
Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 31

11. PILAS

11.0 INTRODUCCIÓN .. 31
11.1 FUNDAMENTOS .. 31
11.2. REPRESENTACIÓN DE LAS PILAS EN C++ .. 32

Implementación mediante estructuras estáticas... 36
Implementación mediante estructuras dinámicas .. 40

11.0 Introducción

En este tema y en el siguiente veremos las estructuras de datos lineales pilas y colas. Las pilas y las
colas son dos de las estructuras de datos más utilizadas. Se trata de dos casos particulares de las
estructuras lineales generales (secuencias o listas) que, debido a su amplio ámbito de aplicación,
conviene ser estudiadas de manera independiente. En este tema veremos concretamente las pilas, su
utilización y su implementación más habitual en C++.

11.1 Fundamentos

La pila es una lista de elementos caracterizada porque las operaciones de inserción y eliminación de
elementos se realizan solamente en un extremo de la estructura. El extremo donde se realizan estas
operaciones se denomina habitualmente cima (top en la nomenclatura inglesa).

Dada una pila P, formada por los elementos a, b, c, ..., k (P=(a,b,c,...,k)), se dice que a, que es el
elemento más inaccesible de la pila, está en el fondo de la pila (bottom) y que k, por el contrario, el
más accesible, está en la cima (top).

Las restricciones definidas para la pila implican que si una serie de elementos A, B, C, D, E, F se
añaden, en este orden, a una pila entonces el primer elemento que se elimine (borre) de la estructura
deberá ser E. Por tanto, resulta que el último elemento que se inserta en una pila es el primero que se
borra. Por esa razón, se dice que una pila es una lista o estructura lineal de tipo LIFO (Last In First
Out, el último que entra es el primero que sale).

Estructura Pila
A B C D E F ...

←
Borrado

→
Inserción

Un ejemplo típico de pila lo constituye un montón de platos: Cuando se quiere introducir un nuevo
plato, éste se coloca en la posición más accesible, encima del último plato. Cuando se coge un plato,
éste se extrae, igualmente, del punto más accesible, el último que se ha introducido. O, si somos más
estrictos, otro ejemplo sería una caja llena de libros. Sólo podemos ver cuál es el libro que está más
arriba en la caja, y si ponemos o cojemos un libro, sólo podremos actuar sobre este primer libro. No
podemos siquiera saber el número total de libros guardados en la pila. Sólo sabremos el número de
elementos de la pila de libros si previamente los sacamos hasta vaciar la caja.

Otro ejemplo natural de la aplicación de la estructura pila aparece durante la ejecución de un programa
de ordenador, en la forma en que la máquina procesa las llamadas a los procedimientos. Cada llamada
a un procedimiento (o función) hace que el sistema almacene toda la información asociada con ese
procedimiento (parámetros, variables, constantes, direción de retorno, etc...) de forma independiente a

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 32

otros procedimientos y permitiendo que unos procedimientos puedan invocar a otros distintos (o a si
mismos) y que toda esa información almacenada pueda ser recuperada convenientemente cuando
corresponda. Como en un procesador sólo se puede estar ejecutando un procedimiento, esto quiere
decir que sólo es necesario que sean accesibles los datos de un procedimiento (el último activado, el
que está en la cima). De ahí que una estructura muy apropiada para este fin sea la estructura pila.

Como ya vimos con las estructuras de ejemplo del tema anterior, asociadas con la estructura pila
existen una serie de operaciones necesarias para su manipulación. Éstas son:

Iniciación de la estructura:
- Crear la pila (CrearPila): La operación de creación de la pila inicia la pila como vacía.
Operaciones para añadir y eliminar información:
- Añadir elementos en la cima (Apilar): pondrá un nuevo elemento en la parte superior de

la pila.
- Eliminar elementos de la cima (Desapilar): lo que hará será devolver el elemento superior

de la cima y eliminarlo de la pila.
Operaciones para comprobar tanto la información contenida en la pila, como el propio estado
de la cima:
- Comprobar si la pila está vacía (PilaVacia): Esta operación es necesaria para poder

decidir si es posible eliminar elementos de la pila.
- Acceder al elemento situado en la cima (CimaPila): Nos indica el valor del elemento

situado en la parte superior de la pila.
La especificación correcta de todas estas operaciones permitirá definir adecuadamente una pila.

Una declaración más formal de las operaciones definidas sobre la estructura de datos pila, y los
axiomas que las relacionan pordrían ser las siguientes:

Estructura
Pila (Valor) /* Valor será el tipo de datos que podremos guardar en la pila */

Operaciones
CREAR_PILA () → Pila
APILAR (Pila , Valor) → Pila
DESAPILAR (Pila) → Pila
CIMA_PILA (Pila) → Valor
PILA_VACIA (Pila) → Lógico

Axiomas
∀ stack ∈ Pila, x ∈ Valor se cumple que:

PILA_VACIA (CREAR_PILA ()) → cierto
PILA_VACIA (APILAR (stack, x)) → falso
DESAPILAR (CREAR_PILA ()) → error
DESAPILAR (APILAR (stack, x)) → stack
CIMA_PILA (CREAR_PILA ()) → error
CIMA_PILA (APILAR (stack, x)) → x

11.2. Representación de las Pilas en C++

Los lenguajes de programación de alto nivel no suelen disponer de un tipo de datos pila. Aunque, por
el contrario, en lenguajes de bajo nivel (ensambladores) es posible manipular directamente alguna
estructura pila propia del sistema. Por lo tanto, en general, es necesario representar la estructura pila a
partir de otros tipos de datos existentes en el lenguaje.

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 33

En C++, lo primero que nos plantearemos serán los métodos a través de los que podremos acceder a la
información contenida en la estructura.

Las operaciones van a ser básicamente las que hemos definido en el tipo abstracto de datos, pero ahora
habrá que decidir la implementación concreta de las mismas. Como criterio general estableceremos
que aquellas funciones que puedan producir error, devolverán un booleano que marque si se ha
producido o no error en la operación. Si esas funciones tuvieran que devolver algún valor, lo
devolverán por referencia.

Así, Desapilar y CimaPila tendrán el siguiente prototipo:
bool Desapilar (Valor &);
bool CimaPila (Valor &);

suponiendo Valor, como el tipo de dato guardado en la Pila.

La consulta del estado de la pila (PilaVacia) será:
bool PilaVacia (void);

Recordar que en C++, si la implementación se realiza mediante clases, no es necesario pasar como
parámetro el objeto de la consulta, ya que es el propio objeto el que hace la llamada al método que
realiza la consulta.

Respecto de Apilar, su prototipo será similar al de Desapilar, aunque según los axiomas, en principio
no va a devolver ningún error. En la implementación, la memoria del ordenador es finita, y tendremos
en cuenta la posibilidad de que llegue un punto en el que no podamos apilar más elementos.

bool Apilar (Valor);

Finalmente, nos queda el método de iniciación de la estructura CrearPila. Este método debería ser
llamado cada vez que declarasemos un objeto de tipo pila, ya la pila siempre debe empezar sin
contener ningún valor.

En las declaraciones de clases en C++, esto se soluciona mediante la inclusión de un constructor por
defecto en la clase.

El constructor por defecto es un método especial que es llamado siempre que se instancia (declara) un
nuevo objeto de una clase.

Si no existe el constructor por defecto, la instanciación se limita a reservar el espacio necesario para
guardar la información del objeto.

Si existe el constructor por defecto, éste es llamado después de la reserva de memoria, y se suele
utilizar para iniciar las estructuras con valores ‘correctos’ (y no los valores aleatorios que en principio
habría en la memoria.)

El constructor por defecto es un método que tiene el mismo nombre que la clase, no devuelve ningún
valor (ni siquiera void) y tiene como parámetro void.

Con todo lo dicho, la declaración de la parte pública de la clase, quedaría como sigue:
class Pila
{

public:
Pila (void); // Constructor por defecto
bool Apilar (Valor);
bool Desapilar (Valor &);
bool CimaPila (Valor &);
bool PilaVacia (void);

private:
.??.

};

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 34

Una vez llegados a este punto, ya podemos utilizar, como usuarios, la clase Pila. De hecho, ya en la
parte del TAD podíamos plantearnos la utilización de la pilas mediante las operaciones descritas.

A continuación veremos algunos ejemplos de utilización de pilas, con una primera aproximación a la
solución en pseudocódigo y una solución en C++.

Ejemplo de utilización de listas: Evaluación de expresiones algebraicas

Sabemos que, para evitar ambigüedad y saber en qué orden se deben evalúar las expresiones,
se define en los lenguajes de programación una prioridad para cada posible operador.
Además, si dos operadores tienen la misma prioridad se evita el conflicto evaluando éstos de
izquierda a derecha. También está permitido el uso de paréntesis para establecer un orden
concreto de evaluación, independientemente de la precedencia de los operadores. Todos estos
condicionamientos son debidos al tipo de notación empleada, la llamada notación infija,
donde los operadores se sitúan entre los operandos sobre los que actúa. De manera que,
según sabemos, la siguiente expresión:

x ← A/B-C+D*E-A*C

se evaluaría como sigue:

x ← (((A/B) - C) + (D*E)) - (A*C)

El problema es cómo genera el compilador el código necesario para calcular esta expresión.
La solución se facilita si se modifica el tipo de notación empleada para representar la
expresión. Es conveniente pasar a notación posfija (el operador se sitúa detrás de los
operandos sobre los que actúa) durante el proceso de compilación. Las ventajas de la
notación posfija son varias: no hace falta paréntesis; no hace falta definir prioridad de
operadores; y la evaluación final de la expresión se realiza fácilmente con un simple
recorrido de izquierda a derecha de la expresión.

Siguiendo la notación posfija, la expresión del ejemplo anterior se podría escribir como:

x ← A B / C – D E * + A C * -

Para realizar el cálculo de las expresiones en notación posfija, hay que tener en cuenta que
al leerlas de izquierda a derecha, lo primero que se lee es la información (operandos) y
después el tipo de acción (operador) que se realiza con ella. Por ello, es necesario almacenar
la información leida hasta que se determine que operador hace uso de ella. Además, los
operadores actúan sobre los últimos operandos leidos. De manera que, conviene recuperar la
información en sentido inverso a como se almacena. Por esa razón, parece natural emplear
una pila como estructura de almacenamiento de información.

El esquema algorítmico para la evaluación de expresiones dadas en notación posfija
consistiría en ir analizando secuencialmente la expresión. Si se detecta un operando, se
inserta en la pila y si se detecta un operador, éste se evalúa utilizando los operandos
necesarios de la pila y situando, de nuevo, el resultado en la pila, puesto que será un
operando para otro operador posterior. Este proceso es mucho más simple que intentar la
evaluación directa a partir de la expresión en notación infija.

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 35

Algoritmo para evaluar expresiones:

Xctkcdngu
Kpkekq

leer expresión
Okgpvtcu hay elementos en la expresión jcegt

Uk*3+ (elemento = identificador de operando) gpvqpegu
 Apilar (elemento)

Ukpq*3+ {* es un operador *}
op ← número de operandos del operador
Tgrgvkt op veces

Desapilar y Almacenar
Hkpatgrgvkt
aplicar el operador sobre los operandos desapilados
Apilar (resultado de operación)

Hkpauk*3+
Hkpaokgpvtcu
Uk*4+ Pila_Vacia gpvqpegu

"Error. Demasiados operadores"
Ukpq*4+

Uk*5+ (stack.cima > 1) gpvqpegu
"Error. Demasiados operandos"

Ukpq*5+
 Fgxqnxgt (Desapilar)

Hkpauk*5+
Hkpauk*4+

Hkp

Ejemplo de utilización de pilas: Paso de una expresión en notación infija a notación prefija

Asociado con el problema de las expresiones, ya comentado, estaría el problema de cambiar
de notación la expresión. Cómo pasar de la notación infija empleada durante la escritura del
programa (que es cómoda y habitual para el usuario) a la notación posfija, más conveniente
para automatizar los procesos de cálculo. Para realizar este proceso, de nuevo resulta
adecuada la utilización de una pila.

Para el proceso de traducción de la expresión hay que tener en cuenta una serie de aspectos:
los operandos aparecen en el mismo orden en la notación infija y en la posfija, con lo que no
hay que realizar ningún tipo de acción específica cuando, al leer la expresión, se detecta un
operando, simplemente proporcionarlo como salida; los operandos; por su parte, sí que
cambian de posición al cambiar la notación. En la notación infija, el operador se sitúa antes
que uno de los operandos, mientras que enla notación posfija siempre va detrás. Por esa
razón, ahora es conveniente almacenar los operadores, no los operandos, hasta el momento
en que halla que proporcionarlos como salida. Además, hay que tener en cuenta que la
entrada de datos es una expresión en la que los operadores tienen asignadas disintas
prioridades, estas prioridades también se deben tener en cuenta en el momento de la
traducción.

El siguiente algoritmo permite traducir una expresión escrita en notación infija a notación
posfija. Para simplificar la tarea, se ha supuesto que la expresión de entrada no tiene
paréntesis (lo que complicaría ligeramente el proceso) y que tenemos un proceso paralelo
que permite extraer cada uno de los elementos de la expresión (identificadores de variable,
constantes, funciones, etc...):

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 36

Cniqtkvoq Infija_A_Posfija (sin paréntesis)

Gpvtcfc
expresion: cadena

Xctkcdngu
stack: Pila de elemento de cadena
x, y: elemento de cadena
fin: (EKGTVQ, HCNUQ)

Kpkekq
Iniciar_Pila (stack)
x ← Sig_Elemento (expresion)
Okgpvtcu*3+ (pq final (expresion)) jcegt

Uk*3+ (x es operando) gpvqpegu
Salida (x)

Ukpq*3+ {* x es operador, entonces se apila pero... *}
fin ← HCNUQ
{* ...antes de apilar, analizar prioridades de operadores *}
Okgpvtcu*4+ (pq Pila_Vacia (stack)) y (pq fin) jcegt

Uk*4+ (Prioridad (x) ≤ Prioridad (Cima_Pila (stack)) gpvqpegu
y ← Desapilar (stack)
Salida (y)

Ukpq*4+
fin ← EKGTVQ

Hkpauk*4+
Hkpaokgpvtcu*4+
Apilar (stack, x)

Hkpauk*3+
x ← Sig_Elemento (expresion)

hkpaokgpvtcu*3+
{* se ha terminado la expresión, vaciar la pila *}
Okgpvtcu*5+ (pq Pila_Vacia (stack)) jcegt

y ← Desapilar (stack)
Salida (y)

Hkpaokgpvtcu*5+
fin

Implementación mediante estructuras estáticas
La forma más simple, y habitual, de representar una pila es mediante un vector unidimensional. Este
tipo de datos permite definir una secuencia de elementos (de cualquier tipo) y posee un eficiente
mecanismo de acceso a la información contenida en ella.

Al definir un array hay que determinar el número de índices válidos y, por lo tanto, el número de
componentes definidos. Entonces, la estructura pila representada por un array tendrá limitado el
número de posibles elementos.

La parte privada de la clase, será pues un vector donde guardaremos la información.

El primer elemento de la pila se almacenará en info[0], será el fondo de la pila, el segundo elemento
en info[1] y así sucesivamente. En general, el elemento i-ésimo estará almacenado en info[i - 1].

Como todas las operaciones se realizan sobre la cima de la pila, es necesario tener correctamente
localizada en todo instante esta posición. Es necesaria una variable adicional, cima, que apunte al
último elemento de la pila o nos diga cuantos elementos tenemos en ella.

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 37

Resumiendo, la clase Pila contendrá, en esta implementación, la siguiente parte privada:
class Pila
{

public: ...

private:
Vector vect;
int cima;

};

Donde Vector será:

typedef Valor Vector[MAX];

Suponiendo Valor, el tipo de dato que se puede almacenar en la pila, y MAX una constante que me
limita el tamaño máximo de la pila.

Con estas consideraciones prácticas, se puede pasar a definir las operaciones que definen la pila.

Operación ETGCTaRKNC
La creación de la pila se realizará mediante el constructor por defecto. La tarea que deberá realizar será
decir que no existen elementos en la pila:

stack: Pila

stack.Cima ← 0

En C++:
٭

Pila::Pila (void)
{

cima = 0;
}

٭

Operación RKNCaXCEKC
Esta operación permitirá determinar si es posible eliminar elementos.

La pila estará vacia si la cima está apuntando al valor cero.

Cniqtkvoq Pila_Vacia
Gpvtcfc

stack: Pila
Ucnkfc

(EKGTVQ, HCNUQ)
Kpkekq

Uk (stack.Cima = 0) gpvqpegu
Fgxqnxgt (EKGTVQ)

Ukpq
Fgxqnxgt (HCNUQ)

Hkpauk
Hkp

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 38

٭

bool Pila::PilaVacia (void)
{

return cima == 0;
}

٭

Operación de inserción de información (CRKNCT)
La operación de inserción normalmente se conoce por su nombre inglés Push, o Apilar. La operación
aplicada sobre un pila y un valor x, inserta x en la cima de la pila. Esta operación está restringida por el
tipo de representación escogido. En este caso, la utilización de un array implica que se tiene un número
máximo de posibles elementos en la pila, por lo tanto, es necesario comprobar, previamente a la
inserción, que realmente hay espacio en la estructura para almacenar un nuevo elemento. Con está
consideración, el algoritmo de inserción sería:

Cniqtkvoq Apilar
Gpvtcfcu

x: Valor {* elemento que se desea insertar *}
stack: Pila de Valor

Ucnkfcu
stack

Kpkekq
{* comprobar si en la pila se pueden insertar más elementos *}
{* esto es necesario por el tipo de representación de la estructura *}
Uk (stack.Cima = MAX) gpvqpegu

 Gttqt "pila llena"
Ukpq

stack.Cima ← stack.Cima + 1
stack.Info [stack.Cima] ← x

Hkpaukpq
Hkp

En la implementación en C++, tendremos en cuenta que vamos a devolver mediante la función si se ha
producido algún tipo de error o no, en vez de mostrar un mensaje por pantalla.

٭

bool Pila::Apilar (Valor x)
{

bool error;

if (cima == MAX)
error = true;

else
{

error = false;
info[cima] = x;
cima++;

}
return error;

}

٭

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 39

Operación de consulta de información (EKOCaRKNC)
La operación de consulta de la información, sólo puede acceder al elemento que esté situado en la cima
de la pila, y proporcionar su valor. El algoritmo se limitará a devolver el elemento que está situado en
la posición cima de la pila, si existe información almacenada en la pila.

Cniqtkvoq"Cima_Pila
Gpvtcfcu

stack: Pila de Valor
Ucnkfcu

Valor
Kpkekq

{* comprobar si existe información en la pila *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Pila_Vacia (stack)) gpvqpegu

Gttqt “pila vacia”
ukpq

Fgxqnxgt (stack.Info [stack.Cima])
Hkpauk

Hkp

٭

bool Pila::CimaPila (Valor & x)
{

bool error;

if (cima == 0)
error = true;

else
{

error = false;
x = info[cima - 1];

}
return error;

}

٭

Operación de eliminación de información (FGUCRKNCT)
La operación de borrado elimina de la estructura el elemento situado en la cima. Normalmente recibe
el nombre de Pop en la bibliografía inglesa. El algoritmo de borrado sería:

Cniqtkvoq"Desapilar
Gpvtcfcu

stack: Pila de Valor
Ucnkfcu

stack
x: Valor

Kpkekq
{* comprobar si se pueden eliminar elementos de la pila *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Pila_Vacia (stack)) gpvqpegu

Gttqt “pila vacia”
ukpq

x ← stack.Info [stack.Cima]
 stack.Cima ← stack.Cima - 1

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 40

Hkpauk
Hkp

٭

bool Pila::Desapilar (Valor & x)
{

bool error;

if (cima == 0)
error = true;

else
{

error = false;
cima--;
x = info[cima];

}
return error

}

٭

Implementación mediante cursores

Implementación mediante estructuras dinámicas
Uno de los mayores problemas en la utilización de estructuras estáticas, estriba en el hecho de tener
que determinar, en el momento de la realización del programa, el valor máximo de elementos que va a
poder contener la estructura.

Resumiendo, la clase Pila contendrá, en esta implementación, la siguiente parte privada:
class Pila
{

public: ...

private:
Puntero cima;

};

Donde Puntero será:

typedef struct Nodo * Puntero;

Y el tipo Nodo será:

struct Nodo
{

Valor info;
Puntero sig;

};

Suponiendo Valor, el tipo de dato que se puede almacenar en la pila.

La implementación en este caso de los métodos de la clase Pila será la siguiente.

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 41

Operación ETGCTaRKNC

stack: Pila

stack.Cima ← NULL

En C++:
٭

Pila::Pila (void)
{

cima = NULL;
}

٭

Operación RKNCaXCEKC
Esta operación permitirá determinar si es posible eliminar elementos.

La pila estará vacia si la cima está apuntando al valor cero.

Cniqtkvoq Pila_Vacia
Gpvtcfc

stack: Pila
Ucnkfc

(EKGTVQ, HCNUQ)
Kpkekq

Uk (stack.Cima = NULL) gpvqpegu
Fgxqnxgt (EKGTVQ)

Ukpq
Fgxqnxgt (HCNUQ)

Hkpauk
Hkp

٭

bool Pila::PilaVacia (void)
{

return cima == NULL;
}

٭

Operación de inserción de información (CRKNCT)
Con la representación enlazada de la pila, la estructura tiene una menor limitación en cuanto al posible
número de elementos que se pueden almacenar simúltaneamente. Hay que tener en cuenta que la
representación de la pila ya no requiere la especificación de un tamaño máximo, por lo que mientras
exista espacio libre en memoria se va a poder reservar espacio para nuevos elementos. Por esa razón,
se va suponer en el siguiente algoritmo que la condición de pila llena no se va a dar y, por lo tanto, no
será necesaria su comprobación.

Cniqtkvoq Apilar
Gpvtcfc

stack: Pila de Valores
x: Valor

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 42

Ucnkfc
stack

Xctkcdng
p_aux: Puntero_a_Nodo_pila

Kpkekq
p_aux ← EtgctaGurcekq
p_aux^.Info ← x
p_aux^.Sig ← stack.Cima
stack.Cima ← p_aux

Hkp

Para hacer compatible este método con el método definido para el caso estático, devolveremos siempre
‘FALSE’.

٭

bool Pila::Apilar (Valor x)
{

bool error;
Puntero p_aux;

error = false;

p_aux = new Nodo;
p_aux->info = x;
p_aux->sig = cima;
cima = p_aux;

return error;
}

٭

Operación de consulta de información (EKOCaRKNC)
Al elemento "visible" de la pila se puede acceder fácilmente a través del puntero que le referencia,
cima, que siempre debe existir y ser adecuadamente actualizado.

Cniqtkvoq"Cima_Pila
Gpvtcfcu

stack: Pila de Valor
Ucnkfcu

Valor
Kpkekq

{* comprobar si existe información en la pila *}
{* esta operación no depende de la representación, siempre es necesaria *}
Uk (Pila_Vacia (stack)) gpvqpegu

Gttqt “pila vacia”
ukpq

Fgxqnxgt (Cima^.Info)
Hkpauk

Hkp

٭

bool Pila::CimaPila (Valor & x)
{

bool error;

Ricardo Ferrís Castell Algoritmos y Estructuras de Datos I

Tema 11. Pilas 43

if (cima == NULL)
error = true;

else
{

error = false;
x = cima->info;

}
return error;

}

٭

Operación de eliminación de información (FGUCRKNCT)
La único que hay que tener en cuenta a la hora de diseñar un algoritmo para esta operación es la
utilización eficiente de la memoria, de forma que el espacio ocupado por el nodo borrado vuelva a
estar disponible para el sistema. Recordar que si la pila está vacía no se puede desapilar.

Cniqtkvoq Desapilar
Gpvtcfc

stack: Pila de Valor
Ucnkfc

stack
x: Valor

Xctkcdng
p_aux: Puntero_a_Nodo_pila

Kpkekq
Uk (Pila_Vacia (stack)) gpvqpegu

Gttqt"“pila_vacia”
Ukpq

p_aux ← stack.Cima
x ← p_aux^.Info
stack.Cima ← p_aux^.Sig

NkdgtctaGurcekq (p_aux)
Hkpauk

Hkp

En C++, el método quedaría como sigue:
٭

bool Pila::Desapilar (Valor & x)
{

bool error;
Puntero p_aux;

if (cima == NULL)
error = true;

else
{

error = false;

p_aux = cima;
x = cima->info;
cima = cima->sig;
delete p_aux;

}
return error

}

٭

