Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

11. PILAS

T1.0 INTRODUCCION ...ttt bbbt 31
L1.1 FUNDAMENTOS ..ottt sttt st s e b s h e h et e e b sa e eb e b e ne et et e b sa e 31
11.2. REPRESENTACION DE LAS PILAS EN G Lottt 32
Implementacion mediante eSIrUCIUFAS @STALICAScceeueieeeeeeee ettt ettt ettt et et e et e saeeeeeneeeseeeeee e 36
Implementacion mediante eStrUCUTAS AINAMICASccccceiouiieeiieet ettt ettt eee e 40

11.0 Introduccion

En este tema y en el siguiente veremos las estructuras de datos lineales pilas y colas. Las pilas y las
colas son dos de las estructuras de datos mas utilizadas. Se trata de dos casos particulares de las
estructuras lineales generales (secuencias o listas) que, debido a su amplio ambito de aplicacion,
conviene ser estudiadas de manera independiente. En este tema veremos concretamente las pilas, su
utilizacion y su implementacion mas habitual en C++.

11.1 Fundamentos

La pila es una lista de elementos caracterizada porque las operaciones de insercion y eliminacion de
elementos se realizan solamente en un extremo de la estructura. El extremo donde se realizan estas
operaciones se denomina habitualmente cima (fop en la nomenclatura inglesa).

Dada una pila P, formada por los elementos a, b, c, ..., k (P=(a,b,c,...,k)), se dice que a, que es el
elemento mas inaccesible de la pila, esta en el fondo de la pila (bottom) y que k, por el contrario, el
mas accesible, esta en la cima (top).

Las restricciones definidas para la pila implican que si una serie de elementos A, B, C, D, E, F se
afiaden, en este orden, a una pila entonces el primer elemento que se elimine (borre) de la estructura
debera ser E. Por tanto, resulta que el ultimo elemento que se inserta en una pila es el primero que se
borra. Por esa razon, se dice que una pila es una lista o estructura lineal de tipo LIFO (Last In First
Out, el ultimo que entra es el primero que sale).

Estructura Pila
A B C D E F

— | >

Borrado | Insercion

Un ejemplo tipico de pila lo constituye un monton de platos: Cuando se quiere introducir un nuevo
plato, éste se coloca en la posicion mas accesible, encima del ultimo plato. Cuando se coge un plato,
éste se extrae, igualmente, del punto mas accesible, el ultimo que se ha introducido. O, si somos mas
estrictos, otro ejemplo seria una caja llena de libros. S6lo podemos ver cudl es el libro que estd mas
arriba en la caja, y si ponemos o cojemos un libro, s6lo podremos actuar sobre este primer libro. No
podemos siquiera saber el numero total de libros guardados en la pila. S6lo sabremos el niumero de
elementos de la pila de libros si previamente los sacamos hasta vaciar la caja.

Otro ejemplo natural de la aplicacion de la estructura pila aparece durante la ejecucion de un programa
de ordenador, en la forma en que la maquina procesa las llamadas a los procedimientos. Cada llamada
a un procedimiento (o funcidon) hace que el sistema almacene toda la informacion asociada con ese
procedimiento (parametros, variables, constantes, direcion de retorno, etc...) de forma independiente a

Tema 11. Pilas 31

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

otros procedimientos y permitiendo que unos procedimientos puedan invocar a otros distintos (o a si
mismos) y que toda esa informacion almacenada pueda ser recuperada convenientemente cuando
corresponda. Como en un procesador solo se puede estar ejecutando un procedimiento, esto quiere
decir que s6lo es necesario que sean accesibles los datos de un procedimiento (el ultimo activado, el
que esta en la cima). De ahi que una estructura muy apropiada para este fin sea la estructura pila.

Como ya vimos con las estructuras de ejemplo del tema anterior, asociadas con la estructura pila
existen una serie de operaciones necesarias para su manipulacion. Estas son:

Iniciacion de la estructura:

- Crear la pila (CrearPila): La operacion de creacion de la pila inicia la pila como vacia.

Operaciones para afiadir y eliminar informacion:

- Afadir elementos en la cima (Apilar): pondra un nuevo elemento en la parte superior de
la pila.

- Eliminar elementos de la cima (Desapilar): lo que hara sera devolver el elemento superior
de la cima y eliminarlo de la pila.

Operaciones para comprobar tanto la informacion contenida en la pila, como el propio estado

de la cima:

- Comprobar si la pila estd vacia (PilaVacia): Esta operacion es necesaria para poder
decidir si es posible eliminar elementos de la pila.

- Acceder al elemento situado en la cima (CimaPila): Nos indica el valor del elemento
situado en la parte superior de la pila.

La especificacion correcta de todas estas operaciones permitira definir adecuadamente una pila.

Una declaracion mas formal de las operaciones definidas sobre la estructura de datos pila, y los
axiomas que las relacionan pordrian ser las siguientes:

Estructura
Pila (Valor) [*Valor sera el tipo de datos que podremos guardar en la pila */
Operaciones

CREAR_PILA () - Pila

APILAR (Pila, Valor) - Pila

DESAPILAR (Pila) - Pila

CIMA_PILA (Pila) - Valor

PILA_VACIA (Pila) - Loégico
Axiomas

[Jstack []Pila, x [JValor se cumple que:
PILA_VACIA (CREAR_PILA ()) - cierto
PILA_VACIA (APILAR (stack, x)) - falso
DESAPILAR (CREAR_PILA ()) - error
DESAPILAR (APILAR (stack, x)) - stack
CIMA_PILA (CREAR_PILA ()) - error
CIMA_PILA (APILAR (stack, x)) - x

11.2. Representacion de las Pilas en C++

Los lenguajes de programacion de alto nivel no suelen disponer de un tipo de datos pila. Aunque, por
el contrario, en lenguajes de bajo nivel (ensambladores) es posible manipular directamente alguna
estructura pila propia del sistema. Por lo tanto, en general, es necesario representar la estructura pila a
partir de otros tipos de datos existentes en el lenguaje.

Tema 11. Pilas 32

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

En C++, lo primero que nos plantearemos seran los métodos a través de los que podremos acceder a la
informacion contenida en la estructura.

Las operaciones van a ser basicamente las que hemos definido en el tipo abstracto de datos, pero ahora
habra que decidir la implementacidon concreta de las mismas. Como criterio general estableceremos
que aquellas funciones que puedan producir error, devolveran un booleano que marque si se ha
producido o no error en la operacion. Si esas funciones tuvieran que devolver algin valor, lo
devolveran por referencia.

Asi, Desapi | ar y G naPi | a tendran el siguiente prototipo:

bool Desapilar (Valor &);
bool CimaPila (Valor &);

suponiendo Val or, como el tipo de dato guardado en la Pila.

La consulta del estado de la pila (Pi | avaci a) sera:

bool PilaVacia (void);

Recordar que en C++, si la implementacion se realiza mediante clases, no es necesario pasar como
parametro el objeto de la consulta, ya que es el propio objeto el que hace la llamada al método que
realiza la consulta.

Respecto de Apilar, su prototipo serd similar al de Desapilar, aunque seglin los axiomas, en principio
no va a devolver ningun error. En la implementacion, la memoria del ordenador es finita, y tendremos
en cuenta la posibilidad de que llegue un punto en el que no podamos apilar mas elementos.

bool Apilar (Valor);

Finalmente, nos queda el método de iniciacién de la estructura CrearPila. Este método deberia ser
llamado cada vez que declarasemos un objeto de tipo pila, ya la pila siempre debe empezar sin
contener ningun valor.

En las declaraciones de clases en C++, esto se soluciona mediante la inclusion de un constructor por
defecto en la clase.

El constructor por defecto es un método especial que es llamado siempre que se instancia (declara) un
nuevo objeto de una clase.

Si no existe el constructor por defecto, la instanciacion se limita a reservar el espacio necesario para
guardar la informacion del objeto.

Si existe el constructor por defecto, éste es llamado después de la reserva de memoria, y se suele
utilizar para iniciar las estructuras con valores ‘correctos’ (y no los valores aleatorios que en principio
habria en la memoria.)

El constructor por defecto es un método que tiene el mismo nombre que la clase, no devuelve ningtin
valor (ni siquiera voi d) y tiene como parametro voi d.

Con todo lo dicho, la declaracion de la parte publica de la clase, quedaria como sigue:

class Pila

public:
Pila (void); /1 Constructor por defecto
bool Apilar (Valor);
bool Desapilar (Valor &);
bool CmaPila (Valor &);
bool PilaVacia (void);
private:
. ??.

b

Tema 11. Pilas 33

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Una vez llegados a este punto, ya podemos utilizar, como usuarios, la clase Pila. De hecho, ya en la
parte del TAD podiamos plantearnos la utilizacion de la pilas mediante las operaciones descritas.

A continuacion veremos algunos ejemplos de utilizacion de pilas, con una primera aproximacion a la
solucidén en pseudocodigo y una solucion en C++.

Ejemplo de utilizacion de listas: Evaluacion de expresiones algebraicas

Sabemos que, para evitar ambigiiedad y saber en qué orden se deben evaluar las expresiones,
se define en los lenguajes de programacion una prioridad para cada posible operador.
Ademas, si dos operadores tienen la misma prioridad se evita el conflicto evaluando éstos de
izquierda a derecha. También esta permitido el uso de paréntesis para establecer un orden
concreto de evaluacion, independientemente de la precedencia de los operadores. Todos estos
condicionamientos son debidos al tipo de notacion empleada, la llamada notacion infija,
donde los operadores se situan entre los operandos sobre los que actua. De manera que,
segun sabemos, la siguiente expresion:

X « A/B-C+D*E-A*C
se evaluaria como sigue:
X «(((4/B)-C) + (D*E)) - (A*C)

El problema es como genera el compilador el codigo necesario para calcular esta expresion.
La solucion se facilita si se modifica el tipo de notacion empleada para representar la
expresion. Es conveniente pasar a notacion posfija (el operador se situa detrdas de los
operandos sobre los que actua) durante el proceso de compilacion. Las ventajas de la
notacion posfija son varias: no hace falta paréntesis; no hace falta definir prioridad de
operadores; y la evaluacion final de la expresion se realiza facilmente con un simple
recorrido de izquierda a derecha de la expresion.

Siguiendo la notacion posfija, la expresion del ejemplo anterior se podria escribir como:
X -AB/C-DE*+AC*-

Para realizar el calculo de las expresiones en notacion posfija, hay que tener en cuenta que
al leerlas de izquierda a derecha, lo primero que se lee es la informacion (operandos) y
después el tipo de accion (operador) que se realiza con ella. Por ello, es necesario almacenar
la informacion leida hasta que se determine que operador hace uso de ella. Ademas, los
operadores actuan sobre los ultimos operandos leidos. De manera que, conviene recuperar la
informacion en sentido inverso a como se almacena. Por esa razon, parece natural emplear
una pila como estructura de almacenamiento de informacion.

El esquema algoritmico para la evaluacion de expresiones dadas en notacion posfija
consistiria en ir analizando secuencialmente la expresion. Si se detecta un operando, se
inserta en la pila y si se detecta un operador, éste se evalua utilizando los operandos
necesarios de la pila y situando, de nuevo, el resultado en la pila, puesto que serd un
operando para otro operador posterior. Este proceso es mucho mas simple que intentar la
evaluacion directa a partir de la expresion en notacion infija.

Tema 11. Pilas 34

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Algoritmo para evaluar expresiones:

Variables
Inicio
leer expresion
Mientras hay elementos en la expresion hacer
Si() (elemento = identificador de operando) entonces
Apilar (elemento)
Sino) {* es un operador *}
op — numero de operandos del operador
Repetir op veces
Desapilar y Almacenar
Fin_repetir
aplicar el operador sobre los operandos desapilados
Apilar (resultado de operacién)
Fin_Si(1)
Fin_mientras
Si(z) Pila_Vacia entonces
"Error. Demasiados operadores"
SinO(z)
Si(3 (stack.cima > 1) entonces
"Error. Demasiados operandos”
Sin0(3)
Devolver (Desapilar)
Fin_si(3)
Fin_Si(z)
Fin

Ejemplo de utilizacion de pilas: Paso de una expresion en notacion infija a notacion prefija

Asociado con el problema de las expresiones, ya comentado, estaria el problema de cambiar
de notacion la expresion. Como pasar de la notacion infija empleada durante la escritura del
programa (que es comoda y habitual para el usuario) a la notacion posfija, mds conveniente
para automatizar los procesos de calculo. Para realizar este proceso, de nuevo resulta
adecuada la utilizacion de una pila.

Para el proceso de traduccion de la expresion hay que tener en cuenta una serie de aspectos:
los operandos aparecen en el mismo orden en la notacion infija y en la posfija, con lo que no
hay que realizar ningun tipo de accion especifica cuando, al leer la expresion, se detecta un
operando, simplemente proporcionarlo como salida; los operandos,; por su parte, si que
cambian de posicion al cambiar la notacion. En la notacion infija, el operador se sitia antes
que uno de los operandos, mientras que enla notacion posfija siempre va detras. Por esa
razon, ahora es conveniente almacenar los operadores, no los operandos, hasta el momento
en que halla que proporcionarlos como salida. Ademas, hay que tener en cuenta que la
entrada de datos es una expresion en la que los operadores tienen asignadas disintas
prioridades, estas prioridades también se deben tener en cuenta en el momento de la
traduccion.

El siguiente algoritmo permite traducir una expresion escrita en notacion infija a notacion
posfija. Para simplificar la tarea, se ha supuesto que la expresion de entrada no tiene
pareéntesis (lo que complicaria ligeramente el proceso) y que tenemos un proceso paralelo
que permite extraer cada uno de los elementos de la expresion (identificadores de variable,
constantes, funciones, etc...):

Tema 11. Pilas 35

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Algoritmo Infija_A_Posfija (sin paréntesis)

Entrada
expresion: cadena
Variables
stack: Pila de elemento de cadena
X, ¥: elemento de cadena
fin: (CIERTO, FALSO)
Inicio
Iniciar_Pila (stack)
X « Sig_Elemento (expresion)
Mientras 4, (no final (expresion)) hacer
Si(1) (x es operando) entonces
Salida (x)
Sino) {* x es operador, entonces se apila pero... *}
fin « FALSO
{*...antes de apilar, analizar prioridades de operadores *}
Mientras ;) (no Pila_Vacia (stack)) y (no fin) hacer
Si() (Prioridad (x) < Prioridad (Cima_Pila (stack)) entonces
y « Desapilar (stack)
Salida (y)
SinO(z)
fin « CIERTO
Fin_Si(z)
Fin_mientras
Apilar (stack, x)
Fin_Si(1)
X « Sig_Elemento (expresion)
fin_mientras,)
{* se ha terminado la expresién, vaciar la pila *}
Mientras ;) (no Pila_Vacia (stack)) hacer
y « Desapilar (stack)
Salida (y)
Fin_mientras
fin

Implementacion mediante estructuras estaticas

La forma mas simple, y habitual, de representar una pila es mediante un vector unidimensional. Este
tipo de datos permite definir una secuencia de elementos (de cualquier tipo) y posee un eficiente
mecanismo de acceso a la informacion contenida en ella.

Al definir un array hay que determinar el nimero de indices vélidos y, por lo tanto, el nimero de
componentes definidos. Entonces, la estructura pila representada por un array tendra limitado el
numero de posibles elementos.

La parte privada de la clase, sera pues un vector donde guardaremos la informacion.

El primer elemento de la pila se almacenara en i nf o[0], serd el fondo de la pila, el segundo elemento
eninfo[1] y asi sucesivamente. En general, el elemento i-ésimo estara almacenado eninfo[i - 1].

Como todas las operaciones se realizan sobre la cima de la pila, es necesario tener correctamente
localizada en todo instante esta posicion. Es necesaria una variable adicional, ci ma, que apunte al
ultimo elemento de la pila o nos diga cuantos elementos tenemos en ella.

Tema 11. Pilas 36

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Resumiendo, la clase Pi | a contendrd, en esta implementacion, la siguiente parte privada:

class Pila

public:
private:
Vect or vect;
int cing;

s
Donde Vect or sera:
typedef Val or Vector[MAX];

Suponiendo Val or, el tipo de dato que se puede almacenar en la pila, y MAX una constante que me
limita el tamafio méximo de la pila.

Con estas consideraciones practicas, se puede pasar a definir las operaciones que definen la pila.

Operacion CREAR PILA

La creacion de la pila se realizara mediante el constructor por defecto. La tarea que debera realizar sera
decir que no existen elementos en la pila:

stack: Pila

stack.Cima - 0

En C++:

Pila::Pila (void)
{

}

cima = 0;

Operacion PILA VACIA
Esta operacion permitira determinar si es posible eliminar elementos.

La pila estara vacia si la cima esta apuntando al valor cero.

Algoritmo Pila_Vacia
Entrada
stack: Pila
Salida
(CIERTO, FALSO)
Inicio
Si (stack.Cima = 0) entonces
Devolver (CIERTO)
Sino
Devolver (FALSO)
Fin_si
Fin

Tema 11. Pilas 37

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

bool Pila::PilaVacia (void)

{
}

return cima == 0O;

Operacion de insercion de informacion (APILAR)

La operacion de insercion normalmente se conoce por su nombre inglés Push, o Apilar. La operacion
aplicada sobre un pila y un valor x, inserta x en la cima de la pila. Esta operacion esta restringida por el
tipo de representacion escogido. En este caso, la utilizacion de un array implica que se tiene un nimero
maximo de posibles elementos en la pila, por lo tanto, es necesario comprobar, previamente a la
insercion, que realmente hay espacio en la estructura para almacenar un nuevo elemento. Con esta
consideracion, el algoritmo de insercion seria:

Algoritmo Apilar
Entradas
x: Valor {* elemento que se desea insertar *}
stack: Pila de Valor
Salidas
stack
Inicio
{* comprobar si en la pila se pueden insertar mas elementos "
{* esto es necesario por el tipo de representacion de la estructura *}
Si (stack.Cima = MAX) entonces

Error "pila llena"

Sino
stack.Cima — stack.Cima + 1
stack.Info [stack.Cima] ~ x
Fin_sino

Fin

En la implementacion en C++, tendremos en cuenta que vamos a devolver mediante la funcioén si se ha
producido algln tipo de error o no, en vez de mostrar un mensaje por pantalla.

bool Pila::Apilar (Valor x)

{
bool error;
if (ci == MAX)
error = true;
el se
{
error = fal se;
info[cim] = x;
ci ma++;
}
return error;
}

Tema 11. Pilas

38

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Operacion de consulta de informacion (CIMA PILA)

La operacion de consulta de la informacion, so6lo puede acceder al elemento que esté situado en la cima
de la pila, y proporcionar su valor. El algoritmo se limitard a devolver el elemento que esta situado en
la posicion cima de la pila, si existe informacion almacenada en la pila.

Algoritmo Cima_Pila

Entradas
stack: Pila de Valor
Salidas
Valor
Inicio
{* comprobar si existe informacioén en la pila *}
{* esta operacién no depende de la representacion, siempre es necesaria *}

Si (Pila_Vacia (stack)) entonces
Error “pila vacia”
sino
Devolver (stack.Info [stack.Cima])
Fin_si
Fin

bool Pila::CmaPila (Valor & x)
{

bool error;

if (cima == 0)
error = true;
el se
{
error = fal se;
X = info[cim - 1];
}

return error,;

Operacion de eliminacion de informacion (DESAPILAR)

La operacion de borrado elimina de la estructura el elemento situado en la cima. Normalmente recibe
el nombre de Pop en la bibliografia inglesa. El algoritmo de borrado seria:

Algoritmo Desapilar

Entradas
stack: Pila de Valor
Salidas
stack
x: Valor
Inicio
{* comprobar si se pueden eliminar elementos de la pila 3

{* esta operacién no depende de la representacion, siempre es necesaria *}
Si (Pila_Vacia (stack)) entonces

Error “pila vacia”
sino

X — stack.Info [stack.Cima]

stack.Cima — stack.Cima - 1

Tema 11. Pilas 39

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Fin_si
Fin

bool Pila::Desapilar (Valor & x)
bool error;

if (cima == 0)
error = true;

el se

{
error = fal se;
ci ma--;
X = info[cima];

}

return error

Implementacion mediante cursores

Implementacion mediante estructuras dinamicas

Uno de los mayores problemas en la utilizacion de estructuras estaticas, estriba en el hecho de tener
que determinar, en el momento de la realizacion del programa, el valor méximo de elementos que va a
poder contener la estructura.

Resumiendo, la clase Pi | a contendra, en esta implementacion, la siguiente parte privada:

class Pila

{
publi c:
private:
Punt ero ci ma;
s

Donde Punt er o sera:

typedef struct Nodo * Puntero;

Y el tipo Nodo sera:

struct Nodo
{

Val or info;
Puntero sig;

i
Suponiendo Val or, el tipo de dato que se puede almacenar en la pila.

La implementacion en este caso de los métodos de la clase Pila sera la siguiente.

Tema 11. Pilas 40

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1
Operacion CREAR PILA

stack: Pila

stack.Cima —~ NULL

En C++;

Pila::Pila (void)
{

}

cima = NULL;

Operacion PILA VACIA
Esta operacion permitira determinar si es posible eliminar elementos.

La pila estara vacia si la cima esta apuntando al valor cero.

Algoritmo Pila_Vacia
Entrada
stack: Pila
Salida
(CIERTO, FALSO)
Inicio
Si (stack.Cima = NULL) entonces
Devolver (CIERTO)
Sino
Devolver (FALSO)
Fin_si
Fin

bool Pila::PilaVacia (void)

{
}

return ci ma == NULL;

Operacion de insercion de informacion (APILAR)

Con la representacion enlazada de la pila, la estructura tiene una menor limitacion en cuanto al posible
nimero de elementos que se pueden almacenar simultaneamente. Hay que tener en cuenta que la
representacion de la pila ya no requiere la especificacion de un tamafilo maximo, por lo que mientras
exista espacio libre en memoria se va a poder reservar espacio para nuevos elementos. Por esa razon,
se va suponer en el siguiente algoritmo que la condicidon de pila llena no se va a dar y, por lo tanto, no
sera necesaria su comprobacion.

Algoritmo Apilar

Entrada
stack: Pila de Valores
x: Valor

Tema 11. Pilas 4]

Ricardo Ferris Castell Algoritmos y Estructuras de Datos 1

Salida
stack
Variable
p_aux: Puntero_a Nodo_pila
Inicio
p_aux — Crear_Espacio
p_aux”.Info - x
p_aux”.Sig - stack.Cima
stack.Cima ~ p_aux

Fin

Para hacer compatible este método con el método definido para el caso estatico, devolveremos siempre
‘FALSE’.

bool Pila::Apilar (Valor x)
{

bool error;
Punt ero p_aux;

error = fal se;
p_aux = new Nodo;
p_aux->info = x;
p_aux->sig = cimg;
ci ma = p_aux;

return error;

Operacion de consulta de informacion (CIMA PILA)

Al elemento "visible" de la pila se puede acceder facilmente a través del puntero que le referencia,
cima, que siempre debe existir y ser adecuadamente actualizado.

Algoritmo Cima_Pila

Entradas
stack: Pila de Valor
Salidas
Valor
Inicio
{* comprobar si existe informacioén en la pila *}
{* esta operacién no depende de la representacion, siempre es necesaria *}

Si (Pila_Vacia (stack)) entonces
Error “pila vacia”
sino
Devolver (Cima®*.Info)
Fin_si
Fin

bool Pila::CmPila (Valor & x)
{

bool error;

Tema 11. Pilas 42

Ricardo Ferris Castell

Algoritmos y Estructuras de Datos 1

if (cima == NULL)
error = true;
el se
{
error = fal se;
X = ci ma->i nfo;
}

return error,;

Operacion de eliminacion de informacion (DESAPILAR)

La unico que hay que tener en cuenta a la hora de disefiar un algoritmo para esta operacion es la
utilizacion eficiente de la memoria, de forma que el espacio ocupado por el nodo borrado vuelva a
estar disponible para el sistema. Recordar que si la pila esta vacia no se puede desapilar.

Algoritmo Desapilar

Entrada
stack: Pila de Valor
Salida
stack
x: Valor
Variable
p_aux: Puntero_a Nodo pila
Inicio
Si (Pila_Vacia (stack)) entonces
Error “pila_vacia’
Sino
p_aux — stack.Cima
X « p_aux™.Info
stack.Cima — p_aux”.Sig
Liberar_Espacio (p_aux)
Fin_si
Fin

En C++, el método quedaria como sigue:

bool Pila::Desapilar (Valor & x)

{

bool error;
Puntero p_aux;

if (cima == NULL)
error = true;
el se

{

error = fal se;

p_aux ci ng;

X = ci ma->i nfo;
cima = cima->sig;
del ete p_aux;

}

return error

Tema 11. Pilas

43

