cola de trabajos. En el momento que la tarea que
estaba realizando el procesador acaba, éste selecciona la tarea situada al principio de la cola para ser
ejecutada a continuación. Todo esto suponiendo la ausencia de prioridades en los trabajos. En caso
contrario, existirá una cola para cada prioridad. Del mismo modo, es necesaria una cola, por ejemplo, a
la hora de gestionar eficientemente los trabajos que deben ser enviados a una impresora (o a casi
cualquier dispositvo conectado a un ordenador). De esta manera, el ordenador controla el envio de
trabajos al dispositivo, no enviando un trabajo hasta que la impresora no termine con el anterior.

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 32

Análogamente a las pilas, es necesario definir el conjunto de operaciones básicas para especificar
adecuadamente una estructura cola. Estas operaciones serían:

- Crear una cola vacía.
- Determinar si la cola está vacía, en cuyo caso no es posible eliminar elementos.
- Acceder al elemento inicial de la cola.
- Insertar elementos al final de la cola.
- Eliminar elementos del inicio de la cola.

Al igual que realizamos con las pilas, haremos una declaración un poco más formal de estas
operaciones y los axiomas que las caracterizan:

Estructura
Cola (Valor) {* Valor será el tipo de datos que podremos guardar en la cola *}

Operaciones
CREAR_COLA () → Cola
ENCOLAR (Cola , Valor) → Cola
DESENCOLAR (Cola) → Cola, Valor
PRIMERO_COLA (Cola) → Valor
COLA_VACIA (Cola) → Lógico

Axiomas
∀ queue ∈ Cola, x ∈ Valor se cumple que:

COLA_VACIA (CREAR_COLA ()) → cierto
COLA_VACIA (ENCOLAR (queue, x)) → falso
DESENCOLAR (CREAR_COLA ()) → error
PRIMERO_COLA (CREAR_COLA ()) → error

PRIMERO_COLA (ENCOLAR (queue, x)) →


 =

sino) queue (LA PRIMERO_CO
true (queue)COLA_VACIA six

Estos axiomas vienen a decir básicamente lo siguiente:

Una cola recien creada (CREAR_COLA) está vacía, mientras que una cola en la que, al menos, hemos
puesto un elemento no está vacía.

Tanto intentar eliminar un elemento, como consultar el primer elemento de una cola recien creada,
produce un error.

Y finalmente la consulta de una cola en la que hemos insertado un nuevo elemento ‘x’, devolverá ‘x’ si
la cola estaba vacia, o el primero de la cola si la cola ya contenia otros elementos.

12.2. Representación de las Colas en C++

Al igual que con las pilas, el primer paso de la implementación será decidir el prototipo de los métodos
que vamos a utilizar.

La idea básica será seguir en la misma linea del tema anterior, buscando la máxima similitud entre las
operaciones de pilas y colas.

Así las operaciones del interfaz que tendremos serán las siguientes, recordando que las operaciones
que puedan devolver errores, devolverán un boolean.

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 33

class Cola
{

public:
Cola (void);
bool Encolar (Valor);
bool Desencolar (Valor &);
bool PrimeroCola (Valor &);
bool ColaVacia (void);

private:
.??.

};

Para determinar concretamente cada una de estas operaciones y su implementación, es necesario
especificar un tipo de representación para las colas. Dependiendo de esta representación tendremos
diferentes implementaciones.

Ejemplo de utilización de colas
Con la interfaz propuesta ya somos capaces de utilizar la clase cola, y podemos realiza un ejemplo.

Realizar una función en C++ que nos diga el número de elementos que contiene una cola
pasada como parámetro.

Para saber el número de elementos tendremos que ir desencolandolos de la cola y contando
los elementos hasta que la cola se quede vacía. Para asegurarnos que la cola no queda
modificada podemos pasarla por valor, o pasarla por referencia y si en algún momento la
modificamos, devolverla antes de terminar la función a su valor original.

El algoritmo en este segundo caso sería:
Cniqtkvoq ContarElementos
Gpvtcfcu: Cola que;
Ucnkfcu: Cola que;

Entero num_ele;
Xctkcdngu Cola q_aux;

Entero x;
Kpkekq

q_aux = CrearCola ()
num_ele = 0
Okgpvtcu (No ColaVacia(que)) Jcegt

x = Desencolar (que)
Encolar (q_aux, x)
num_ele = num_ele + 1

Hkpaokgpvtcu

Okgpvtcu (No ColaVacia (q_aux)) Jcegt
Encolar (que, Desencolar (q_aux))

Hkpaokgpvtcu
Fgxqnxgt (num_ele)

Hkp

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 34

El organigrama correspondiente a este algoritmo sería el siguiente:

Si aplicamos la interfaz que hemos definido para la clase cola en C++, podemos realizar la
función en C++:
int ContarElementos (Cola & que)
{

int num_ele;
Cola q_aux;
Valor x;

num_ele = 0;

while (!que.ColaVacia ())
{

b_aux = que.Desencolar (x);
b_aux = q_aux.Encolar (x);
num_ele++;

}

while (!q_aux.ColaVacia ())
{

b_aux = q_aux.Desencolar (x);
b_aux = que.Encolar (x);

}

return num_ele;
}

No tenemos en cuenta el posible error del método Desencolar, porque para llegar a esa
llamada hemos tenido en cuenta que la cola no esté vacía. El error de Encolar tampoco lo
hemos tenido en cuenta porque si los elementos cabían en la cola original, también van a
caber en la cola auxiliar.

Aunque podríamos controlar la cola vacía a través del error que devuelve la función
desencolar:
int ContarElementos (Cola & que)
{

int num_ele;
Cola q_aux;
Valor x;

num_ele = 0;

while (!que.Desencolar (x))

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 35

{
b_aux = q_aux.Encolar (x);
num_ele++;

}

while (!q_aux.Desencolar (x))
b_aux = que.Encolar (x);

return num_ele;
}

Implementación mediante estructuras estáticas: Colas lineales
La representación de una cola finita en forma de vector es una tarea algo más compleja que la realizada
para el caso de las pilas. Además de un array unidimensional, son necesarias un par de variables que
indiquen dónde está el inicio de la cola y dónde el final.

Si son ini y fin las dos variables que apuntan a los extremos de la estrutura, normalmente se adopta
el convenio de que la variable ini sea siempre la posición real del primer elemento y que la variable
fin siempre apunte a la siguiente posicion de la cola donde podemos insertar nueva información. De
esta manera, se cumplirá que ini=fin si y sólo si la cola está vacía, y la condición inicial para indicar
que se ha creado una cola vacía será ini=fin=0.

Tal como hicimos con la definición del tipo pila, la definición ‘compacta’ del tipo cola sería:
class Cola
{

public:
.??.

private:
Vector info;
int ini, fin;

};

Con este esquema de representación, se puede pasar a especificar el conjunto de operaciones
necesarias para definir una cola:

Operación ETGCTaEQNC
Esta operación consistirá en definir la variable del tipo nuevo declarado, Cola (array que permitirá
almacenar la información y las varibles que apuntarán a los extremos de la estructura) e iniciar los
valores de manera que se indique explícitamente que la cola, trás la creación, está vacía.

(1) Variables
queue: Pila;

(2) Asignación de pila vacía
queue.ini ← 0
queue.fin ← 0

Esta operación, en C++, se convierte en el constructor por defecto:
❈

Cola::Cola (void)
{

ini = 0;
fin = 0;

}

❈

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 36

Operación EQNCaXCEKC
Con las condiciones establecidas, basta comprobar si los valores del inicio y el final de la cola son
iguales:

Cniqtkvoq Cola_Vacia
Gpvtcfc

queue: Cola
Ucnkfc

(EKGTVQ, HCNUQ)
Kpkekq

Uk (queue.ini = queue.fin) gpvqpegu
Fgxqnxgt (EKGTVQ)

Ukpq
Fgxqnxgt (HCNUQ)

Hkpauk
Hkp

❈

bool Cola::ColaVacia (void)
{

bool b_aux;

if (ini == fin)
b_aux = true;

else
b_aux = false;

return b_aux;
}

❈

O lo que sería lo mismo, devolver directamente la comparación ini == fin.
❈

bool Cola::ColaVacia (void)
{

return ini == fin;
}

❈

Operación de inserción de información (GPEQNCT)
Al igual que en las pilas, la inserción de elementos está condicionada por la representación que se hace
de la estructura. Al representar la cola con un array (tamaño finito), es preciso comprobar previamente
si existe espacio disponible en la cola para almacenar más información. En el caso en que se pueda
insertar la nueva información, la colocaremos en el lugar correspondiente dentro del vector y
actualizaremos las marcas de inicio y final de la cola.

Cniqtkvoq Encolar
Gpvtcfcu

x: Valor {* elemento que desea insertar *}
queue: Cola de Valor

Ucnkfcu
queue

Kpkekq
{* comprobar si en la cola se pueden insertar más elementos *}

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 37

{* esto es necesario por el tipo de representación de la estructura *}
Uk (queue.fin = MAX) gpvqpegu

Gttqt""cola llena"
Ukpq

queue.info [queue.fin] ← x
queue.fin ← queue.fin + 1

Hkpaukpq
Hkp

❈

bool Cola::Encolar (Valor x)
{

bool error;

if (fin == MAX)
error = true;

else
{

error = false;
info [fin] = x
fin++;

}

return error;
}

❈

Operación de consulta de información (RTKOGTQaEQNC)
La consulta se hace a través de la posición que indica el campo Ini, y sólo si la cola no está vacía.

Cniqtkvoq"Primero_Cola
Gpvtcfcu

queue: Cola de Valor
Ucnkfcu

Valor
Kpkekq

{* comprobar si existe información en la cola *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Cola_Vacia (queue)) gpvqpegu

Gttqt"“cola vacia”
ukpq

Fgxqnxgt (queue.info [queue.ini])
Hkpauk

Hkp

❈

bool Cola::PrimeroCola (Valor & x)
{

bool error;

if (ColaVacia ())
error = true;

else
{

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 38

error = false;
x = info[ini];

}
return error;

}

❈

Operación de eliminación de información (FGUGPEQNCT)
Para eliminar elementos de la estructura, es preciso determinar si realmente hay información que
extraer, sino el algoritmo debe detectar el error, independientemente de la representación concreta de
la cola.

Cniqtkvoq"Desencolar
Gpvtcfcu

queue: Cola de Valor
Ucnkfcu

queue: Cola, x: Valor
Kpkekq

{* comprobar si se pueden eliminar elementos de la cola *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Cola_Vacia (queue)) gpvqpegu

Gttqt “cola vacia”
ukpq

x ← queue.info [queue.ini]
 {* Esta operación no sería realmente necesaria *}

queue.ini ← queue.ini + 1
Hkpauk

Hkp

❈

bool Cola::DesencolarCola (Valor & x)
{

bool error;

if (ColaVacia ())
error = true;

else
{

error = false;
x = info[ini];
ini++;

}
return error;

}

❈

Implementación mediante estructuras estáticas: Colas circulares
Hay que tener en cuenta que, de hecho, la condición de cola llena (queue.fin = MAX), considerada en
la operación de inserción, no indica necesariamente que existan n elementos en la cola, ya que es
posible que exista espacio libre, por haber ido borrando elementos en las primeras posiciones del
array.

Una solución obvia a este problema podría ser desplazar todos los elementos hacia la izquierda, cada
vez que se produce una operación de borrado, hasta alcanzar el principio del array. Sin embargo, ésto

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 39

no resulta demasiado eficiente, sobre todo cuando existen muchos elementos en la cola y la
operaciones de borrado e inserción son muy frecuentes.

Por lo tanto, la representación de una cola especificada por las anteriores operaciones, puede dar lugar,
en general, a una utilización ineficiente del espacio reservado para la estructura.

Una representación más eficiente se obtiene viendo el array donde guardamos la información
contenida en la cola como si fuese circular. De esa manera, cuando se de el caso queue.Fin=MAX, será
posible insertar nuevos elementos en la cola si los primeros elementos del array están libres.

Para trabajar de forma sencilla con esta representación será conveniente definir una operación auxiliar
que nos lleve de un indice a su siguiente dentro de la nueva secuencia circular de índices. Esta
operación se limitará a incrementar el índice si éste es menor que MAX y a volver a empezar en cero si
se alcanza el valor de MAX.

Cniqtkvoq"Siguiente
Gpvtcfcu

ind: 0..MAX - 1
Ucnkfcu

0..MAX - 1
Kpkekq

{* La operación oqf devuelve el valor del resto de la division entera entre ind y MAX *}
Fgxqnxgt"((ind + 1) oqf MAX)

Hkp

El método siguiente quedará, en la declaración del interfaz de la clase, como un método privado, y
su codificación en C++ será como sigue:

❈

int Cola::Siguiente (int ind)
{

return (ind + 1) % MAX;
}

❈

Con esta nueva representación, la comprobación de si una cola está o no vacía se mantiene
(queue.ini = queue.fin). Sin embargo, el resto de operaciones cambia ligeramente, ya que los
elementos ya no se insertarán o consultarán en la posición incrementada del índice, sino en la posición
“siguiente” siguiendo el patrón circular.

En primer lugar la iniciación de la estrucutra puede seguir haciéndose asignando los índices de inicio y
fin de cola a cero.

Apoyándonos en la función auxiliar siguiente, los algoritmo de inserción, consulta y borrado quedarían
de la siguiente forma:

Cniqtkvoq Encolar
Gpvtcfcu

x: Valor {* elemento que se desea insertar *}
queue: Cola de Valor

Ucnkfcu
queue

Kpkekq
{* comprobar si en la cola se pueden insertar más elementos *}
{* esto es necesario por el tipo de representación de la estructura *}
Uk (Siguiente (queue.fin) = queue.ini) gpvqpegu

Gttqt""cola llena"

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 40

Ukpq
queue.info [queue.fin] ← x
queue.fin ← Siguiente (queue.fin)

Hkpaukpq
Hkp

Destacar en este algoritmo la siguiente consideración: Si consideraramos la posibilidad de insertar
elementos en el vector hasta ocupar todos los elementos posibles del array tendríamos que la
condición de cola llena y cola vacia sería la misma (queue.ini = queue.fin). Por ello,
habitualmente se mantiene un elemento vacío entre la última posición ocupada y la última, de manera
que la consición de cola vacía se mantiene, mientras que la de cola llena se transforma en:
Siguiente (queue.fin) = queue.ini.

Si deseasemos utilizar ese hueco, de manera que la condición de cola llena y cola vacía no pudiese
distinguirse, sería necesario añadir una variable lógica que nos indicase el estado real de la cola (si
vacia o llena), sabiendo que sólo podemos llenar una cola tras hacer inserciones o sólo podemos
dejarla vacía tras eliminar elementos.

El algoritmo propuesto traducido a C++ quedará:
❈

int Cola::Encolar (Valor x)
{

bool error;

if (Siguiente (fin) == ini)
error = true;

else
{

error = false;

info[fin] = x;
fin = Siguiente (fin);

}
return error;

}

❈

El método PrimeroCola no cambia de ninguna manera, y el método Desencolar sólo cambia en el
avance del índice ‘ini’

Cniqtkvoq"Desencolar
Gpvtcfcu

queue: Cola de Valor
Ucnkfcu

queue
Kpkekq

{* comprobar si se pueden eliminar elementos de la cola *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Cola_Vacia (queue)) gpvqpegu

Gttqt “cola vacia”
ukpq

x ← queue.info [queue.ini]
 {* Esta operación no sería realmente necesaria *}

queue.Ini ← Siguiente (queue.Ini)
Hkpauk

Hkp

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 41

❈

bool Cola::DesencolarCola (Valor & x)
{

bool error;

if (ColaVacia ())
error = true;

else
{

error = false;
x = info[ini];
ini = Siguiente (ini);

}
return error;

}

❈

Implementación mediante estructuras dinámicas: Colas enlazadas

Creación de una cola: Constructor por defecto
Al igual que en el caso de pilas, desarrollaremos tres pasos para la creación de la cola dinámica:

 (1) Definición de los tipos necesarios:

Vkrq
 Nodo_cola = Tgikuvtq
 Info: Valor
 Sig : Puntero_a_Nodo_cola
 Hkpatgi

Vkrq
 Cola = Tgikuvtq
 Ini, Fin: Puntero_a_Nodo_cola
 Hkpatgi

(2) Declaración de una variable de este nuevo tipo (cola):

Xct
 queue: Cola

(3) Iniciación de la estructura como vacía:

Cniqtkvoq Iniciar_Cola
Gpvtcfcu

queue: Cola de Valor
Ucnkfcu

queue
Kpkekq

queu.ini ← PWNQ
queu.fin ← PWNQ

Hkp

En C++, estos pasos se resumirían en la declaración de la variable:
❈

Cola que;

❈

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 42

La declaración de los tipos necesarios:
❈

struct nodo
{

Valor info;
Puntero sig;

};

typedef nodo * Puntero;

❈

La inclusión de la información necesaria en la parte privada de la clase:
❈

class Cola
{

public:
.??.

private:
Puntero ini, fin;

};

❈

Y la implementación del método constructor por defecto de la clase:
❈

Cola::Cola (void)
{

ini = NULL;
fin = NULL;

}

❈

Creación de una cola: Constructor de copia
Ya comentamos en Pilas la necesidad, en el caso de representación de información con estructuras
dinámicas, del constructor de copia.

Cuando se pasa un parámetro por valor, se realiza una copia de la información contenida en la variable
que se pasa por valor, pero solo de la información contenida en él.

Así, si la variable contiene punteros a diferentes espacios de memoria, el paso por valor, en principio
realizará una copia de estos valores sin más, de manera que la memoria referenciada seguirá siendo la
misma, y no tendremos una copia real de la información guardada.

Si queremos tener una copia de toda la información, deberemos incluir entre los métodos de la clase, el
constructor de copia.

El contructor de copia es un método que es llamado automáticamente cada vez que se realiza un paso
de parámetros por valor del objeto en concreto. Si existe el constructor de copia, éste es llamado, sino
se realiza sólo la copia de la información contenida en el objeto.

El prototipo del constructor de copia es:
Nombre_de_la_clase (const Nombre_de_la_clase &)

Al igual que el constructor por defecto, no devuelve ningún valor, ni siquiera void. Tiene como
nombre, el nombre de la clase, y como único parámetro un objeto por referencia constante, que será el
objeto del que queremos realizar una copia.

En el caso que tenemos, colas, el constructor de copia podría ser:

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 43

❈

Cola::Cola (const Cola & que)
{

Puntero p_aux, q_aux;

ini = NULL;
p_aux = que.ini;
while (p_aux != NULL)
{

q_aux = new Nodo;
q_aux->info = p_aux->info;
if (ini == NULL)

ini = q_aux;
else

fin->sig = q_aux;
fin = q_aux;

}
}

❈

Comprobación de cola vacía
De nuevo, la estructura estará vacía si y sólo si inicio no apunta a ningún nodo de la cola (es decir,
apunta a NULO.)

Cniqtkvoq Cola_Vacia
Gpvtcfc

queue: Cola
Ucnkfc

(EKGTVQ, HCNUQ)
Kpkekq

Uk (queue.ini = PWNQ) gpvqpegu
Devolver (EKGTVQ)

Ukpq
Devolver (HCNUQ)

Hkpauk
Hkp

❈

bool Cola::ColaVacia (void)
{

return ini == NULL;
}

❈

Acceso al primer elemento de la cola
Se puede acceder a este elemento de la cola mediante el puntero inicio que lo referencia.

Cniqtkvoq"Primero_Cola
Gpvtcfcu

queue: Cola de Valor
Ucnkfcu

Valor
Kpkekq

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 44

{* comprobar si existe información en la cola *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Cola_Vacia (queue)) gpvqpegu

Gttqt"“cola vacia”
ukpq

Fgxqnxgt (queue.info [queue.ini])
Hkpauk

Hkp

❈

bool Cola::PrimeroCola (Valor & x)
{

bool error;

if (ColaVacia ())
error = true;

else
{

error = false;
x = ini->info;

}
return error;

}

❈

Operación de inserción
Al igual que en cualquier otra estructura dinámica, la inserción consta básicamente de tres pasos: El
primero de reserva del espacio necesario para el nuevo elemento; el segundo de asignación del valor a
insertar; y finalmente, el tercero de enlace del nuevo elemento en la estructura dinámica.

Cniqtkvoq Encolar
Gpvtcfc

queue: Cola de Valor
x: Valor

Ucnkfc
queue

Xctkcdng
p_aux: puntero a Nodo_cola

Kpkekq
p_aux ← EtgctaGurcekq
p_aux^.Info ← x
p_aux^.Sig ← PWNQ
Uk (Cola_Vacia (queue) gpvqpegu

queue.Ini ← p_aux
Ukpq

queue.Fin^.Sig ← p_aux
Hkpauk
queue.Fin ← p_aux

hkp

La traducción a C++ es inmediata:
❈

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 45

bool Cola::Encolar (Valor x)
{

bool error;
Puntero p_aux;

error = false;

p_aux = new Nodo;
p_aux->info = x;
p_aux->sig = NULL;

if (ColaVacia ())
ini = p_aux;

else
fin->sig = p_aux;

fin = p_aux;

return error;
}

❈

Operación de eliminación de un elemento
Como en cualquier estructura dinámica, la eleiminación de información se realiza básicamente en tres
pasos: (1) Obtener la información del elemento a borrar; (2) desenlazar el elemento de la estructura; y
(3) finalmente liberar el espacio ocupado por el elemento para dejarlo accesible para futuras llamadas.

Cniqtkvoq Desencolar
Gpvtcfc

queue: Cola de Valor
Ucnkfc

queue
x: Valor

Xctkcdng
p_aux: puntero a Nodo_Cola

Kpkekq
Uk*3+ (Cola_Vacia (queue) gpvqpegu

Gttqt “cola_vacia"
Ukpq*3+

{* 1 *}
x ← queue.Ini^.Info
{* 2 *}
p_aux ← queue.Ini
queue.Ini ← p_aux^.Sig
{* si tras borrar se vacia la cola, hay poner Fin a nulo *}
Uk*4+ (Cola_Vacia (queue) gpvqpegu

 queue.Fin ← PWNQ
Hkpauk*4+
{* 3 *}
NkdgtctaGurcekq (p-aux)

Hkpauk*3+
Hkp

❈

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 46

bool Cola::Desencolar (Valor & x)
{

bool error;
Puntero p_aux;

if (ColaVacia ())
error = true;

else
{

error = false;
x = ini->info;

p_aux = ini;
ini = ini->sig;

dispose p_aux;
}
return error;

}

❈

Operación de borrado de la estructura: Destructor de la clase
Una variable, cuando acaba el bloque donde está declarada, termina su existencia y es liberado el
espacio que ocupa en memoria. Es decir, el sistema marca como libre ese espacio y lo deja disponible
para su reutilización.

En el caso de los objetos ocurre exactamente lo mismo, el espacio de datos que ocupa el objeto es
liberado por el sistema.

En el caso en que toda la información guardada por el objeto este declarada dentro del objeto
(estructuras estáticas) no existe ningún porblema: La memoria ocupada es liberada.

Las cosas son ligeramente diferentes en el caso en que parte de la información guardada por el objeto
no esté totalmente en el interior del objeto, sino que el objeto contenga enlaces a la memoria ocupada
por la información (caso dinámico). En este caso, la memoria que se libera cuando acaba el bloque
donde está declarado el objeto tan solo es la contenida en el objeto, es decir, solo los enlaces que
enlazan con la memoria donde está la información. Con esto, la memoria ocupada por la información
queda ‘ocupada’, mientras que las referencias de acceso para acceder a ella desaparecen.

Esto es una cosa que debemos evitar, liberando antes de que desaparezca el ámbito de la variable, la
memoria ocupada por la información.

Un algoritmo que libera toda la memoria ocupada por una cola dinámica podría ser:

Cniqtkvoq LiberarCola
Gpvtcfc

queue: Cola de Valor
Ucnkfc

queue
Xctkcdng

p_aux: puntero a Nodo_cola
Kpkekq

Okgpvtcu (Pq Cola_Vacia (queue) jcegt
p_aux ← que.ini
que.ini ← que.ini^.sig
Nkdgtct"(p_aux)

hkpaokgpvtcu

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 12. Colas 47

hkp

En C++, para facilitar este proceso existe el método ‘destructor’ de la clase.

Al igual que los constructores, que son llamadso automáticamente cada vez que es necesario, el
destructor de la clase es llamado siempre que vaya a desaparecer el objeto. Si existe lo ejecuta y libera
elespacio ocupado por el objeto, y si no existe se limita a liberar el espacio ocupado por el objeto.

Asi como puede haber varios constructores, sólo puede haber un destructor y su prototipo es:
~Nombre_De_La_Clase (void)

No devuleve ningún tipo, ni siquiera void, igual que el constructor por defecto. Tiene como nombre el
símbolo ‘~’ seguido del nombre de la clase. Y como parámetros sólo puede tener void.

❈

Cola::~Cola (void)
{

Puntero p_aux;

while (!ColaVacia())
{

p_aux = ini;
ini = ini->sig;
dispose (p_aux);

}
}

❈

