Draft Document for Review February 15, 2008 4:59 pm SG24-7575-00

Programming the Cell

Broadband Engine
Examples and Best Practices

Practical code development and porting
examples included

~ Make the most of SDK 3.0 debug and
performance tools
“ Understand and apply different
programming models and
strategies

Abraham Arevalo
Ricardo M. Matinata
Maharaja Pandian
Eitan Peri

Kurtis Ruby
Francois Thomas
Chris Almond

Redhooks

ibm.com/redbooks


http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/




Draft Document for Review February 15, 2008 4:59 pm

International Technical Support Organization

Programming the Cell Broadband Engine:
Examples and Best Practices

December 2007

7575edno.fm

SG24-7575-00



7575edno.fm Draft Document for Review February 15, 2008 4:59 pm

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

First Edition (December 2007)

This edition applies to Version 3.0 of the IBM Cell Broadband Engine SDK, and the IBM
BladeCenter QS-21 platform.

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.



Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm

Contents

Preface . ...... ... .. Xi
The team that wrote thisbook ... ... ... ... . ... . .. .. ... .. ... ... .. Xi
Acknowledgements . . ... ... Xiii
Become a publishedauthor . .......... ... ... ... . . .. ... Xiv
Comments welcome. . .. ...t XV
Notices . ... ... . XVii
Trademarks .. ... ... e Xviii
Part 1. Introduction to the Cell Broadband Engine . .. ............................. 1
Chapter 1. Cell Broadband Engine Overview . .. ..................... 3
1.1 Motivation .. ... .. e 4
1.2 Scaling the three performance-limitingwalls. .. ........... ... .. .... 6
1.2.1 Scaling the power-limitationwall. . ............. ... .. ... ..... 6
1.2.2 Scaling the memory-limitationwall ........................... 7
1.2.3 Scaling the frequency-limitationwall. . . ....................... 7
1.2.4 How the Cell Broadband Engine overcomes performance limitations 8
1.3 Hardware Environment . . . ... ... ... . . . 8
1.3.1 The ProcessorElements. .. .......... ... .. ... .. 8
1.3.2 The Element InterconnectBus .. .......... ... ... . ... ..... 9
1.3.3 Memory Interface Controller . . ............ ... ... ... ... 10
1.3.4 Cell Broadband Engine Interface Unit. ... .................... 10
1.4 Programming Environment .. ........... .. ... .. 12
141 Instruction Sets . .. ... 12
1.4.2 Storage Domains and Interfaces. . .............. ... ... . ... 12
1.4.3 Bit Orderingand Numbering .. ........ ... ... .. ... ... ... 15
1.4.4 Runtime Environment .. ... ... ... ... .. ... . . . 15
Chapter 2. IBM SDK for Multicore Acceleration..................... 17
2.1 Compilers ... .. 17
211 GNUToolchain . ... ... . e 18
2.1.2 IBMXLC/C++ Compiler. . . ... 18
2.1.3 GNUADA Compiler . ...... ... e e e i 18
2.1.4 IBM XL Fortran for Multicore Acceleration for Linux . ............ 18
2.2 IBM Full System Simulator ................. ... . . . . . . 19
2.2.1 System rootimage for Simulator. . ............ ... ... .. .. 20

© Copyright IBM Corp. 2007. All rights reserved. iii



7575TOC.fm

Draft Document for Review February 15, 2008 4:59 pm

2.3 Linux Kernel . . ... 20
24 CellBELbraries . ...t 20
2.4.1 SPE Runtime Management Library. .. ......... ... ... ... ..... 20
2.4.2 SIMD Math Library . ... ... 20
2.4.3 Mathematical Acceleration Subsystem (MASS) libraries ......... 21
2.4.4 Basic Linear Algebra Subprograms (BLAS) ................... 21
245 ALF Library . ... 22
2.4.6 Data Communication and Synchronization library (DaCS)........ 22
2.5 Code examples and example libraries . .......................... 23
2.6 Performance TOOIS .. ... ...t e 23
2.6.1 SPUTIMING TOOL. . . ..ot e e 23
26.2 OProfile. . ... 24
2.6.3 Cell-perf-countertool. ... ... .. i 24
2.6.4 Performance Debug Tool (PDT) ......... ..., 24
2.6.5 Feedback Directed Program Restructuring (FDPR-Pro).......... 24
2.6.6 Visual Performance Analyzer (VPA) . . ... ... ... .. ... .. ... 25
2.7 IBM Eclipse IDE forthe SDK. . .. ... ..o 25
2.8 Hybrid-x86 programmingmodel . ........... ... .. i 26
Part 2. Programming Environment ... ........ .. ... ... . ... 27
Chapter 3. Enabling applicationsontheCellBE.................... 29
3.1 Concepts andterminology. . . ... 31
3.1.1 The computationkernels. .. ....... ... ... .. ... ... . . .. 32
3.1.2 Important CellBEfeatures .............. ..., 35
3.1.3 The parallel programmingmodels. .. ........................ 36
3.1.4 The Cell BE programming frameworks . . . .................... 39
3.2 Does the Cell BE fit the application requirements?.................. 46
3.2.1 Higher performance/watt. ... ...... ... .. ... . . .. . ... 47
3.2.2 Opportunities for parallelism .. ......... .. ... ... ... 47
3.2.3 Algorithmmatch . ... ... ... . .. 47
3.2.4 Readytomaketheeffort?........ ... ... .. ... . ... ... . . ... 49
3.3 Which parallel programmingmodel ? ......... ... ... ... .. ... ..., 51
3.3.1 Parallel programming models basics ........................ 52
3.3.2 Chip orboard level parallelism . ............................ 54
3.3.3 More on the host-acceleratormodel . . ....................... 57
3.3.4 Summary. . ... 58
3.4 Which Cell BE programming frameworktouse ? . .................. 60
3.5 The application enablement process. . . ......... ... .. ... ... ... ... 61
3.5.1 Performance tuning for Cell BE programs .................... 64
3.6 Afew SCeNarios. . . ... 65
3.7 Design patterns for Cell BE programming. . .. ..., 69
3.71 Shared qUEUE . . . ... e 69

iv Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm

3.7.2 Indirectaddressing . .. ... 70
3.7.3 Pipeline . ... .. 71
3.7.4 Multi-SPE softwarecache............... ... .. ... . ....... 72
B.7.5 Plugin ..o e 72
Chapter 4. Cell BE programming. . ................c.. i, 75
4.1 Task parallelism and PPE programming. ......................... 78
4.1.1 PPE architecture and PPU programming . . ................... 79
4.1.2 Task parallelism and managing SPE threads . .. ............... 83
4.1.3 Creating SPEs affinity usinggang. .. ............. ... ... ..... 93
4.2 Storage domains, channels and MMIO interfaces .................. 95
421 Storage domains. . . ... 96
4.2.2 MFC channels and MMIO interfaces and queues. .............. 98

4.2.3 SPU programming methods to access MFC’s channel interface .. 100
4.2.4 PPU programming methods to access MFC’s MMIO interface. . .. 104

4.3 Datatransfer .. ... 109
4.3.1 DMAcommands . ........... ittt 111
4.3.2 SPE initiated DMA transfer between LS and main storage. . ... .. 119
4.3.3 PPU initiated DMA transfer between LS and main storage .. .... 137
4.3.4 Direct problem state access and LSto LStransfer............. 143
4.3.5 Facilitate random data access using SPU software cache. ... ... 146
4.3.6 Automatic software cachingon SPE. ....................... 155
4.3.7 Efficient data transfers by overlapping DMA and computation . . .. 157
4.3.8 Improving page hit ratio usinghugepages. . ................. 163
4.3.9 Improving memory access usingNUMA . . ................... 168

4.4 Inter-processor communication. .. ........ ... . . . o e 174
441 MailboXes . .. ... e 176
4.4.2 Signal notification . ....... ... ... .. . . 187
443 SPE events . . ... .. e 199
4.4.4 Using atomic unit and the atomiccache .. ................... 206

4.5 Shared storage synchronizing and dataordering . .. ............... 213
4.5.1 Shared Storagemodel . ......... ... .., 216
4.5.2 Atomic synchronization. . ......... .. ... . . ... . . i 229
4.5.3 Using sync library facilities .. ........... .. ... ... ... . ... 234
4.5.4 Practical examples using ordering and synchronization mechanisms .

235

4.6 SPU programming. . .. ..ottt e 240
4.6.1 Architecture overview and its impact on programming . .. ....... 241
4.6.2 SPU instruction set and C/C++ language extensions (intrinsics) . . 244
4.6.3 Compilerdirectives . . ....... ...t 251
4.6.4 SIMD programming. . ... ..v vttt 253
4.6.5 Auto-SIMDizing by compiler . ......... .. 264
4.6.6 Using scalars and converting between different vector types. . . . . 271

Contents v



7575TOC.fm

Draft Document for Review February 15, 2008 4:59 pm

4.6.7 Code transfer using SPU codeoverlay...................... 276
4.6.8 Eliminating and predictingbranches. ....................... 277
4.7 Frameworks and domain-specific libraries . ...................... 283
4.7.1 DaCS - Data Communication and Synchronization ............ 284
4.7.2 ALF - Accelerated Library Framework .. .................... 291
4.7.3 Domain-specific libraries. . ........ .. ... .. i 309
4.8 Programming guidelines . .. ... ... ... 313
4.8.1 Generalguidelines ... ... ... ... . i 313
4.8.2 SPE programming guidelines . . ......... ... ... ... . .. ... 314
4.8.3 Data transfers and synchronization guidelines . .. ............. 318
4.8.4 Inter-processor communication. ............... ... ... .. ... 320
Chapter 5. Programming Tools and Debugging Techniques ......... 323
5.1 Tools Taxonomy and basic Time line approach.. . ................. 324
5.1.1 DualToolchain .......... ... . . . 324
5.1.2 Typical Tools Flow . ....... ... .. . . i, 325
5.2 CompilingandBuilding . ........ .. .. . . 326
5.2.1 Compilers: gCC . ... v vttt 327
522 Compilers: XIC . ... oo e 332
523 Buillding . . ... 337
5.3 Debugger. . . ... e 338
5.3.1 Debugger: gdb . ... . 338
5.4 SImulator. . . ... 347
5.4.1 SettingupandBringinQup .. ........... i 348
5.4.2 Operatingthe GUI. . ... ... .. 350
5.5 IBM Multi core Acceleration Integrated Development Environment . . . . 354
551 Step1:Projects. . ... e 355
5.5.2 Step 2: Choosing Target Environments with Remote Tools . . . . .. 360
5.5.3 Step3:Debugger . ... 362
5.6 Performance TOOIS .. ... ... ...t 369
5.6.1 Typical Performance TuningCycle......................... 370
5.8.2 CPC. . o 371
5.6.3 OProfile. . ... ... 377
5.6.4 Performance Debugging Tool (PDT). ............. i, 381
5.6.5 FDPR-Pro .. ... 390
5.6.6 Visual Performance Analyzer .. ........ .. ... . ... . . ... . ... 394
Chapter 6. Using PerformanceTools. ............................ 411
6.1 Practical case: FFT16M Analysis .. ...... ... . ... . ... 412
6.1.1 The FFT16M ... ... e 412
6.1.2 Prepare and Build for profiling. . ........ .. ... .. L 412
6.1.3 Creating and working with profiledata ...................... 416
6.1.4 Creating and working withtracedata ....................... 432

Vi Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm

Chapter 7. Programming in distributed environments .............. 439
7.1 Hybrid Programming Models in SDK3.0. ......... ... ... ... ...... 440
711 Hybrid DaCsS. . ... ... 443
7.1.2 Hybrid ALF .. ..o 456
7.1.3 DAV - Dynamic Application Virtualization . . .................. 468
Part 3. Application Re-engineering .. ......... ... ... .. . . . . i 491
Chapter 8. Case study: Monte Carlo Simulation ................... 493
8.1 Monte Carlo simulation for option pricing . ....................... 495
8.2 Methods to generate Gaussian(normal) random variables........... 496
8.3 Parallel and vector implementation of Monte Carlo algorithm on Cell. . . 498
8.3.1 Logical Steps . ... ..ot 498
8.3.2 Sample code for European optionon SPU . .................. 503
8.4 Generating Gaussian random numberson SPUs. . ................ 505
8.5 Improving the performance . . . ........ ... .. .. . . .. .. 512
Chapter 9. Case study: Implementing an FFT algorithm............. 515
9.1 Motivation foran FFT algorithm .......... ... ... ... ... ... .. .... 516
9.2 Development Process . . .. ...t 516
9.2.1 COdE . .ot 517
0.2.2 TeSt. . 518
9.2.3 Verify. . .o 518
9.3 Development Stages. . . ... e 520
9.3.1 x86implementation. . ... ... ... ... . . 520
9.3.2 Portto PowerPC . . .. ... . 520
9.33 Single SPU . ... .. 521
9.3.4 DMA Optimization. .. ... ... ... i 522
9.35 Usingmultiple SPUs . . . . ... ... 523
9.4 StrategiesforusingSIMD . . ... ... ... 524
9.4.1 Striping multiple problems acrossavector................... 524
9.4.2 Synthesizing vectors by loop unrolling . ..................... 524
9.4.3 Measuring and tweaking performance . ..................... 525
Part 4. Systems . .. ... . . 533
Chapter 10. SDK 3.0 and Bladecenter QS21 System Configuration. . . . 535
10.1 BladeCenter QS21 Characteristics . . ......... ... ... ... ... .. ... 536
10.2 Installing the Operating System . ........ ... ... ... . ... . ... 537
10.2.1 Important Considerations . ............... ... .. ... ... 537
10.2.2 Managing and accessing the Blade server. . ................ 538
10.2.3 Installing through Network Storage. . ... ................... 541
10.2.4 Example for installing through network storage .. ............ 544

Contents  vii



7575TOC.fm

Draft Document for Review February 15, 2008 4:59 pm

10.3 Installing SDK3.0 on BladeCenter QS21. ... .................... 554
10.3.1 Pre-installationsteps. . ........ ... . i 557
10.3.2 Installation Steps. . ... ... 558
10.3.3 Post-Installation Steps .. ...... ... . 559

10.4 Firmware considerations. .. ... ... . . . . 560
10.4.1 Updating firmware for the BladeCenterQS21................ 560

10.5 Options for managing multiple blades. .. ............ ... .. ..... 564
10.5.1 Distributed Image Management . ......................... 564
10.5.2 Extreme Cluster Administration Toolkit. . ................... 583

10.6 Method for installing a minimized distribution .. .. ................ 587
10.6.1 Duringinstallation . ........... .. ... .. . . 588
10.6.2 Post-installation packageremoval ........................ 590
10.6.3 Shuttingoffservices . ....... ... ... ... . .. 597

Part 5. AppendiXes . .. ... e e 599

Appendix A. SDK3.0 Topiclndex .............. ... ... ........ 601

Appendix B. Additional material ................... ... .. ... . ... 609

Locating the Web material . ...... ... ... . . .. . . 610

Usingthe Web material .. ........ ... . 610
How to use the Web material ........ ... ... ... ... ... ... ... ... 610

Additional material content. . . . ... .. ... ... 611

DaCS programming example. . .. ... 611
DaCS syntheticexample. . . ... ... 611

Task parallelism and PPE programming examples . .. ................. 612
Simple PPU vector/SIMD code . . ......... ... .. 612
Runningasingle SPE . ... .. .. . . 612
Running multiple SPEs concurrently. ... .......... ... ... ... ...... 613

Data transferexamples . ... i e 613
Direct SPE access ‘get' example ......... ... .. . ... 613
SPU initiated basic DMA between LS and main storage ............. 613
SPU initiated DMA list transfers between LS and main storage . . .. . ... 613
PPU initiated DMA transfers between LS and main storage. . ......... 614
Direct PPE accessto LSofsome SPE. ........... .. ... .. ... ..... 614
Multistage pipeline using LS to LS DMAtransfer ................... 614
SPU software managedcache . ............. ... .. ... .. ... 614
Double buffering . ... 615
HUuge pages. . . ... e 615

Inter-processor communication examples . . ... ... .o L. 615
Simplemailbox .. ... e 615
Simple signals. .. ... 616
PPE eventhandler . ... ... ... ... 616

viii Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575TOC.fm

SPU programming examples . . . ... ...t e 616
SPE loop unrolling. . . ...t 616
SPE SOA loopunrolling . . .....o i e 616
SPE scalar to vector conversion using insert and extract intrinsics . .. 617
SPE scalar to vector conversion usingunions ..................... 617

Related publications .............. . ... .. .. . . . 619

IBM Redbooks . . ... .. e 619

Other publications .. ........ . . 619

ONliNE reSOUICES . . . ottt e e e e e 621

HowtogetRedbooks. ... ... ... . 621

Helpfrom IBM . ... 621

INdeX ... e 623

Contents ix



7575TOC.fm Draft Document for Review February 15, 2008 4:59 pm

X Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575pref.fm

Preface

In this IBM® Redbooks publication we introduce, and show in detail, samples
from real-world application development projects and provide tips and best
practices for programming the Cell Broadband Engine™ applications. We
provide an introduction to the Cell Broadband Engine platform and the describe
the content and packaging of the IBM Software Development Kit (SDK) version
3.0 for Multicore Acceleration. This SDK provides all the tools and resources
necessary to build applications that run IBM QS21 and QS20 Blade Servers.

There are chapters and sections in the Redbook that show in-depth and
real-world useage of tools and resources found in the SDK.

In a chapter at the end of this book we provide some installation, configuration
and administration tips and best practices for the IBM BladeCenter QS21.
Discussion of supporting software provided by IBM Alphaworks is also provided.

This redbook was written for developers and programmers, customers, IBM
Business Partners, and the IBM and Cell Broadband Engine community who
need in depth technical understanding of how to develop applications using the
Cell Broadband Engine SDK 3.0.

The team that wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Abraham Arevalo is a Software Engineer the Linux Technology Center's Test
Department in Austin, Texas. He has worked on ensuring quality and functional
performance of RHEL5.1 and Fedora 7 distributions on BladeCenter QS20 and
QS21s. Additionally, Abraham has been involved on other Cell related projects
including expanding Cell's presence on consumer electronics. He has prior
experience working with hardware development mostly with System on Chip
design.

Ricardo M. Matinata is an Advisory Software Engineer for the Linux Technology
Center, in IBM Systems and Technology Group at IBM Brazil. He has over 10
years of experience in software research and development. He has been part of
the global Cell BE SDK development team, in the area Toolchain (IDE), for
almost two years. His areas of expertise include system software and application

© Copyright IBM Corp. 2007. All rights reserved. Xi



7575pref.fm

Draft Document for Review February 15, 2008 4:59 pm

development for both product and open source types of projects, Linux,
programming models, development tools, debugging and networking.

Maharaja (Raj) Pandian is a High Performance Computing specialist working on
scientific applications in the IBM WW Advanced Client Technology (A.C.T!)
Center, Poughkeepsie, NY. He has twenty years of experience in high
performance computing, software development, and market support. He holds a
Ph.D. in Applied Mathematics from University of Texas, Arlington. His areas of
expertise include parallel algorithms for distributed memory system and
symmetric multiprocessor system, numerical methods for partial differential
equations, performance optimization, and benchmarking. He has worked with
engineering analysis ISV applications such as MSC/NASTRAN (Finite Element
Analysis) and Fluent (Computational Fluid Dynamics) for several years. Also, he
has worked with weather modeling applications on IBM AIX and Linux clusters.
Currently, he is developing and benchmarking Financial Sector Services
applications on the Cell BE.

Eitan Peri works in IBM Haifa Research Lab as the technical lead for Cell BE
pre-sales activities in Israel. He holds a B.Sc. in Computer Engineering from
Israel Institute of Technology (the Technion), and M.Sc. in Biomedical
Engineering from Tel-Aviv University, where he specialized in brain imaging
analysis. He has 9 years of experience in real time programming, chip design
and chip verification. His areas of expertise include Cell BE programming and
consulting, application parallelization and optimization, algorithm performance
analysis, and medical imaging. He is currently working on projects focusing on
porting applications to the Cell BE architecture within the health care, computer
graphics, aerospace and defense industries.

Kurtis Ruby is a software consultant with IBM Lab Services at IBM Rochester,
Minnesota. He has over twenty-five years of experience in various programming
assignments in IBM. He holds a degree in Mathematics from lowa State
University. His expertise includes Cell Broadband Engine programming annd
consulting.

Francois Thomas is an IBM Certified IT Specialist working on HPC pre-sales in
the Deep Computing Europe organization in France. He has 18 years of
experience in the field of scientific and technical computing. He holds a PhD in
Physics from ENSAM/Paris VI University. His areas of expertise include
application code tuning and parallelization as well as Linux clusters
management. He works with weather forecast institutions in Europe and on
enabling petroleum engineering ISV applications to the Linux on POWER
platform.

Xii Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575pref.fm

Production of this IBM Redbook was managed by:

Chris Almond, an ITSO Project Leader and IT Architect based at the ITSO
Center in Austin, Texas. In his current role, he specializes in managing content
development projects focused on Linux®, AlX 5L systems engineering, and other
innovation programs. He has a total of 17 years of IT industry experience,
including the last eight with IBM.

Acknowledgements

This IBM Redbooks publication would not have been possible without the
generous support and contributions provided many IBMers.

First, the authoring team would like to gratefully acknowledge the critical support
and sponsorship for this project provided by the following IBMers:

» Tanaz Sowdagar, Marketing Manager, Systems and Technology Group

» Jeffrey Scheel, Blue Gene Software Program Manager and Software
Architect, Systems and Technology Group

» Daniel Brokenshire, Senior Technical Staff Member and Software Architect,
Quasar/Cell BE Software Development, Systems and Technology Group

» Paula Richards, Director, Global Engineering Solutions, Systems and
Technology Group

» Rebecca Austen, Director, Systems Software, Systems and Technology
Group

We would also like to thank the following IBMers for their significant input to this
project during the development and technical review process:

» Marina Biberstein, Research Scientist, Haifa Reseach Lab, IBM Research

» Michael Brutman, Solutions Architect, Lab Services, IBM Systems and
Technology Group

» Dean Burdick, Developer, Cell Software Development, IBM Systems and
Technology Group

» Catherine Crawford, Senior Technical Staff Member and Chief Architect,
Next Generation Systems Software, IBM Systems and Technology Group

» Bruce D’Amora, Research Scientist, Systems Engineering, IBM Research

» Matthew Drahzal, Software Architect, Deep Computing, IBM Systems and
Technology Group

» Matthias Fritsch, Enterprise System Development, IBM Systems and
Technology Group

» Gad Haber, Manager, Performance Analysis and Optimization Technology,
Haifa Reseach Lab, IBM Research

Preface  xiii



7575pref.fm

Draft Document for Review February 15, 2008 4:59 pm

Francesco lorio, Solutions Architect, Next Generation Computing, IBM
Software Group

Kirk Jordan, Solutions Executive, Deep Computing and Emerging HPC
Technologies, IBM Systems and Technology Group

Melvin Kendrick, Manager, Cell Ecosystem Technical Enablement, IBM
Systems and Technology Group

Mark Mendell, Team Lead, Cell BE Compiler Development, IBM Software
Group

Michael P. Perrone, Ph.D., Manager Cell Solutions, IBM Systems and
Technology Group

Juan Jose Porta, Executive Architect HPC & e-Science Platforms, IBM
Systems and Technology Group

Uzi Shvadron, Research Scientist, Cell BE Performance Tools, Haifa
Reseach Lab, IBM Research

Van To, Advisory Software Engineer, Cell BE & Next Generation Computing
Systems, IBM Systems and Technology Group

Duc J Vianney, Ph. D, Technical Education Lead, Cell BE Ecosystem &
Solutions Enablement, IBM Systems and Technology Group

Brian Watt, Systems Development, Quasar Design Center Development,
IBM Systems and Technology Group

Ulrich Weigand, Developer, Linux on Cell BE, IBM Systems and Technology
Group

Cornell Wright, Developer, Cell Software Development, IBM Systems and
Technology Group

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Xiv Programming the Cell Broadband Engine: Examples and Best Practices


http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Draft Document for Review February 15, 2008 4:59 pm 7575pref.fm

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about

this book or other IBM Redbooks® in one of the following ways:

» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks

» Send your comments in an e-mail to:
redbooks@us.ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Preface  Xxv


http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

7575pref.fm Draft Document for Review February 15, 2008 4:59 pm

XVi Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575spec.fm

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. Xxvii



7575spec.fm Draft Document for Review February 15, 2008 4:59 pm

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Redbooks (logo) (@ ® AIX® PowerPC®
® ' BladeCenter® POWER™
eServer™ IBM® Redbooks®
xSeries® PowerPC Architecture™ System x™

The following terms are trademarks of other companies:

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc., in the United
States, other countries, or both and is used under license therefrom.

Snapshot, and the Network Appliance logo are trademarks or registered trademarks of Network Appliance,
Inc. in the U.S. and other countries.

AMD, AMD Opteron, the AMD Arrow logo, and combinations thereof, are trademarks of Advanced Micro
Devices, Inc.

Flex, and Portable Document Format (PDF) are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, other countries, or both.

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Excel, Fluent, Microsoft, Visual Basic, Visual C++, Windows, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Centrino, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

MultiCore Plus is a trademark of Mercury Computer Systems, Inc. in the United States, other countries, or
both.

Other company, product, or service names may be trademarks or service marks of others.

Xviii Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575PART_OVERVIEW.fm

Part 1

Introduction to the
Cell Broadband
Engine

The Cell Broadband Engine (CELL BE) is a new class of mult-core processors
being brought to the consumer and business market. It has a radically different
design than those offered by other consumer and business chip makers in the
global market. This radical departure warrants a brief discussion of the CELL BE
hardware and software architecture.

There is also a brief discusson of the IBM Software Development Kit (SDK) for
Multicore Acceleration from a content and packaging perspective. These

discussions complement the in-depth content of the remaining chapters of this
Redbook.

© Copyright IBM Corp. 2007. All rights reserved. 1



7575PART_OVERVIEW.fm Draft Document for Review February 15, 2008 4:59 pm

2 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

1

Cell Broadband Engine
Overview

The Cell BE processor is the first implementation of a new multiprocessor family
conforming to the Cell Broadband Engine Architecture (CBEA). The CBEA and
the Cell BE processor are the result of a collaboration between Sony, Toshiba,
and IBM known as STI, formally begun in early 2001. Although the Cell BE
processor is initially intended for applications in media-rich consumer-electronics
devices such as game consoles and high-definition televisions, the architecture
has been designed to enable fundamental advances in processor performance.
These advances are expected to support a broad range of applications in both
commercial and scientific fields.

Figure 1-1 on page 4 shows a block diagram of the Cell BE processor hardware.

© Copyright IBM Corp. 2007. All rights reserved. 3



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

SPE1 | | SPE3 | | SPE5 | | SPE7
I? IE IQ I‘IU

——————————— - EIB

Unit ID

10IF_1 [« FlexIO

: m}
: 15 i [}
XIo >
| xio | MG [ I0IF_p [+ FlexiO
| : 14 IEI I 2 I1
! r r r e
RAM RAM
SPEO SPE2 SPE4 SPE&
BEI Cell Broadband Engine Interface MIC Memory Interface Gontroller
EIE Element Interconnect Bus PPE PowerPC Processor Element
FlexlO Rambus FlexlO Bus RAM Resource Allocation Management
I0IF 110 Interface SPE Synergistic Processor Element

pile} Rambus XDR 110 {X10) cell

Figure 1-1 Cell Broadband Engine Overview

1.1 Motivation

The Cell Broadband Engine Architecture has been designed to support a very
broad range ofapplications. The first implementation is a single-chip
multiprocessor with nine processor elements operating on a shared memory
model, as shown in Figure 1-1 on page 4. In this respect, the Cell BE processor
extends current trends in PC and server processors. The most distinguishing
feature of the Cell BE processor is that, although all processor elements can
share or access all available memory, their function is specialized into two types:
the Power Processor Element (PPE) and the Synergistic Processor Element
(SPE). The Cell BE processor has one PPE and eight SPEs.

The first type of processor element, the PPE, contains a 64-bit PowerPC®
Architecture™ core. It complies with the 64-bit PowerPC Architecture and can
run 32-bit and 64-bit operating systems and applications. The second type of
processor element, the SPE, is optimized for running compute-intensive SIMD
applications; it is not optimized for running an operating system.

The SPEs are independent processor elements, each running their own
individual application programs or threads. Each SPE has full access to shared
memory, including the memory-mapped I/O space implemented by multiple DMA
units. There is a mutual dependence between the PPE and the SPEs. The SPEs
depend on the PPE to run the operating system, and, in many cases, the
top-level thread control for an application. The PPE depends on the SPEs to
provide the bulk of the application performance.

4 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

The SPEs are designed to be programmed in high-level languages, such as (but
certainly not limited to) C/C++. They support a rich instruction set that includes
extensive SIMD functionality. However, like conventional processors with SIMD
extensions, use of SIMD data types is preferred, not mandatory. For
programming convenience, the PPE also supports the standard PowerPC
Architecture instructions and the vector/SIMD multimedia extensions.

To an application programmer, the Cell BE processor looks like a single core,
dual threaded processor with 8 additional cores each having their own local
store. The PPE is more adept than the SPEs at control-intensive tasks and
quicker at task switching. The SPEs are more adept at compute-intensive tasks
and slower than the PPE at task switching. However, either processor element is
capable of both types of functions. This specialization is a significant factor
accounting for the order-of-magnitude improvement in peak computational
performance and chip-area-and-power efficiency that the Cell BE processor
achieves over conventional PC processors.

The more significant difference between the SPE and PPE lies in how they
access memory. The PPE accesses main storage (the effective-address space)
with load and store instructions that move data between main storage and a
private register file, the contents of which may be cached. PPE memory access
is like that of a convential processor technology, which is found on convential
machines. The SPEs, in contrast, access main storage with direct memory
access (DMA) commands that move data and instructions between main storage
and a private local memory, called a local store or local storage (LS). An SPE’s
instruction-fetches and load and store instructions access its private LS rather
than shared main storage, and the LS has no associated cache. This 3-level
organization of storage (register file, LS, main storage), with asynchronous DMA
transfers between LS and main storage, is a radical break from conventional
architecture and programming models, because it explicitly parallelizes
computation with the transfers of data and instructions that feed computation and
store the results of computation in main storage.

One of the motivations for this radical change is that memory latency, measured
in processor cycles, has gone up several hundredfold from about the years 1980
to 2000. The result is that application performance is, in most cases, limited by
memory latency rather than peak compute capability or peak bandwidth. When a
sequential program on a conventional architecture performs a load instruction
that misses in the caches, program execution can come to a halt for several
hundred cycles (techniques such as hardware threading can attempt to hide
these stalls, but it does not help single threaded applications). Compared to this
penalty, the few cycles it takes to set up a DMA transfer for an SPE are a much
better trade-off, especially considering the fact that each of the eight SPE’s DMA
controller can have up to 16 DMA transfer in flight simultaneously. Anticpating
DMA needs efficently can provide “just in time delivery” of data which many

Chapter 1. Cell Broadband Engine Overview 5



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

reduce this stall or eliminate them entirely. Conventional processors, even with
deep and costly speculation, manage to get, at best, a handful of independent
memory accesses in flight.

One of the SPE’s DMA transfer methods supports a list (such as a scatter-gather
list) of DMA transfers that is constructed in an SPE’s local store, so that the
SPE’s DMA controller can process the list asynchronously while the SPE
operates on previously transferred data. In several cases, this approach to
accessing memory has led to application performance exceeding that of
conventional processors by almost two orders of magnitude significantly more
than one would expect from the peak performance ratio (approximately 10x)
between the Cell BE processor and conventional PC processors. The DMA
transfers can be set up and controlled by the SPE that is sourcing or receiving
the data, or in some circumstances by the PPE or another SPE.

1.2 Scaling the three performance-limiting walls

The Cell Broadband Engine overcomes three important limiters of contemporary
microprocessor performance: power use, memory use, and processor frequency.

1.2.1 Scaling the power-limitation wall

Increasingly, microprocessor performance is limited by achievable power
dissipation rather than by the number of available integrated-circuit resources
(transistors and wires).

Therefore, the only way to significantly increase the performance of
microprocessors is to improve power efficiency at about the same rate as the
performance increase.

One way to increase power efficiency is to differentiate between:

» processors optimized to run an operating system and control-intensive code,
and
» processors optimized to run compute-intensive applications.

The Cell Broadband Engine does this by providing a general-purpose PPE to run
the operating system and other control-plane code, and eight SPEs specialized
for computing data-rich (data-plane) applications. The specialized SPEs are
more compute efficient because they have simpler hardware implementations.
The hardware does not devote transistors to branch prediction, out of order
execution, speculative execution, shadow registers and register renaming,

6 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

extensive pipeline interlocks, etc. By weight, more of the transistors are used for
computation than in conventional processor cores.

1.2.2 Scaling the memory-limitation wall

On multi-gigahertz symmetric multiprocessors (even those with integrated
memory controllers) latency to DRAM memory is currently approaching 1,000
cycles.

As a result, program performance is dominated by the activity of moving data
between main storage (the effective-address space that includes main memory)
and the processor. Increasingly, compilers and even application writers must
manage this movement of data explicitly, even though the hardware cache
mechanisms are supposed to relieve them of this task.

The Cell Broadband Engine’s SPEs use two mechanisms to deal with long
main-memory latencies:

» 3-level memory structure (main storage, local stores in each SPE, and large
register files in each SPE),
» asynchronous DMA transfers between main storage and local stores.

These features allow programmers to schedule simultaneous data and code
transfers to cover long latencies effectively. Because of this organization, the Cell
Broadband Engine can usefully support 128 simultaneous transfers between the
eight SPE local stores and main storage. This surpasses the number of
simultaneous transfers on conventional processors by a factor of almost twenty.

1.2.3 Scaling the frequency-limitation wall

Conventional processors require increasingly deeper instruction pipelines to
achieve higher operating frequencies. This technique has reached a point of
diminishing returns — and even negative returns if power is taken into account.

By specializing the PPE and the SPEs for control and compute-intensive tasks,
respectively, the Cell Broadband Engine Architecture, on which the Cell
Broadband Engine is based, allows both the PPE and the SPEs to be designed
for high frequency without excessive overhead. The PPE achieves efficiency
primarily by executing two threads simultaneously rather than by optimizing
single-thread performance.

Each SPE achieves efficiency by using a large register file, which supports many
simultaneous in-process instructions without the overhead of register-renaming
or out-of-order processing. Each SPE also achieves efficiency by using

Chapter 1. Cell Broadband Engine Overview 7



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

asynchronous DMA transfers, which support many concurrent memory
operations without the overhead of speculation.

1.2.4 How the Cell Broadband Engine overcomes performance
limitations

By optimizing control-plane and data-plane processors individually, the Cell
Broadband Engine alleviates the problems posed by the power, memory, and
frequency limitations.

The net result is a processor that, at the power budget of a conventional PC
processor, can provide approximately ten-fold the peak performance of a
conventional processor. Of course, actual application performance varies. Some
applications may benefit little from the SPEs, whereas others show a
performance increase well in excess of ten-fold. In general, compute-intensive
applications that use 32-bit or smaller data formats (such as single-precision
floating-point and integer) are excellent candidates for the Cell Broadband
Engine.

1.3 Hardware Environment

In the following sections we describe the different components in the Cell BE
hardware environment.

1.3.1 The Processor Elements

Figure 1-1 on page 4 shows a high-level block diagram of the Cell BE processor
hardware. There is one PPE and there are eight identical SPEs. All processor
elements are connected to each other and to the on-chip memory and I/O
controllers by the memory-coherent element interconnect bus (EIB).

The PPE contains a 64-bit, dual-thread PowerPC Architecture RISC core and
supports a PowerPC virtual-memory subsystem. It has 32 KB level-1 (L1)
instruction and data caches and a 512 KB level-2 (L2) unified (instruction and
data) cache. It is intended primarily for control processing, running operating
systems, managing system resources, and managing SPE threads. It can run
existing PowerPC Architecture software and is well-suited to executing
system-control code. The instruction set for the PPE is an extended version of
the PowerPC instruction set. It includes the vector/SIMD multimedia extensions
and associated C/C++ intrinsic extensions.

8 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

The eight identical SPEs are single-instruction, multiple-data (SIMD) processor
elements that are optimized for data-rich operations allocated to them by the
PPE. Each SPE contains a RISC core, 256 KB software-controlled LS for
instructions and data, and a 128-bit, 128-entry unified register file. The SPEs
support a special SIMD instruction set the Synergistic Processor Unit Instruction
Set Architecture and a unique set of commands for managing DMA transfers and
interprocessor messaging and control. SPE DMA transfers access main storage
using PowerPC effective addresses. As in the PPE, SPE address translation is
governed by PowerPC Architecture segment and page tables, which are loaded
into the SPEs by privileged software running on the PPE. The SPEs are not
intended to run an operating system.

An SPE controls DMA transfers and communicates with the system by means of
channels that are implemented in and managed by the SPE’s memory flow
controller (MFC). The channels are unidirectional message-passing interfaces.
The PPE and other devices in the system, including other SPEs, can also access
this MFC state through the MFC’s memory-mapped 1/0 (MMIO) registers and
queues, which are visible to software in the main-storage address space.

1.3.2 The Element Interconnect Bus

The element interconnect bus (EIB) is the communication path for commands
and data between all processor elements on the Cell BE processor and the
on-chip controllers for memory and I/O. The EIB supports full memory-coherent
and symmetric multiprocessor (SMP) operations. Thus, a Cell BE processor is
designed to be ganged coherently with other Cell BE processors to produce a
cluster.

The EIB consists of four 16-byte-wide data rings. Each ring transfers 128 bytes
(one PPE cache line) at a time. Each processor element has one on-ramp and
one off-ramp. Processor elements can drive and receive data simultaneously.
Figure 1-1 on page 4 shows the unit ID numbers of each element and the order
in which the elements are connected to the EIB. The connection order is
important to programmers seeking to minimize the latency of transfers on the
EIB: latency is a function of the number of connection hops, such that transfers
between adjacent elements have the shortest latencies and transfers between
elements separated by six hops have the longest latencies.

The EIB’s internal maximum bandwidth is 96 bytes per processor-clock cycle.
Multiple transfers can be in-process concurrently on each ring, including more
than 100 outstanding DMA memory transfer requests between main storage and
the SPEs in either direction. This requests also may include SPE memory to and
from the 1/0O space. The EIB does not support any particular qualityof-service
(QoS) behavior other than to guarantee forward progress. However, a resource
allocation management (RAM) facility, shown in Figure 1-1 on page 4, resides in

Chapter 1. Cell Broadband Engine Overview 9



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

the EIB. Privileged software can use it to regulate the rate at which resource
requesters (the PPE, SPEs, and I/O devices) can use memory and 1/O
resources.

1.3.3 Memory Interface Controller

The on-chip memory interface controller (MIC) provides the interface between
the EIB and physical memory. The IBM Bladecenter QS20 supports one or two
Rambus extreme data rate (XDR) memory interfaces, which together support
between 64 MB and 64 GB of XDR DRAM memory. The IBM Bladecenter QS21
uses normal DDR memory and additional hardware logic to implement the MIC.

Memory accesses on each interface are 1 to 8, 16, 32, 64, or 128 bytes, with
coherent memoryordering. Up to 64 reads and 64 writes can be queued. The
resource-allocation token manager provides feedback about queue levels.

The MIC has multiple software-controlled modes, including fast-path mode (for
improved latency when command queues are empty), high-priority read (for
prioritizing SPE reads in front of allother reads), early read (for starting a read
before a previous write completes), speculative read, and slow mode (for power
management). The MIC implements a closed-page controller (bank rows are
closed after being read, written, or refreshed), memory initialization, and memory
scrubbing.

The XDR DRAM memory is ECC-protected, with multi-bit error detection and
optional single-bit error correction. It also supports write-masking, initial and

periodic timing calibration. It also supports write-masking, initial and periodic
timing calibration, dynamic width control, sub-page activation, dynamic clock
gating, and 4, 8, or 16 banks.

1.3.4 Cell Broadband Engine Interface Unit

The on-chip Cell Broadband Engine interface (BEI) unit supports I/O interfacing.
It includes a bus interface controller (BIC), 1/0 controller (IOC), and internal
interrupt controller (I1IC), as defined in the Cell Broadband Engine Architecture
document. It manages data transfers between the EIB and 1/O devices and
provides I/O address translation and command processing.

The BEI supports two Rambus FlexIO interfaces. One of the two interfaces
(IOIF1) supports only a noncoherent I/O interface (IOIF) protocol, which is
suitable for I/O devices. The other interface (IOIF0, also called BIF/IOIFQ) is
software-selectable between the noncoherent IOIF protocol and the
memory-coherent Cell Broadband Engine interface (BIF) protocol. The BIF
protocol is the EIB’s internal protocol. It can be used to coherently extend the

10 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

EIB, through IOIF0, to another memory-coherent device, that can be another Cell
BE processor.

Chapter 1. Cell Broadband Engine Overview 11



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

1.4 Programming Environment

In the following sections we provide an overview of the programming
environment.

1.4.1 Instruction Sets

The instruction set for the PPE is an extended version of the PowerPC
Architecture instruction set. The extensions consist of the vector/SIMD
multimedia extensions, a few additions and changes to PowerPC Architecture
instructions, and C/C++ intrinsics for the vector/SIMD multimedia extensions.

The instruction set for the SPEs is a new SIMD instruction set, the Synergistic
Processor Unit Instruction Set Architecture, with accompanying C/C++ intrinsics,
and a unique set of commands for managing DMA transfer, external events,
interprocessor messaging, and other functions. The instruction set for the SPEs
is similar to that of the PPE’s vector/SIMD multimedia extensions, in the sense
that they operate on SIMD vectors. However, the two vector instruction sets are
distinct, and programs for the PPE and SPEs are often compiled by different
compilers generating code streams for two entirely different instruction sets.

Although most coding for the Cell BE processor will probably be done in a
high-level language like C or C++, an understanding of the PPE and SPE
machine instructions adds considerably to a software developer’s ability to
produce efficient, optimized code. This is particularly true because most of the
C/C++ intrinsics have a mnemonic that relates directly to the underlying
assemblylanguage mnemonic.

1.4.2 Storage Domains and Interfaces

The Cell BE processor has two types of storage domains one main-storage
domain and eight SPE local-storage (LS) domains, as shown in Figure 1-2 on
page 13. In addition, each SPE has a channel interface for communication
between its synergistic processor unit (SPU) and its MFC. The main-storage
domain, which is the entire effective-address space, can be configured by PPE
privileged software to be shared by all processor elements and memory-mapped
devices in the system1. An MFC’s state is accessed by its associated SPU
through the channel interface, and this state can also be accessed by the PPE
and other devices (including other SPEs) by means of the MFC’s MMIO registers
in the main-storage space. An SPU’s LS can also be accessed by the PPE and
other devices through the main-storage space in a non-coherent manner. The
PPE accesses the mainstorage space through its PowerPC processor storage
subsystem (PPSS).

12 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

Channel Interface Local Storage Main Storage
{channel commands) (local-address space) (effective-address space)
i .":
I
fE s 'll—-------------—--?" --------------------------------- 1
: II L :
1 fus 7 |
pes i
: rr |
! i SPE PPE |
! | (10f8) !
I

! | SPU |
i v PPU |
: | e |
I \ LS 1
1 1 I
| 1
: i I I !
: I 1
1 1
MMIO OMA PPSS i
| uec |
i |H i
l I 1
I 1
i I
I 1
i i
i I
] I

EIB
CEE Chip
________________________________________________________ 4

: DRAM

o Memory
DMA Direct Memory Access PPE PowerPC Processor Element
EIB Element Interconnect Bus PPSS PowerPC Processor Storage Subsystem
LS Local Storage PPU PowerPC Processor Unit
MFC Memory Flow Controller SPE Synergistic Processor Element
MMIO Memory-Mapped /'O SPU Synergistic Processor Unit

Figure 1-2 Storage and Domain Interfaces

The address-translation mechanisms used in the main-storage domain are
described in Section 4 Virtual Storage Environment on page 77. The channel
domain is described in Section 19 DMA Transfers and Interprocessor
Communication on page 507. An SPE’s SPU can fetch instructions only from its
own LS, and load and store instructions executed by the SPU can only access
the LS. SPU software uses LS addresses (not main storage effective addresses)
to do this. Each SPE’s MFC contains a DMA controller. DMA transfer requests
contain both an LS address and an effective address, thereby facilitating
transfers between the domains.

Data transfer between an SPE Local Store and Main Storage is performed by the
Memory Flow Controller that is local to the SPE. Software running on an SPE

Chapter 1. Cell Broadband Engine Overview 13



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

14

sends commands to its MFC using the private channel interface. The MFC can
also be manipulated by remote SPEs, the PPE, or IO devices using memory
mapped 10. Software running on the associated SPE interacts with its own MFC
through its channel interface. The channels support enqueueing of DMA
commands and other facilities, such as mailbox and signal-notification
messages. Software running on the PPE or another SPE can interact with an
MFC through MMIO registers, which are associated with the channels and visible
in the mainstorage space.

Each MFC maintains and processes two independent command queues for DMA
and other commands one queue for its associated SPU, and another queue for
other devices accessing the SPE through the main-storage space. Each MFC
can process multiple in-progress DMA commands. Each MFC can also
autonomously manage a sequence of DMA transfers in response to a DMA list
command from its associated SPU (but not from the PPE or other SPEs). Each
DMA command is tagged with a tag group ID that allows software to check or
wait on the completion of commands in a particular tag group.

The MFCs support naturally aligned DMA transfer sizes of 1, 2, 4, or 8 bytes, and
multiples of 16 bytes, with a maximum transfer size of 16 KB per DMA transfer.
DMA list commands can initiate up to 2048 such DMA transfers. Peak transfer
performance is achieved if both the effective addresses and the LS addresses
are 128-byte aligned and the size of the transfer is an even multiple of 128 bytes.

Each MFC has a synergistic memory management (SMM) unit that processes
address-translation and access-permission information supplied by the PPE
operating system. To process an effective address provided by a DMA command,
the SMM uses essentially the same addresstranslation and protection
mechanism used by the memory management unit (MMU) in the PPE’s
PowerPC processor storage subsystem (PPSS)2. Thus, DMA transfers are
coherent with respect to system storage, and the attributes of system storage are
governed by the page and segment tables of the PowerPC Architecture.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO.fm

1.4.3 Bit Ordering and Numbering

MSh LSk
0 1 2 3 4 5 & 7 & 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 27 28 29 30 A

Byte 0 Byte 1 Byta 2 Byte 3

Bit and Byte Order for a 32-bit Word

MSh LSk
0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 Py 120 127
' | | - |

,

Byte 0 Byte 1 s

Byte 15

Bit and Byte Order for a 128-bit Register

Figure 1-3 Big-Endian Byte and Bit Ordering

Storage of data and instructions in the Cell BE processor uses big-endian
ordering, which has the following characteristics:

» Most-significant byte stored at the lowest address, and least-significant byte
stored at the highest address.

» Bit numbering within a byte goes from most-significant bit (bit 0) to
least-significant bit (bit n).

This differs from some other big-endian processors.

A summary of the byte-ordering and bit-ordering in memory and the
bit-numbering conventions is shown in Figure 1-3 on page 15.

Neither the PPE nor the SPEs, including their MFCs, support little-endian
byte-ordering. The MFC’s DMA transfers are simply byte moves, without regard
to the numeric significance of any byte. Thus, the big-endian or little-endian issue
becomes irrelevant to the actual movement of a block of data. The byte-order
mapping only becomes significant when data is loaded or interpreted by a
processor element or an MFC.

1.4.4 Runtime Environment

The PPE runs PowerPC Architecture applications and operating systems, which
can include both PowerPC Architecture instructions and vector/SIMD multimedia
extension instructions. To use all of the Cell BE processor’s features, the PPE
requires an operating system that supports these features, such as
multiprocessing with the SPEs, access to the PPE vector/SIMD multimedia
extension operations, the Cell BE interrupt controller, and all the other functions
provided by the Cell BE processor.

Chapter 1. Cell Broadband Engine Overview 15



7575CH_INTRO.fm Draft Document for Review February 15, 2008 4:59 pm

16

The PPE runs PowerPC Architecture applications and operating systems, which
can include both PowerPC Architecture instructions and vector/SIMD multimedia
extension instructions. To use all of the Cell BE processor’s features, the PPE
requires an operating system that supports these features, such as
multiprocessing with the SPEs, access to the PPE vector/SIMD multimedia
extension operations, the Cell BE interrupt controller, and all the other functions
provided by the Cell BE processor.

A main thread running on the PPE can interact directly with an SPE thread
through the SPE’s LS. It can interact indirectly through the main-storage space. A
thread can poll or sleep, waiting for SPE threads. The PPE thread can also
communicate through mailbox and signal events implemented in the hardware.

The operating system defines the mechanism and policy for selecting an
available SPE to schedule an SPU thread to run on. It must prioritize among all
the Cell BE applications in the system, and it must schedule SPE execution
independently from regular main threads. The operating system is also
responsible for runtime loading, passing parameters to SPE programs,
notification of SPE events and errors, and debugger support.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

2

IBM SDK for Multicore
Acceleration

This chapter provides a description of the software tools and libraries that are
found in the Cell Broadband Engine SDK. This chapter includes a brief
discussion of the following topics

»

| 2

>

Compilers

IBM Full System Simulator

CELL BE Libraries

Code examples and example libraries
Performance tools

IBM Eclipse IDE for the SDK
Hybrid-x86 programming model

2.1 Compilers

There are a number of IBM supplied compilers as part of the IBM SDK for
Multicore Acceleration. This section breifly describes the IBM product compilers
and open source compilers in the SDK.

© Copyright IBM Corp. 2007. All rights reserved.

7575CH_INTRO_SDK_CONTENT.fm

17



7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm

2.1.1 GNU Toolchain

The GNU toolchain, including compilers, the assembler, the linker, and
miscellaneous tools, is available for both the PPU and SPU instruction set
architectures. On the PPU it replaces the native GNU toolchain (which is generic
for PowerPC architectures) with a version that is tuned for the Cell PPU
processor core. The GNU compilers are the default compilers for the SDK.

The GNU toolchains run natively on Cell BE hardware, or as cross compilers on
PowerPC or x86 machines.

2.1.2 IBM XLC/C++ Compiler

IBM XL C/C++ for Multicore Acceleration for Linux is an advanced,
high-performance cross-compiler that is tuned for the CBEA. The XL C/C++
compiler, which is hosted on an x86, IBM PowerPC technology-based system, or
an IBM BladeCenter QS21, generates code for the PPU or SPU. The compiler
requires the GCC toolchain for the CBEA, which provides tools for
cross-assembling and cross-linking applications for both the PPE and SPE.

Note: The IBM XLC/C++ compiler that comes with SDK 3 is an OpenMP
directed single source compiler that supports automatic program partitioning,
data virtualization, code overlay, and more. This version of the compiler is in
beta mode and users should not base production applications on this
compiler.

2.1.3 GNU ADA Compiler

The GNU toolchain also contains an implementation of the GNU ADA compiler.
This compiler comes in a navitve Cell BE and an x86 cross-compiler. This initial
version of this compiler supports code generation for the PPU processor.

2.1.4 1BM XL Fortran for Multicore Acceleration for Linux

IBM XL Fortran for Multicore Acceleration for Linux is the latest addition to the
IBM XL family of compilers. It adopts proven high-performance compiler
technologies used in its compiler family predecessors, and adds new features
tailored to exploit the unique performance capabilities of processors compliant
with the new Cell Broadband Engine architecture. This version of XL Fortran is a
cross-compiler. First, you compile your applications on an IBM System p
compilation host running Red Hat Enterprise Linux 5.1 (RHEL 5.1). Then you
move the executable application produced by the compiler onto a Cell BE system

18 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm

also running the RHEL 5.1 Linux distribution. The Cell B.E. system will be the
execution host where you will actually run your compiled application.

2.2 IBM Full System Simulator

The IBM Full-System Simulator (referred to as the simulator in this document) is
a software application that emulates the behavior of a full system that contains a
Cell BE processor. You can start a Linux operating system on the simulator and
simulating a two chip Cell/B.E. environement and run applications on the
simulated operating system. The simulator also supports the loading and running
of statically-linked executable programs and standalone tests without an
underlying operating system. There are other functions like debug output not
available on hardware.

The simulator infrastructure is designed for modeling processor and system-level
architecture at levels of abstraction, which vary from functional to performance
simulation models with a number of hybrid fidelity points in between:

Functional-only simulation: Models the program-visible effects of instructions
without modeling the time it takes to run these instructions. Functional-only
simulation assumes that each instruction can be run in a constant number of
cycles. Memory accesses are synchronous and are also performed in a constant
number of cycles.

This simulation model is useful for software development and debugging when a
precise measure of execution time is not significant. Functional simulation
proceeds much more rapidly than performance simulation, and so is also useful
for fast-forwarding to a specific point of interest.

Performance simulation: For system and application performance analysis, the
simulator provides performance simulation (also referred to as timing simulation).
A performance simulation model represents internal policies and mechanisms for
system components, such as arbiters, queues, and pipelines.

Operation latencies are modeled dynamically to account for both processing time
and resource constraints. Performance simulation models have been correlated
against hardware or other references to acceptable levels of tolerance.

The simulator for the Cell BE processor provides a cycle-accurate SPU core
model that can be used for performance analysis of computationally-intense
applications

Chapter 2. IBM SDK for Multicore Acceleration 19



7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm

2.2.1 System root image for Simulator

The system root image for the simulator is a file that contains a disk image of
Fedora files, libraries, and binaries that can be used within the system simulator.
This disk image file is preloaded with a full range of Fedora utilities and also
includes all of the Cell BE Linux support libraries.

2.3 Linux Kernel

For the IBM BladeCenter QS21, the kernel is installed into the /boot directory,
yaboot.conf is modified and a reboot is required to activate this kernel. The
cellsdk install task is documented in the SDK Installation Guide.

2.4 Cell BE Libraries

In the following sections we describe various programming libraries.

2.4.1 SPE Runtime Management Library

The SPE Runtime Management Library (libspe) constitutes the standardized
low-level application programming interface (API) for application access to the
Cell BE SPEs. This library provides an APl to manage SPEs that is neutral with
respect to the underlying operating system and its methods. Implementations of
this library can provide additional functionality that allows for access to operating
system or implementation-dependent aspects of SPE runtime management.
These capabilities are not subject to standardization and their use may lead to
non-portable code and dependencies on certain implemented versions of the
library.

2.4.2 SIMD Math Library

The traditional math functions are scalar instructions, and do not take advantage
of the powerful Single Instruction, Multiple Data (SIMD) vector instructions
available in both the PPU and SPU in the Cell BE Architecture. SIMD instructions
perform computations on short vectors of data in parallel, instead of on individual
scalar data elements. They often provide significant increases in program speed
because more computation can be done with fewer instructions.

20 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm

2.4.3 Mathematical Acceleration Subsystem (MASS) libraries

The Mathematical Acceleration Subsystem (MASS) consists of libraries of
mathematical intrinsic functions, which are tuned specifically for optimum
performance on the Cell BE processor. Currently the 32-bit, 64-bit PPU, and SPU
libraries are supported.

These libraries:

» Include both scalar and vector functions v Are thread-safe v Support both 32-
and 64-bit compilations

» Offer improved performance over the corresponding standard system library
routines

» Are intended for use in applications where slight differences in accuracy or
handling of exceptional values can be tolerated

2.4.4 Basic Linear Algebra Subprograms (BLAS)

The BLAS (Basic Linear Algebra Subprograms) library is based upon a published
standard interface for commonly used linear algebra operations in
high-performance computing (HPC) and other scientific domains. It is widely
used as the basis for other high quality linear algebra software: for example
LAPACK and ScaLAPACK. The Linpack (HPL) benchmark largely depends on a
single BLAS routine (DGEMM) for good performance.

The BLAS API is available as standard ANSI C and standard FORTRAN 77/90
interfaces. BLAS implementations are also available in open-source (netlib.org).

The BLAS library in the IBM SDK for Multicore Acceleration supports only real
single precision and real double precision versions (hereafter referred to as SP
and DP respectively). All SP and DP routines in the three levels of standard
BLAS are supported on the Power Processing Element (PPE). These are
available as PPE APIs and conform to the standard BLAS interface.

Some of theses routines have been optimized using the Synergistic Processing
Elements (SPEs) and these show a marked increase in performance in
comparison to the corresponding versions implemented solely on the PPE.
These optimized routines have an SPE interface in addition to the PPE interface;
however, the SPE interface does not conform to the standard BLAS interface and
provides a restricted version of the standard BLAS interface. The following
routines have been optimized to use the SPEs; moreover, the single precision
versions of these routines have been further optimized for maximum
performance using various features of the SPE.

Chapter 2. IBM SDK for Multicore Acceleration 21



7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm

2.4.5 ALF Library

The ALF provides a programming environment for data and task parallel
applications and libraries. The ALF API provides library developers with a set of
interfaces to simplify library development on heterogenous multi-core systems.
Library developers can use the provided framework to offload computationally
intensive work to the accelerators. More complex applications can be developed
by combining the several function offload libraries. Application programmers can
also choose to implement their applications directly to the ALF interface.

ALF supports the multiple-program-multiple-data (MPMD) programming module
where multiple programs can be scheduled to run on multiple accelerator
elements at the same time.

» The ALF functionality includes:
» Data transfer management
» Parallel task management

» Double buffering v Dynamic load balancing

2.4.6 Data Communication and Synchronization library (DaCS)

The DaCS library provides a set of services for handling process-to-process
communication in a heterogeneous multi-core system. In addition to the basic
message passing service these include:

» Mailbox services

» Resource reservation

» Process and process group management

» Process and data synchronization

» Remote memory services

» Error handling

The DaCS services are implemented as a set of APIs providing an architecturally
neutral layer for application developers They structure the processing elements,
referred to as DaCS Elements (DE), into a hierarchical topology. This includes
general purpose elements, referred to as Host Elements (HE), and special
processing elements, referred to as Accelerator Elements (AE). Host elements

usually run a full operating system and submit work to the specialized processes
which run in the Accelerator Elements.

22 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm

2.5 Code examples and example libraries

The example libraries package provides a set of optimized library routines that
greatly reduce the development cost and enhance the performance of Cell BE
programs.

To demonstrate the versatility of the Cell BE architecture, a variety of
application-oriented libraries are included, such as:

» Fast Fourier Transform (FFT)

» Image processing

» Software managed cache

» Game math

» Matrix operation

» Multi-precision math

» Synchronization

» Vector

Additional examples and demos show how you can exploit the on-chip
computational capacity.

2.6 Performance Tools

The Cell/B.E. SDK supports many of the traditional Linux based performance
tools available. The performance tools (such as gprof) pertain specifically to the
PPE execution environement and do not support the SPE environment. The
following tools are special tools that support the PPE and/or SPE environment.

2.6.1 SPU Timing Tool

The SPU static timing tool, spu_timing, annotates an SPU assembly file with
scheduling, timing, and instruction issue estimates assuming a straight, linear
execution of the program which is useful for analyzing basic code blocks. The
tool generates a textual output of the execution pipeline of the SPE instruction
stream from this input assembly file. The output generated can show pipeline
stalls, which can be explained by looking at the subsequent instructions. Data
dependencies are pipeline hazards can be readily identified using this tool.
Lastly, it should be noted that this is a static analysis tool. It does not idenitify
branch behavior or memory transfer delays.

Chapter 2. IBM SDK for Multicore Acceleration 23



7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm

2.6.2 OProfile

OProfile is a Linux tool that exists on other architectures besides the Cell/B.E.,
and that it has been extended to support the unique hardware on the PPU and
SPUs. ltis a sampling based tool that does not require special source compile
flags to produce useful data reports.

The opreport tool produces the output report. Reports can be generated based
on the file names that correspond to the samples, symbol names or annotated
source code listings (special source compiler flags are required in this case).

2.6.3 Cell-perf-counter tool

The cell-perf-counter (cpc) tool is used for setting up and using the hardware
performance counters in the Cell BE processor. These counters allow you to see
how many times certain hardware events are occurring, which is useful if you are
analyzing the performance of software running on a Cell BE system. Hardware
events are available from all of the logical units within the Cell BE processor.
including the PPE, SPEs, interface bus, and memory and 1/O controllers. Four
32-bit counters, which can also be configured as pairs of 16-bit counters, are
provided in the Cell BE performance monitoring unit (PMU) for counting these
events.

2.6.4 Performance Debug Tool (PDT)

The Cell BE PDT is to provide programmers with a means of analyzing the
execution of such a system and tracking problems in order to optimize execution
time and utilization of resources.

The PDT addresses performance debugging of one Cell BE board with two PPEs
that share the main memory, run under the same (Linux) operating system, and
share up to 16 SPEs. The PDT also enables event tracing on the Hybrid-x86.

2.6.5 Feedback Directed Program Restructuring (FDPR-Pro)

The Feedback Directed Program Restructuring for Linux on POWER tool
(FDPR-Pro or fdprpro) is a performance tuning utility that reduces the execution
time and the real memory utilization of user space application programs. It
optimizes the executable image of a program by collecting information on the
behavior of the program under a workload. It then creates a new version of that
program optimized for that workload. The new program typically runs faster and
uses less real memory than the original program and supports the Cell BE
environment.

24 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_INTRO_SDK_CONTENT.fm

2.6.6 Visual Performance Analyzer (VPA)

Visual Performance Analyzer (VPA) is an Eclipse-based performance
visualization toolkit. It consists of six major components::

» Profile Analyzer

» Code Analyzer

» Pipeline Analyzer

» Counter Analyzer

» Trace Analyzer

» Control Flow Analyzer

Profile Analyzer provides a powerful set of graphical and text-based views that
allow users to narrow down performance problems to a particular process,
thread, module, symbol, offset, instruction, or source line. Profile Analyzer
supports time-based system profiles (Tprofs) collected from a number of IBM
platforms and Linux profile tool oprofile. The Cell BE is now a fully supported
environment for VPA.

2.7 IBM Eclipse IDE for the SDK

IBM Eclipse IDE for the SDK is built upon the Eclipse and C Development Tools
(CDT) platform. It integrates the GNU tool chain, compilers, the Full-System
Simulator, and other development components to provide a comprehensive,
Eclipse-based development platform that simplifies development. The key
features include the following:

» A C/C++ editor that supports syntax highlighting, a customizable template,
and an outline window view for procedures, variables, declarations, and
functions that appear in source code

» A visual interface for the PPE and SPE combined GDB (GNU debugger) v
Seamless integration of the simulator into Eclipse

» Automatic builder, performance tools, and several other enhancements v
Remote launching, running and debugging on a BladeCenter QS21 v ALF
source code templates for programming models within IDE

» An ALF Code Generator to produce an ALF template package with C source
code and a readme.ixt file

» A configuration option for both the Local Simulator and Remote Simulator
target environments that allows you to choose between launching a
simulation machine with the Cell BE processor or an enhanced

Chapter 2. IBM SDK for Multicore Acceleration 25



7575CH_INTRO_SDK_CONTENT.fm Draft Document for Review February 15, 2008 4:59 pm

CBEA-compliant processor with a fully pipelined, double precision SPE
processor

» Remote Cell BE and simulator BladeCenter support

» SPU timing integration v Automatic makefile generation for both GCC and
XLC projects

2.8 Hybrid-x86 programming model

The Cell Broadband Engine Architecture (CBEA) is an example of a multi-core
hybrid system on a chip. That is to say, heterogeneous cores integrated on a
single processor with an inherent memory hierarchy. Specifically, the synergistic
processing elements (SPEs) can be thought of as computational accelerators for
a more general purpose PPE core. These concepts of hybrid systems, memory
hierarchies and accelerators can be extended more generally to coupled I/O
devices, and examples of those systems exist today, for example, GPUs in PCle
slots for workstations and desktops. Similarly, the Cell BE processors is being
used in systems as an accelerator, where computationally intensive workloads
well suited for the CBEA are off-loaded from a more standard processing node.
There are potentially many ways to move data and functions from a host
processor to an accelerator processor and vice versa.

In order to provide a consistent methodology and set of application programming
interfaces (APIs) for a variety of hybrid systems, including the Cell BE SoC hybrid
system, the SDK has implementations of the Cell BE multi-core data
communication and programming model libraries, Data and Communication
Synchronization and Accelerated Library Framework, which can be used on
x86/Linux host process systems with Cell BE-based accelerators. The current
implementation is over TCP/IP sockets is provided so that you can gain
experience with this programming style and focus on how to manage the
distribution of processing and data decomposition. For example, in the case of
hybrid programming when moving data point to point over a network, care must
be taken to maximize the computational work done on accelerator nodes
potentially with asynchronous or overlapping communication, given the potential
cost in communicating input and results.

26 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575PART_DEVENVIRONMENT.fm

Part 2

Programming
Environment

In this part of the book we provide in depth coverage of various programming
methods, tools, strategies, and adaptions to different computing workloads.

© Copyright IBM Corp. 2007. All rights reserved.

27



7575PART_DEVENVIRONMENT.fm Draft Document for Review February 15, 2008 4:59 pm

28 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

3

Enabling applications on the
Cell BE

This chapter describes the process of enabling an existing application on Cell BE
hardware. The aim is to provide guidance for choosing the best programming
model and framework for a given application. This is valuable information for
people actually developing applications and also to IT specialists who will have to
manage a Cell BE application enablement project.

We also include the case of a completely new application, being written from
scratch. This can be viewed as a special case of an application enablement,
where the starting point is not actual code, but only algorithms with no initial data
layout decisions. In a sense, this is an easier case as the options are completely
open and not biased by the current state of the code.

This chapter tries to answer a few questions:

» Should I enable this application on Cell BE hardware? Is it a good fit?

» If the answer to this question is yes, then which parallel programming model
should | use? The Cell BE, with its heterogenous design and software
controlled memory hierarchy offers new parallel programming paradigms to
complement the well established ones.

» Which Cell BE programming framework will best support the programming
model that was chosen for the application under study ?

© Copyright IBM Corp. 2007. All rights reserved. 29



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

30

Once these questions have been answered, it is time to do the hard work,
actually making the necessary code changes to exploit the Cell BE architecture.
We describe this process and show that it can be iterative and incremental.
These are two interesting features as we can use a step by step approach,
inserting checkpoints during the course of the porting project to track the
progress.

Finally, we present a few scenarios and make a first attempt at creating a set of
design patterns for Cell BE programming.

This chapter contains seven parts. We first define the concepts and terminology,
introducing:

» the computational kernels frequently found in applications,

» the distinctive features of the Cell BE, which are covered in great details in
“Cell BE programming” on page 75

» the parallel programming models,

» the Cell BE programming frameworks, described in “Cell BE programming” on
page 75 and Chapter 7, “Programming in distributed environments” on
page 439

Next we describe the relationship between computational kernels and the Cell
BE features on one hand and between parallel programming models and Cell BE
programming frameworks on the other hand.

We give examples of some of the most common parallel programming models
and contrast them in terms of control parallelism and data transfers. We make a
first attempt at presenting some design patterns for Cell BE programming
following a formalism used in other areas of computer sciences.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

3.1 Concepts and terminology

Figure 3-1 on page 32 shows the concepts and how they are related. As the
figure shows, we describe an application has having one or more computational
kernels, and one or more potential parallel programming models. The
computational kernels exercise or stress one or more of the Cell BE features (the
Q1 connection). The different Cell BE features can either strongly or weakly
support the different parallel programming model choices (the Q2 connection).
And the chosen parallel programming model can be implemented on the Cell BE
using various programming frameworks (the Q3 connection).

To answer questions Q1 and Q2 the programmer needs to be able to match the
characteristics of the computational kernel and parallel programming model to
the strengths of the Cell BE. There are many programming frameworks available
for the Cell BE. Which one is best suited to implement the parallel programming
model that is chosen for the application? We provide advice to the programmer
for question Q3 in section 3.4, “Which Cell BE programming framework to use ?”
on page 60.

Chapter 3. Enabling applications on the Cell BE 31



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

/ App Ilcatm

(one or more
computational kemels
plus one or more

potental parallel |
programming models) L

Parallel

Computational Programming

Kemels Models
Q17? Q3?
Q2 ?
Cell BE
Cell BE j
Programming
R ( Frameworks

Q1: Is the application likely to perform well on the Cell BE?

Q2: Which programming model should | use for this application?
Q3: Which framework should | use to suppert the chosen programming model?

Figure 3-1 Overview of programming considerations and relations

3.1.1 The computation kernels

A study by David Patterson et al [1], complementing earlier work from Phillip
Colella [8], establishes that the computational characteristics and data
movement patterns of all applications in scientific computing, embedded
computing, desktop and server computing can be captured by no more than
thirteen different kernels : the “13 dwarfs” as they are named in this paper. This
work is based on a careful examination of the most popular benchmark suites:

» EEMBC? for the embedded computing,
» SPEC3intand fp for the desktop and server computing,

1 Intel® [9] also classifies applications in three categories named RMS for Recognition, Mining and
Synthesis to direct its research in computer architecture.
2 EEMBC : Embedded Microprocessor Benchmark Consortium.

32 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_METHOD.fm

» HPCC*and NAS® parallel benchmarks for scientific computing,

as well as input from other domains : machine learning, database, computer
graphics and games. The first 7 dwarfs are the ones initially found by Phillip
Colella. The 6 remaining ones were identified by Patterson et al. The intent of the
paper is to help the parallel computing research community, in the academia and
the industry, by providing a limited set of patterns against which new ideas for
hardware and software can be evaluated.

We describe the “13 dwarfs” in Table 3-1, with some example applications or
benchmarks. This table is adapted from [1].

Table 3-1 The 13 dwarfs, description and examples

Dwarf name

Description

Example, application,
benchmark

Dense matrices

BLAS, matrix-matrix
operations

HPCC:HPL, ScaLAPACK,
NAS:LU

Sparse matrices

Matrix-vector operations
with sparse matrices

SuperLU, SpMV, NAS:CG

Spectral methods

FFT transforms

HPCC:FFT, NAS:FT,
FFTW

N-body methods

Interactions between
particles, external, near
and far

NAMD, GROMACS

Structured grids

Regular grids, can be
automatically refined

WRF, Cactus, NAS:MG

Unstructrured grids

Irregular grids, finite
elements and nodes

ABAQUS, FIDAP
(Fluent™)

Map-reduce

Independant data sets,
simple reduction at the end

Monte-Carlo, NAS:EP, Ray
tracing

Combinatorial logic

Logical functions on large
data sets, encryption

AES, DES

Graph traversal

Decision tree, searching

XML parsing, Quicksort

Dynamic programming

Hidden Markov models,
sequence alignment

BLAST

3 SPEC : Standard Performance Evaluation Consortium.
4 HPCC : High Performance Computing Challenge benchmarks.
5 NAS : NASA Advanced Supercomputing benchmarks

Chapter 3. Enabling applications on the Cell BE 33




7575CH_METHOD.fm

Draft Document for Review February 15, 2008 4:59 pm

Dwarf name

Description

Example, application,
benchmark

Back-track and
Branch+Bound

Constraint optimization

Simplex algorithm

Graphical models

Hidden Markov models,
Bayesian networks

HMMER, bioinformatics,
genomics

Finite state machine

XML transformation,
Huffman decoding

SPECInt:gcc

During the course of writing [1], IBM provided an additional classification for the
13 dwarfs by evaluating which factor was often limiting its performance, whether
it be the CPU, the memory latency or the memory bandwidth. Here is this table,

extracted from [1].

Table 3-2 Performance bottlenecks of the 13 dwarfs

Dwarf

Performance bottleneck (CPU, memory
bandwidth, memory latency

Dense matrices

CPU limited

Sparse matrices

CPU limited 50%, bandwidth limited 50%

Spectral methods

Memory latency limited

N-body methods

CPU limited

Structured grids

Memory bandwidth limited

Unstructrured grids

Memory latency limited

Map-reduce

(unknown)?

Combinatorial logic

Memory bandwidth limited for CRC, CPU
limited for cryptography

Graph traversal

Memory latency limited

Dynamic programming

Memory latency limited

Back-track and Branch+Bound (unknown)
Graphical models (unknown)
Finite state machine (unknown)

34 Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

a. Every method will ultimately have a performance bottleneck of some kind. At the time of
writing, specific performance bottlenecks for these “unknown” computational kernel types
as applied to the Cell BE platform are well understood yet.

The Cell BE brings improvements in all three directions : 9 cores on a chip
represent a lot of CPU power, the XDR memory subsystem is extremely capable
and the software managed memory hierarchy (DMA) is a new way of dealing with
the memory latency problem, quoted in this paper as the most critical one.

3.1.2 Important Cell BE features

Here we consider some features that are meaningful from an application
programmer’s point of view. Referring to Table 3-3 below, “Not so good” here only
means that the feature is probably going to incur more pain for the programmer
or that a code exercising this feature a lot will not perform as fast as expected.
The difference between “Good” or “Not so good” may also be related to the
relative performance advantage of the Cell BE over contemporary processors
from IBM or others. This analysis is based on current hardware implementation
at the time this book was written. This table is likely to change with future
products.

”

Most of the items below are described in great details in “Cell BE programming
on page 75.

Table 3-3 The important Cell BE features as seen from a programmer’s perspective

Good Not so good

Large register file

DMA (memory latency hiding) @ DMA latency

EIB bandwidth P

Memory performance Memory size
SIMD © Scalar performance (Scalar on Vector)
Local Store (latency/bandwidth) Local Store (limited size)
8 SPE per processor (high level of PPE performance
achievable parallelism)
NUMA (good scaling) SMP scaling
Branching
Single precision floating point Double precision floating pointc|

a. See paragraph “Data transfer” on page 109

Chapter 3. Enabling applications on the Cell BE 35



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

b. See paragraph “Direct problem state access and LS to LS transfer” on page 143
c. See paragraph “SIMD programming” on page 253
d. This is expected to improve with the introduction of the Bladecenter QS-22

In general, the percentage of peak performance that can be achieved on the
Cell BE can be higher than for most general purpose processors thanks to the
large register file, the short Local Store latency, the software managed
memory hierarchy, the very high EIB bandwidth and the very capable memory
subsystem.

3.1.3 The parallel programming models

The parallel programming models abstract the hardware for the application
programmers. The purpose is to offer an idealized view of the current system
architectures, a view onto which applications can be mapped. This is pictured
below.

Real world

Physical model

Algorithm

Application

Programming model

Hardware

Figure 3-2 The programming model

36 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

A parallel application tries to bind multiple resources for its own use : memory
and processors. The purpose is either to speed up the whole computation (more
processors) or to treat bigger problems (more memory). The work of parallelizing
an application involves:

» distributing the work across processors
» distributing the data if the memory is distributed

» synchronizing the sub-tasks, possibly through a shared data access if the
memory is shared

» communicating the data if the memory is distributed

Let’s take a look at the options for each of these components.

Work distribution

The first task is to find concurrency in the application, try to expose multiple
independent tasks and group them together inside execution threads.The options
are:

» independent tasks operating on largely independent data

» domain decomposition, where the whole data can be split in multiple
sub-domains, each of which being assigned to a single task

» streaming, where the same piece of data undergoes successive
transformations, each of which being performed by a single task, all tasks
being arranged in a string and passing data in a producer-consumer mode.
The amount of concurrency here is the number of different steps in the
computation.

Now, each parallel task can perform the work itself or it can call other processing
resources for assistance, this process being completely transparent to the rest of
the participating tasks. We find the following techniques:

» function offload, where the compute intensive part of the job is being
offloaded to a supposedly faster processor

» accelerator mode, a variant of the previous technique, where multiple
processors can be called to collectively speed up the computation

Data distribution
The data model is a very important part of the parallelization work. Currently, the
choices are between:

» shared memory, every execution thread has direct access to other threads’
memory contents.

Chapter 3. Enabling applications on the Cell BE 37



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

» distributed memory, it is the opposite, each execution thread can only access
its own memory space. Specialized functions are required to import other
threads’ data into its own memory space.

» PGAS, Partitioned Global Address Space, where each piece of data must be
explicitly declared as either shared or local but within a unified address space.

Task synchronization

Sometimes, during the program execution, the parallel tasks will need to
synchronize. This can be realized though :

» messages or other asynchonous events emitted by other tasks
» locks or other synchronization primitives, for accessing a queue for example

» though transactional memory mechanisms

Data communication

In the case where the data is distributed, tasks will exchange information through
one of these two mechanisms:

» message passing, using send and receive primitives

» remote direct memory access (rDMA), sometimes defined as one-sided
communication

The programming models can further be classified according to the way each of
these tasks is being taken care of : explicitely by the programmer of implicitely by
the underlying runtime environment. The Table 3-4 lists a few common parallel
programming models and shows how they can be described according to what
was exposed above.

Table 3-4 A few parallel programming models

Programming | Task Data Task Data
model? distribution | distribution | synchonization | communication
MPI explicit explicit messages messages, can
do rDMA too

pthreads explicit n/a mutexes, n/a

condition

variables
OpenMP implicit n/a implicit n/a

(directives)t (directives)

UPC, CAF explicit explicit implicit implicit
(PGAS)
X10 (PGAS) explicit explicit future, clocks implicit

38 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

Programming | Task Data Task Data
model? distribution | distribution | synchonization | communication
Streamlt explicit explicit explicit implicit

a. Not all of these programming models are available for appropriate for the Cell BE platform

Programming model composition

An application can make use of multiple programming models. This will incur
additional efforts but may be dictated by the hardware on which it is to be run. For
example, the MPI + OpenMP combination is quite common today for HPC
applications as it matches the Beowulf® type of clusters, interconnecting small
SMP nodes (4, 8 way) with a high speed interconnection network

In this discussion about the parallel programming models, we have ignored the
instruction level (multiple execution units) and word level (SIMD) parallellisms.
They are to be considedred too of course to maximize the application
performance but usually do not interfere with the high level tasks of data and
work distribution.

3.1.4 The Cell BE programming frameworks

The Cell BE supports a wide of range of programming frameworks, from the most
basic ones, close to the hardware, to the most abstract ones.

At the lowest level, the Cell BE chip appears to the programmer as a distributed
memory cluster of 8+1 computational cores, with a ultra high speed interconnect
and a remote DMA engine on every core. On a single blade server, two Cell BE
chips can be viewed as either a single 16+2 cores compute resource (SMP
mode) or a NUMA machine with 2 NUMA nodes.

Multiple blade servers can then be gathered in a distributed cluster, a la Beowulf,
using a high speed interconnect network like 10G Ethernet or Infiniband. Such a
cluster is not any different, as far as programming is concerned, from a cluster of
Intel, AMD™ or POWER™ based SMP servers. Very likely the programming
model will be based on distributed memory programming using MPI as the
communication layer across blades.

An alternative arrangement is to have Cell BE blade servers serve only as
accelerator nodes for other systems. In this configuration, the application logic is
not managed at the Cell BE level but at the accelerated system level and the
dialog we are interested in is between the Cell BE and the system it provides
acceleration for.

6 Clusters based on commodity hardware. See http://www.beowulf.org/overview/index.html

Chapter 3. Enabling applications on the Cell BE =~ 39


http://www.beowulf.org/overview/index.html

7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

The frameworks that are part of the IBM SDK for Multicore Acceleration are
described in greater details in paragraph “Frameworks and domain-specific
libraries” on page 283 and “Hybrid Programming Models in SDK 3.0” on
page 440. We only give here a brief overview.

libspe2, newlib

This is the lowest possible level for application programmers. The libspe2 and
newlib libraries let programmers deal with each feature of the Cell BE
architecture with full control. If we recap the main libspe2/newlib features, we

find:
» SPE context management for creating, running, scheduling and deleting SPE
contexts

» DMA primitives for accessing remote memory locations from the PPE and the
SPEs

» mailboxes, signal, events and synchronization functions for PPE-SPE and
SPE-SPE dialogs and control

» PPE assisted calls, a mechanism to have the PPE service requests from the
SPEs.

Important: Libspe2 is a framework for obtaining access to the SPEs. Mailbox,
DMAs, signals, etc., are much faster when using direct problem state. High
performance programs should avoid making frequent libspe calls since they
often utilize kernel services. As such, it is best to use libspe2 to get parallel
tasks started, then use the MFC HW facilities for application task
management, communications, and synchronization.

Using these libraries, any kind of parallel programming model can be
implemented. libspe2 is described in great details in “Task parallelism and PPE
programming” on page 78.

Software cache

Software cache can help implement a shared memory parallel programming
model when the data that the SPEs reference cannot be easily predicted. See
“Automatic software caching on SPE” on page 155 for more details.

DaCS, Data Communication and Synchronization

DaCS provides services to multi-tier applications using a hiearchy of processing
elements. A DaCS program can be either a Host Elements (HE) or an
Accelerator Element (AE) or both if multiple levels of acceleration are needed. An
AE can only communicate within its HE’s realm. A HE need not be of the same
type as its HEs. This is the hybrid model. DaCS will take care of the necessary

40 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

byte swapping if the data flows from a little endian machine to the big endian Cell
BE.

The typical DaCS services are :
» resource and process management, where a HE manipulates its AEs,

» group management, for defining groups within which synchronization events
like barriers can happen,

» message passing, using send and receive primitives,
» mailboxes,

» remote DMA operations,

» process synchronization using barriers

» data synchronization using mutexes to protect memory accesses

The DaCS services are implemented as an API for the Cell BE only version and
are complemented by a run time daemon for the hybrid case. For a complete
discussion, see “DaCS - Data Communication and Synchronization” on

page 284 and “Hybrid DaCS” on page 443.

MPI

MPI is not part of the IBM SDK for Multicore Acceleration but any implementation
for Linux on POWER will be able to run on the Cell BE, leveraging the PPE only.
The most common implementations are :

» MPICH/MPICHZ2, from Argonne National Laboratory,
» MVAPICH/MVAPICH2, from Ohio State University

» OpenMPI, from a large consortium involving, amongst others, IBM and Los
Alamos National Laboratory

There is no difference from a functional point of view between these MPI
implementations running on Cell BE and running on other platforms. MPI is
obviously a very widespread standard for writing distributed memory
applications. MPI, as opposed to DaCS, treats all tasks as equal and lets the
programmer decide if, later on, some tasks are to play a particular role in the
computation. MPI is implemented as an API and a runtime environment to
support all sorts of interconnexion mechanisms between the MPI tasks : shared
memory, sockets for TCP/IP networks or OpenlB (OFED) for Infiniband networks.

ALF, Accelerated Library Framework

An ALF program uses multiple ALF accelerator tasks to perform the compute
intensive part of the work. The general idea is to have the host program split the
work into multiple independent pieces, the so-called work blocks, described by a

Chapter 3. Enabling applications on the Cell BE 41



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

computuation kernel, the input data they need as well as the output data they
produce. On the accelerator side, the programmer only has to code the
computational kernel, unwrap the input data and pack the output data when the
kernel has finished processing. In between, the runtime system is responsible for
managing the work blocks queue on the accelerated side and giving control to
the computational kernel upon receiving a new work block on the accelerator
side.

ALF imposes a clear separation between the application logic and control
running on the host task from the computational kernels that run on the
accelerator nodes, acting as service providers which are fed with input data and
echo back output data. The ALF runtime provides the following services “for free”
from the application programmer perspective :

» work blocks queue management,

» load balancing between accelerators,

» transparent DMA transfers, exploiting the data transfer list used to describe
the input and output data.

The table below summarizes the various duties :

Table 3-5 Work separation with ALF
Who does what

Host code writer program flow logic

manage accelerators

work blocks creation, input and output
data specified as a series of
address-type-length entries

manage communication and
synchronization with peer host tasks

Accelerator code writer computational kernel

ALF runtime schedule work blocks to accelerators
data transfer

ALF also offers more sophisticated mechanisms for managing multiple
computational kernels, express dependencies or tune further the data
movement. Just like DaCS, ALF can operate inside a Cell BE server or in hybrid
mode.

ALF is described in greater details in “ALF - Accelerated Library Framework” on
page 291 and “Hybrid ALF” on page 456.

42 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

DAYV, IBM Dynamic Application Virtualization

Using DAV, an IBM offering available from Alphaworks, an application can benefit
from Cell BE acceleration without any source code changes. The original,
untouched application, is only directed to use a stub library that is dynamically
loaded and offloads the compute intense functions to a Cell BE. IBM DAV
currently supports C/C++ or Visual Basic® Applications (like Excel® 2007
spreadsheets) running under the Microsoft® Windows® operating system. IBM
DAV comes with tools to generate ad-hoc stub libraries based on the prototypes
of the offloaded functions on the client side and similar information on the server
side (the Cell BE system) where the actual functions are implemented. For the
main appplication, the Cell BE is completely hidden. Of course, the actual
implementation of the function on the Cell BE will use the existing programming
frameworks to maximize the application perfornance.

See 7.1.3, “DAV - Dynamic Application Virtualization” on page 468 for a more
complete description.

Workload specific libraries

The IBM SDK for Multicore Acceleration contains a few workload specialized
libraries. These are the BLAS library for linear algebra, libFFT for fast Fourier
transforms in 1D and 2D and libmc for random number generations.

OpenMP

The IBM SDK for Multicore Acceleration contains a technology preview of the XL
C/C++ single source compiler. Using this compiler completely hides the Cell BE
to the application programmer who can continue using OpenMP : a familiar
shared memory parallel programming model. The compiler runtime library takes
care of spawning threads of execution on the SPEs and manages the PPE
threads to SPE threads data movement and synchronization.

There are other groups or companies working on providing programming
frameworks for the Cell BE. They are briefly discussed here.

Mercury Computer Systems
Mercury has two main offerings for the Cell BE:

» MCF, the MultiCore Framework which implements the manager/worker model
with an input/output tile management akin to the ALF work blocks

» Multicore Plus™ SDK, which bundles MCF with additional signal processing
and FFT libraries (SAL, VSIPL), a trace library (TATL) and Open Source tools
for MPI communications (OpenMPI) and debugging (gdb)

Chapter 3. Enabling applications on the Cell BE 43



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

PeakStream

The PeakStream™ Platform offers an AP, a generalize Array type and a Virtual
Machine environment that abstracts the programmer from the real hardware.
Data is moved back and forth between the application and the Virtual Machine
that accesses the Cell BE resources using an I/O interface. All the work in the
Virtual Machine is asynchronous from the main application perspective which
can keep on doing work before reading the data from the Virtual Machine. The
PeakStream Platform currently runs on the Cell BE, GPUs and traditional
homogeneous multi-core CPUs.

Code Sourcery
CodeSourcery offers Sourcery VSIPL++'M, a C++ implementation of the open

standard VSIPL++ library used in signal and image processing. The programmer
is freed from accessing the low level mechanisms of the Cell BE. This is taken
care of by the CodeSourcery runtime library.

The VSIPL (Vector Signal and Image Processing Library) contains routines for :
» linear algebra for real and complex values

» random numbers

» signal and image processing (FFT, convolutions, filters)

Code Sourcery also runs on GPU and multi-core general purpose CPU.

Gedae

Gedae tries to automate the software development by using a model-driven
approach. The algorithm is captured in a flow diagram that is then used by the
multiprocessor compiler to generate a code that will match both the targer
architecture and the data movements required by the application.

RapidMind

RapidMind works with standard C++ language constructs and augments the
language using specialized macro language functions. The whole integration
proceeds in three steps :

» replace float or int arrays by RapidMind equivalent types (Array, Value),

» capture the computations enclosed between the RapidMind keywords
Program BEGIN and END and convert them into object modules

» stream the recorded computations to the underlying harware using platform
specific constructs (Cell BE, CPU or GPU) when the modules are invoked

There are also research groups working on implementing other frameworks onto
the Cell BE. Worth noting are the efforts of the Barcelona Supercomputing teams

44 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

with CellSs (Cell Superscalar) and derivatives like SMPSs (SMP Superscalar)
and from Los Alamos National Laboratory with CellFS, based on concepts taken
from the Plan9 operating system.

In Figure 3-3 on page 45 we plot these frameworks on a scale ranging from the
closest to the hardware to the most abstract.

IBM DAV

OpenMP

software
cache

workload

librares

Al
B
=
=
=
=

Cell is exposed Cell is hidden

Figure 3-3 Relative positioning of the Cell programming frameworks

IBM DAV - Dynamic Application Virtualization is particular here. On the
accelerated program side (the client side in DAV terminology), the Cell BE is
completely hidden using the stub DLL mechanism. On the accelerator side (the
server side for DAV), any Cell BE programming model can be used to implement
the functions which have been offloaded from the client application.

'S

Chapter 3. Enabling applications on the Cell BE 5



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

3.2 Does the Cell BE fit the application requirements?

We will use the decision tree on Figure 3-4 on page 46 to answer this question.

Need for higher

performancewatt NO I

Parallelism

opportunities NO I

Algorithm match

Is it OK to rewrite
the application 7

Canwe call a Cell
enabled library 7

YES YES

Figure 3-4 Is the Cell BE a good fit for this application

46 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

3.2.1 Higher performance/watt

The main driver for enabling applications on the Cell BE is the need for a higher
level of performance per watt. This is a concern shared by many customers as is
reported by the IDC study referenced in [15]. Customers may be willing to :

» lower their electricity bills,

» overcome computer rooms limits in space, power and cooling,

» adopt a green strategy for their IT : a green ITtude,

» allow for more computing power for a given space and electrical power budget
as is often the case in embedded computing.

The design choices for the Cell BE exactly match these new requirements with a
power efficiency (expressed in peak Gflops per Watt) that is over two times better
than conventional general purpose processors.

3.2.2 Opportunities for parallelism

The Cell BE offers parallelism at four levels:

» across multiple System x™ servers in a hybrid environment. This is
expressed using MPI at the cluster level or some sort of grid computing
middleware.

» across multiple Cell BE chips/servers. Here we use MPI communication
between the Cell BE servers in the case of a homogeneous cluster of
standalone Cell BE servers or possibly ALF or DaCS for hybrid clusters.

» across multiple SPE inside the Cell BE chip/server, using libspe2, ALF, DaCS
or a single source compiler.

» at the word level with SIMD instructions on each SPE, using SIMD intrinsics
or the auto-SIMDization capabilities of the compilers.

The more parallel processing opportunities the application can leverage the
better.

3.2.3 Algorithm match

Here, we are looking for a match between the main computational kernels of the
application and the Cell BE strengths as listed on Table 3-3. As we have seen in
3.1.1, “The computation kernels” on page 32, most applications can be
characterized by a composition of the 13 “dwarfs” of Patterson et al [1]. It is
therefore important to know which kernels a given application is built with. This is

Chapter 3. Enabling applications on the Cell BE 47



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

usually very easy to do as it is related to the numerical methods used in the
applications.

In a paper by Williams et al. [2], the authors have studied how the Cell BE
performs on four of the 13 “dwarfs” : denses matrices algebra, sparse matrices
algebra, spectral methods and structures grids. They compared the performance
of these kernels on a Cell BE with what they obtained on a superscalar processor
(AMD Opteron™), a VLIW processor (Intel ItaniuszM) and a vector processor
(Cray X1 ETM). The results were found very interesting for the Cell BE, a very
good result as these kernels are extremely common in many HPC applications.

Other authors have reported successes for graphical models (bioinformatics,
HMMer [16]), dynamic programming (genomics, BLAST [17]), unstructured grids
(Finite Element Solvers [18], combinatorial logic (AES, DES [19]).

The map-reduce dwarf is embarrassingly parallel and is therefore a perfect fit for
the Cell BE. Examples can be found in ray-tracing or Monte-Carlo simulations.

The graph traversal dwarf is a more difficult target for the Cell BE due to random
memory accesses although some new sorting algorithms (AA-sort in [5]) have
been shown to exploit the Cell BE architecture.

The N-Body simulation does not seem yet ready for Cell BE exploitation although
research efforts are providing good early results [20].

The table summarizes the results of these studies. We present for each of the
“13 dwarfs”, its Cell BE affinity (from 1, poor to 5 excellent), and the Cell BE
features that are of most value for each kernel.

The algorithm match also depends on the data types that are being used. The
current Cell BE has a single precision floating point affinity. There will be much
larger memory and the enhanced double precision floating point capabilities in
later versions of Cell BE.

Table 3-6 tThe 13 dwarfs from Patterson et al. and their Cell BE affinity

Dwarf name

Dense matrices

Cell BE affinity Main Cell BE features

1, poor to 5, excellent

5 8 SPE per Cell BE
SIMD

large register file for deep unrolling
fused multiply-add

Sparse matrices

4 8 SPE per Cell BE
memory latency hiding with DMA
high memory sustainable load

48 Programm

ing the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

Dwarf name Cell BE affinity Main Cell BE features
1, poor to 5, excellent

Spectral methods 5 8 SPE per Cell BE

large register file

6 cycles Local Store latency
memory latency hiding with DMA

N-body methods ? ?
Structured grids 5 8 SPE per Cell BE
SIMD

high memory bandwidth
memory latency hiding with DMA

Unstructrured grids | 3 8 SPE per Cell BE
high memory thruput

Map-reduce 5 8 SPE per Cell BE

Combinatorial logic | 4 large register file

Graph traversal 2 memory latency hiding

Dynamic 4 SIMD

programming

Back-track and ? ?

Branch+Bound

Graphical models 5 8 SPE per Cell BE
SIMD

Finite state ? ?

machine

As can be derived from the above table, the Cell BE is a good match for many of
the common computational kernels. This is the result of the design decisions that
were made to address the main bottlenecks : memory latency and throughput as
well as a very high computational density with 8 SPE per Cell BE each with a
very large register file and a extremely low local store latency (6 cycles compared
to 15 for current general purpose processors from Intel or AMD).

3.2.4 Ready to make the effort?

The Cell BE may be easy on the electricity bill but can be hard on the
programmer. Enabling an application on the Cell BE may result in very

Chapter 3. Enabling applications on the Cell BE 49



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

substantial algorithmic and coding efforts. But the results are usually worth the
efforts.

What are the alternatives ? The parallelization effort may have already been
done using OpenMP at the process level. In this case, using the prototype of the
XLC single source compiler might be the only viable alternative. Despite a very
high usability, these compilers are still far from providing the level of performance
that can be attained with native SPE programming. The portability of the code is
maintained and for some customers this might be a key requirement.

For new developments, it might be a good idea to use the higher level of
abstraction provided by the likes of Peakstream, Rapidmind or Streamit’. The
portability of the code is maintained between Cell BE, GPU and general
multi-core processors. But the application is tied to the development
environment, a different form of lock-in.

In the long run, new standardized languages may emerge. Projects like X108
from IBM or Chapel® from Cray may become the preferred language for writing
applications to run on massively multi-core systems. Adopting new languages
has historically been a very slow process and even if we get a new language, that
still does not help the millions of lines of code written in C/C++ and Fortran.
Standard API for the host-accelerator model may be closer. ALF is a good
candidate. The very fast adoption of MPI in the mid 90s has proved that an API
can be just what we need to enable a wide range of applications.

But can we wait for these languages and standards to emerge? If the answer is
no and the decision has been taken to enable the application on Cell BE now,
here is a list of things to consider and possible workarounds when problems are
encountered.

Table 3-7 Things to consider when enabling an application on Cell BE

Topic Potential problem Workaround
Source code changes Portability concerns The Cell BE API are standard C.
Limit the scope of code | Approaches like host-accelerator can limit the
changes amount of source code changes
Operating systems Windows applications Cell BE runs Linux only. If the appplicaition runs on
Windows, we may want to use IBM DAV to offload
only the computational part to the Cell BE
7 http://www.cag.csail.mit.edu/streamit
8 http://domino.research.ibm.com/comm/research_projects.nsf/pages/x10.index.html
9 http://chapel.cs.wahsington.edu
50 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_METHOD.fm

Topic Potential problem Workaround

Languages C/C++ fully supported Rewrite the compute intensive partin C
Fortran and ADA Use some sort of offloading for Java™ or VBA
supported applications running on Windows with IBM DAV
Other languages not
supported

Libraries Not many libraries Use the workload libraries provided by the IBM
supported yet SDK for Multicore Acceleration
Little ISV support

Data types 8, 16, 32bit data well Full speed double precision support soon to appear

supported
64bit float point
supported

Memory requirements

Maximum is 2GB per
blade server

Use more smaller MPI tasks, on an IBM Blade
Server use a single MPI task with 16 SPE rather
than 2 MPI tasks with 8 SPE.

(This is subject to change as much larger memory
configuration per blade is due in future product
releases.)

Memory requirements

LS size is 256k

Large functions will need to be split
Will have to use overlay
Limit recursion (stack space)

I/0

I/O intensive tasks

Cell BE does not help I/O bound workloads.

3.3 Which parallel programming model ?

Large homogeneous compute clusters can be built by collecting standalone Cell
BE blade servers with an Infiniband interconnect. At this cluster level, the usual
distributed memory programming models such as MPI can be used. An
application that is already programmed using MPI is a very good start as we only
need to add Cell BE parallelism incrementally to fully exploit the Cell BE
potential.

Hybrid clusters are becoming increasingly popular as a means of building very
powerful configurations by incrementally upgrading existing clusters built with off
the shelf components. In this model, the MPI parallelism at the cluster level is
maintained but each task is now accelerated by one or more Cell BE.

Chapter 3. Enabling applications on the Cell BE 51



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

We will first describe the parallel programming models found in the literature and
then focus on the Cell BE chip or board level parallelism and the host-accelerator
model.

3.3.1 Parallel programming models basics

Mattson et al. in [4] define a taxonomy of parallel programming models. First they
define four “spaces” that the application programmer has to visit. They are
described in table 3-8 on 52.

Table 3-8 Four design spaces from Mattson et al.

Space Description
Finding concurrency Find parallel tasks
Group and order them
Algorithm structure Organize the tasks in processes
Supporting structure Code structures for tasks and data
Implementation Low level mechanisms for managing and synchronizing
mechanisms execution threads as well as data communication

The first space is very much application dependant. The implementation
mechanisms are described more detail in “Cell BE programming” on page 75
and Chapter 7, “Programming in distributed environments” on page 439.

In the algorithm space, Mattson et al. propose to look at three different ways of
decomposing the work, each with two modalities. This leads to six major
algorithm structures described in the table 3-9 on 52.

Table 3-9 IAlgorithm structures

Organization principle Organization sub-type Algorithm stucture

By tasks Linear Task parallelism
Recursive Divide and conquer

By data decomposition Linear Geometric decomposition
Recursive Tree

By data flow Regular Pipeline
Irregular Event-based coordination

52 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

Task parallelism occurs when multiple independant tasks can be scheduled in
parallel. Divide and conquer is applied when a problem can be recursively
treated by solving smaller sub-problems. Geometric decomposition is very
common when the we try to solve a partial differential equation which has been
discretized on a 2D or 3D grid and grid regions are assigned to processors.

As for the supporting structures, they identified four structures for organizing
tasks and three for organizing data. They are given side by side in table 3-10 on

53.

Table 3-10 Supporting structures for code and data
Code structures Data structures
SPMD Shared data
Master/Worker Shared queue
Loop parallelism Distributed array
Fork/Join

SPMD is the Single Program Multiple Data code structure well know to MPI
programmer. Although MPI does not impose the use of SPMD, this is a very
frequent consruct. Master/worker is sometimes called “bag of tasks” when a
master task distributes work elements independant of each other to a pool of
workers. Loop parallelism is a low level structure where the iterations of a loop
are shared between execution threads. Fork/Join is a model where a master
execution threads calls (fork) multiple paralel execution threads and wait for their
completion (join) before continuing with the sequential execution.

Shared data refers to the constructs necessary to share data between execution
threads. Shared queue is the coordination among tasks to process a queue of
work items. Distributed arrray addresses the decomposition of multi-dimensional
arrays into smaller sub-arrays that are spread across multiple execution units.

We will now look at how these map to the Cell BE and what needs to be looked at
to figure out the best parallel programming model for the application. There are
forces which are specific to the Cell BE that will influence the choice. They are
given here in no particular order of importance.

Table 3-11 Cell BE specific “forces”

Force

Heterogenous PPE/SPE

Distributed memory between SPE, shared memory view
possible by memory mapping the Local Store

Chapter 3. Enabling applications on the Cell BE =~ 53



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

Force

SIMD

PPE slow compared to SPE

Software managed memory hierarchy

Limited size of the LS

Dynamic code loading (overlay)

High bandwidth on the EIB

Coherent shared memory

Large SPE context, startup time

3.3.2 Chip or board level parallelism

The Cell BE is a heterogenous, multi-core, distributed memory processor. It
offers many opportunities for parallel processing at the chip or board level. On
Figure 3-5 on page 55, we show the reach of multiple programming models. The
models can sometimes be classified as PPE-centric or SPE-centric. Although
this is a somewhat artificial distinction, it indicates that the application control is
either run more on the PPE side or on the SPE side.

54 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

I
Effective Address

Figure 3-5 Various models on the Cell BE

We see here four different models :

» small single SPE program, where the whole code holds in the Local Store of a
single SPE,

» large single SPE program, one SPE program accessing system memory,
» small multi-SPE program,
» general Cell BE program with multiple SPE and PPE threads.

When multiple SPE are used, they can be arranged in a data parallel, streaming
mode, as depicted in Figure 3-6 on page 56.

Chapter 3. Enabling applications on the Cell BE =~ 55



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

System Memory

=

=]

uo -0 uo uo -

L)

e

PPE

Bl E3

Figure 3-6 The streaming model

Each piece of input data (10, I1, ...) is streamed through one SPE to produce a
piece of output data (00, O1, etc). The exact same code runs on all SPE.
Sophisticated load balancing mechanisms can be applied here to account for
differeing compute time per data chunk.

The SPE can also be arranged in a pipeline fashion, where the same piece of
data undergoes various transformations as it moves from one SPE to the other. A
general pipeline is shown on Figure 3-7 on page 57.

56 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_METHOD.fm

System Memory

P “0 ‘Cl uCl 2le =‘Cl

PPE

SPED
-.K'em_.!i(ﬂl I

DMA

| SPE1
| Kernel,()

SPET.
Kermnek{()

Figure 3-7 The pipeline model

The main benefit is that the we aggregate the code size of all the SPE
participating in the pipeline We also benefit from the huge EIB bandwidth to
transfer the data. One possible variation is to move the code instead of the data,
whichever is the easiest or smallest to move around. A good load balancing is
much more challenging as it relies on a constant per stage computational time.

3.3.3 More on the host-accelerator model

A common approach with Cell BE parallel programming is to use a function
offload mechanism akin to the RPC model. The application flows on the PPE and
only for selected, highly computational kernels do we call upon SPE acceleration.
This is the easiest from a program development perspective as it limits the scope
of source code changes and does not require much re-engineering at the
application logic level. This is very much a fork/join model and care must be
taken that we give enough work to the accelerator threads to compensate for the
startup time. This is typically implemented with specialized workload libraries like
BLAS, FFT or RNG for which there exists a Cell BE tuned version. BLAS is the
only library that could be considered a “drop in replacement” at this time.

Chapter 3. Enabling applications on the Cell BE

57




7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

A variation of this model is to have general purpose accelerator progams running
on the SPE, sitting in a loop, awaiting for being asked to provide services for the
PPE threads. Having persistent threads on each SPE eliminates the startup time
of SPE threads but requires that the accelerator programs be able to service
various requests for various functions, possibly incurring the use of dynamic code
uploading techniques. The ALF framework described in “ALF - Accelerated
Library Framework” on page 291 and “Hybrid ALF” on page 456 is one
implementation.

A general accelerator is shown in Figure 3-8.

Live data

State data

Services

Figure 3-8 Memory structure of an accelerator

An accelerator can implement multiple services (functions f1 to f4). Each function
may requires some “state” data, persistent across multiple invocations. The “live
data” is the data in and out of the accelerator for each invocation. It is important
to understand which is read, written or both to optimize the data transfers.

3.3.4 Summary
Among the various programming models and structures listed in tables 3-9 on 52

and 3-10 on 53, some will be easier to implement on Cell BE than others. The
tables 3-12, 3-13 and 3-14 summarize the Cell BE specific issues.

Table 3-12 Cell BE suitability of algorithm structures and specific issues

Algorithm structure Cell BE suitability Things to look at
(1 : poor, 5 : excellent)

Task parallelism 5 Load balancing
Synchronization required for accessing the
queue of work items

58 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

Algorithm structure Cell BE suitability Things to look at
(1 : poor, 5 : excellent)
Divide and conquer ? ?
Geometric decomposition 5 DMA and double buffering required
Code size
Tree 3 Random memory accesses
Pipeline 5 Load balancing

EIB exploitation
Move code or data ?

Event-based coordination 3 Code size, resulting code may be inefficent
because operation required is not know
until we get the even and data to process.

Table 3-13 Cell BE Suitability of code structures and specific issues

Code structure Cell BE suitability Things to look at
(1 : poor, 5 : excellent)

SPMD 3 Code size

The whole application control may not fit in Local
Store and more PPE intervention may be
required.

Master/Worker 5 Load balancing
Synchronization required for accessing the
queue of work items

Loop parallelism 3 PPE centric
Task granularity
Shared memory synchronization

Fork/Join 5 Fits the accelerator model
Weigh the thread startup time with the amount of
work and data transfer needed

Table 3-14 Data structures and Cell BE specific issues

Data structure Things to look at

Shared data Synchronization for accessing shared data, memory
ordering and locks

Chapter 3. Enabling applications on the Cell BE =~ 59



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

Data structure Things to look at
Shared queue From PPE managed to SPE self-managed work queues
Distributed array Data partitioning and DMA

3.4 Which Cell BE programming framework to use ?

We have now found which parallel programming model (work distribution, data
distribution and synchronization) we wish to apply to the application. We may
draw on more than one for a given application. We need to implement these
using the available Cell BE frameworks. Some frameworks are very general;
libspe2 with MFC services accessed through direct problem state (PPE) and
channels (SPE) being the most versatile. And some frameworks are very
specialized (ex. workload libraries). Choosing one is a matter of weighing the
features, the ease of implementation and the performance. There are also
application area specifics. For example, it seems that for radar applications,
Gedae is almost mandatory.

We list in table 3-15 the various parallel programming constructs and give for
each the most appropriate frameworks as a primary and secondary choices.

Table 3-15 Parallel programming constructs and frameworks

Programming construct Primary Secondary, comments
MPI OpenMPI, nothing specific to the MVAPICH, MPICH

Cell BE. This is a cluster/PPE level

construct.
pthreads pthreads supported on the PPE.

No direct support for a mapping

between PPE pthreads and SPE
pthreads. This would have to be

implemented using libspe.

OpenMP XLC single source compiler

UPC, CAF Not supported

X10 Not supported

Task parallelism libspe This is function offload, see Fork/Join

too

60 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_METHOD.fm

Programming construct

Primary

Secondary, comments

Divide and conquer

Geometric decomposition

ALF if data blocks can be
processed independantly

DaCS for more general data
decomposition

Tree software cache ?

Pipeline libspe DaCS, Streamit

Event-based coordination libspe

SPMD This is a PPE level consruct.

Master/Worker ALF libspe

Loop parallelism XLC single source compiler, with
OpenMP support

Fork/Join Workload specific libraries if they This is the accelerator model. Use
exist and ALF otherwise. ALF can | DAV if we need to accelerate a
be used to create new workload Windows application.
specific libraries.

Shared data DaCS MFC intrinsics, libsync

Shared queue DaCS MFC intrinsics, libsync

Distributed array ALF DaCS

3.5 The application enablement process

The process of enabling an application on Cell BE can be incremental and
iterative. It is incremental in the sense that the hotspots of the application should
be moved progressively off the PPE to the SPE. It is iterative as for each hotspot,
the optimization can be refined at the SIMD, synchronization and data movement
levels until satisfactory levels of performance are obtained.

As for the starting point, a thorough profiling of the application on a general
purpose system (PPE is just fine for this) will give all the hotspots that need to be
looked at. Then, for each hotspot, we can write a multi-SPE implementation with
all the data transfer and synchronization between the PPE and the SPE. Once
this first implementation is working, we then turn to the SIMDization and tuning of
the SPE code. The last two steps can be repeated in a tight loop until we get a
good performance. We can repeat the same process for all the major hotspots.
This is shown in Figure 3-9.

Chapter 3. Enabling applications on the Cell BE 61




7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

Profile,
find hotspots

¥

Port to PPE

il

A Al

Enable in multi
SPE mode

Y

SIMDize the
SPE code

¥

Tune synchro,
data movement

Figure 3-9 General flow for enabling an application on Cell BE

The figure above will change a bit depending on the framework that was chosen.
If we are fortunate enough to have an application whose execution time is
dominated by a function that happens to be part of a workload specific library

62 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

that has been ported to Cell BE, then the process to follow is shown in
Figure 3-10 on page 63.

Profile,
find hotspots

!

Port lo PPE

Call or link with
Cell BE tuned library

Figure 3-10 Implementing Cell BE tuned workload specific libraries

As for ALF, the process is described in Figure 3-11 on page 64.

Chapter 3. Enabling applications on the Cell BE 63



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

Profile,
find hotspots

k4

Portto PPE

\B

Identify kernel
|

\J L
Write SPE code Manage accelerators
for the kernel and work blocks
on PPE
) 4
SIMDize the
SPE code
) 4 Y
Tune work blocks, Tune work blocks,
data movement, data movement,
more on SPE less on PPE

yes

Figure 3-11 Enabling a Cell BE application with ALF

3.5.1 Performance tuning for Cell BE programs
Enabling applications on Cell BE is all about getting the best performance. This

does not come for free and performance tuning is an integral part of the
application enablement. Chapters “Cell BE programming” on page 75 and

64 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

Chapter 7, “Programming in distributed environments” on page 439 give many
detailed performance tips for writing good SPE and PPE code. Mike Acton'%in
[25] gives very valuable advice using the experience he and his team at
Insomniac Games gathered in the process of developing video games for the
Sony Playstation 3 . His recommandations are reproduced below :

» let’s not hide the Cell BE architecture but exploit it instead
» for a succesful port to Cell BE :
— understand the architecture

— understand the data : movement, dependencies, generation, usage (read,
write, or read-write)

— do the hard work
» put more work on the SPE, less on the PPE

» do not to view the SPE as co-processors but rather view the PPE as a service
provider for the SPE

» ban scalar code on the SPE

» less PPE/SPE synchronization, use deferred updates, lock-free
synchonization (see “Shared storage synchronizing and data ordering” on
page 213) and perform dataflow management as much as possible from the
SPE.

3.6 A few scenarios

Here we review a few examples of Cell BE programs. In Figure 3-12 on page 66,
we show the program flow for a typical function offload to a workload library. We
picture the PPE thread, running useful work until it calls a function that is part of
the Cell BE tuned library. What happens then is that the library will start SPE
context and start execute the library code. The library on the SPE could be doing
any kind of inter-SPE communication, DMA accesses, etc as figured by the
cloud. Once the function has finished executing, the SPE contexts are terminated
and the PPE thread resumes execution on the PPE.

10 http://well.cellperformance.com

Chapter 3. Enabling applications on the Cell BE 65



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

PPE thread SPEO SPE1 SPEN

work()

libfunction()

Internal library

work()

Figure 3-12 A typical work flow for Cell BE tuned workload libraries

Starting and terminating SPE contexts takes some time and we must ensure that
the time spent in the library far exceeds the SPE context startup time.

A variation of this scheme is when the application calls the library repeatedly. In
this case, it might be interesting to keep the library contexts running on the SPE
and just set them to work with a lightweight mailbox operation for example. This
is shown in Figure 3-13 on page 67.

66 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

PPE thread SPEO SPE1
work()

SPEN

libfunction(data1)

work() libfunction(data2)

work()

% libfunction(datd3)
|

Internal library

Figure 3-13 Successive invocations of the same library

Chapter 3. Enabling applications on the Cell BE =~ 67



7575CH_METHOD.fm

Here we have three successive invocations of the library with data1, data2 and
data3. The dotted lines indicate a SPE context that is active but waiting. This

arrangement minimizes the impact of the SPE contexts creation but it can only
work if the application has a single computational kernel that is called over and

over.

In Figure 3-14, we show the typical workflow of an ALF application. The PPE
thread will prepare the work blocks (numbered wb0 to wb12 here), and these will

Draft Document for Review February 15, 2008 4:59 pm

execute on the SPE accelerators.

PPE thread SPEO SPE1 SPEN
who wb1 wh2
work()
wh3 ® &
wb5 Wb4%
work()
wh6
wb7 wbs
work()
wh9 % Wb10% Wb12%

Figure 3-14 The ALF workflow

68

Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

There is typically no communication between accelerators when they are
processing a work block and the ALF runtime takes care of balancing the work
among the accelerators. Also, the PPE thread may do useful work while the
accelerators are crunching though the work blocks.

3.7 Design patterns for Cell BE programming

Design patterns were first introduced by Christoper Alexander in the field of town
and building architecture. Gamma et al. in [3] applied the same principles to the
computer programming and this has proved a very useful tool since then.
Multiple definitions can be found for a pattern. In [4], Mattson et al. define a
pattern as a “good solution to a recurring problem in a particular context”. Marc
Snir, in [6], describes them as a “way to encode expertise”. Patterns are usually
characterized by :

» aname,
» a problem,

» the forces shaping the solution,

» a solution to the problem

Using the same formalism, we have started to build a list of design patterns
applied to Cell BE programming. This is clearly only a start and it is hoped that
new patterns will emerge as we gain more and more expertise in porting code to
the Cell BE environment.

We will look at five design patterns :

» ashared queue

» indirect addressing

» a pipeline

» multi-SPE software cache

» plugin

3.7.1 Shared queue

We wish to distribute work elements between multiple SPE. They are arranged in
a FIFO queue in PPE memory.

Chapter 3. Enabling applications on the Cell BE 69



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

Forces

The two main forces are the need for a good load balance betwen the SPE and
minimal contention.

Solution

We can envision three solutions for dividing work between SPE. They are
described as follows.

Fixed work assignment

Each SPE is statically assigned the same amount of work elements. This incurs
no contention but may be a weak scheme if the time taken to process a work
element is not constant.

Master/Worker

The PPE assigns the work elements to the SPE. The PPE could give the pieces
of work one at a time to the SPE. When a SPE is finished with its piece of work, it
signals the PPEwhich then feeds the calling SPE with a new item, automatically
balancing the work. This scheme will be good for the load balance but may lead
to some contention if many SPE are being used as the PPE may be
overwhelmed by the task of assigning the work blocks.

Self managed by the SPE

The SPE will synchronize between themselves without PPE intervention. Once a
SPE is finished with its work item, it will grab the next piece of work from the
queue and process it. This is the best scheme as it ensures good load balance
and does not put any load on the PPE. The critical part of the scheme is to make
sure that the SPE remove work items off the queue atomically, possibly using the
MFC atomic operations or using features from the sync library provided with the
IBM SDK for Multicore Acceleration.

3.7.2 Indirect addressing

We wish to load in SPE memory a vector that is addressed through an index
array. This is common in sparse matrix-vector product that arise for example
when solving linear systems with conjugate gradients methods. The typical
construct is shown in Example 3-1 where the matrix is stored in CSR
(Compressed Sparce Row) format. This storage is described in [26].

Example 3-1 Matrix-vector product with a sparse matrix

float A[],x[1,y[]1;

int ja[], idx[];

for(i=0;i<N;i++) {
for(j=jalilsi<jali+1];j++) {

70 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

y[il+=Al3]+x[1dx[i1];
}
}

Forces
The index array by with the x vector is accessed leads to random memory
accesses.

Solution

However, the index array is known in advance and we can exploit this by using
software pipelining with a multi buffering scheme and DMA lists. This is
described in Figure 3-15.

t=1 t=2 t=3 t=4 t=5
Get IDX1 || Get IDX2 | | Get IDX3 | | Get IDX4 | | Get IDX5
Pr DMAL1| |Pr DMAL2| |Pr DMAL3| |Pr DMAL4
Gt DMAL1| |Gt DMAL2| |Gt DMAL3
Work X1 Work X2

Get IDXi : DMA the ith block of the IDX array
Pr DMALI : Prepare the DMA list for the ith access to the X array
Gt DMALI : DMA the list for the ith access to the X array

Work Xi : work with the ith access to the X array

Figure 3-15 Software pipeling and multi-buffering

We do not to show the accesses to the matrix A and the array y. They are
accessed sequentially and a simple multi-buffering scheme can also be applied.

3.7.3 Pipeline

We wish to arrange SPE contexts in a multi-stage pipeline manner.

Chapter 3. Enabling applications on the Cell BE 71




7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

Forces
We want to minimize the time it takes for the data to move from one pipeline
stage to the other.

Solution

Using affinity functions as described in “Direct problem state access and LS to
LS transfer” on page 143, we can make sure that successive SPE contexts are
ideally placed on the EIB to maximize the LS to LS transfer speed. An alternative
arrangement can be to move the code instead of the data, whichever is the
fastest. Very often, when the programming model is a pipeline, some state data
must reside on each stage and moving the function would also require moving
the state data.

3.7.4 Multi-SPE software cache

We wish to define a large software cache that gathers Local Storage space from
multiple participating SPEs.

Forces

We wish to push the software cache a bit further by allowing data to be cached
not necessarily in the SPE that encounters a “miss” but also in other SPE’s Local
Store. The idea here is to exploit the very high EIB bandwidth.

Solution

We do not have a solution for this yet. The first direction would be to look at
cache coherency protocols (MESI, MOESI, MESIF)'" in use today on multi
processor systems and try to adapt them to the Cell BE.

3.7.5 Plugin

We wish to process data whose contents, and therefore its associated treatment,
is discovered on the go.

Forces

This is similar to what happens with a Web browser when the flow of data coming
from the Web server contains data that requires the loading of external plugins to
be displayed. The challenge here is to be able to load on the SPE both the data
and the code to process it as the data is being discovered.

1 M=Modified, O=Owner, E=Exclusive, S=Shared, I=Invalid, F=Forwarding

72 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_METHOD.fm

Solution

The Cell BE has overlay support already so this could be one solution. However,
there might be a better solution to this particular problem using dynamically
loaded code. We can imagine loading code together with data using exactly the
same DMA functions. Nothing in the SPE memory differentiates code from data.
This has been implemented successfully by Eric Christensen et al. in [27]. The
process is as follows :

1. compile the code,

2. dump the object code as binary,
3. load the binary code as data,
4

. DMA the data (containing the code) just like regular data to the SPE, actual
data could also be loaded during the same DMA operation,

5. on the SPE jump to the address location where the code has been loaded to
pass the control to the plugin which has just been loaded.

Chapter 3. Enabling applications on the Cell BE =~ 73



7575CH_METHOD.fm Draft Document for Review February 15, 2008 4:59 pm

74 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4

Cell BE programming

The goal of this chapter is to provide an introductory guide for how to program an
application on Cell BE. The chapter covers many aspects of Cell BE programing,
from low level programing using intrinsics to higher level programming using
frameworks that hide the processor unique architecture.

The chapter covers issues related to programming a single Cell BE processor or
a Cell BE base blade system (e.g. QS21) that contains two Cell BE processors
but shares the same operating system and memory map.

When describing the programming techniques we tried to keep a good balance
between two opposite and complementary approaches:

» Keep the programing as high level a possible in order to reduce the
development time and to produce a code which is as readable and simple as
possible. This can be done for example using the SDK’s C functions for
accessing the different Cell BE hardware mechanisms (DMA, mailboxes,
signals, etc.) and abstract high level libraries to manage the work with Cell BE
(e.g. DaCS, ALF, software managed cache).

» Use low level programing in sections in the code where performance is
critical. This can be done for example using the low level intrinsics which are
mapped to a single or small number of assembly instructions.

When describing those techniques we usually emphasize the cases in which
each of the approaches is suitable.

© Copyright IBM Corp. 2007. All rights reserved. 75



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

76

In addition, we tried to include a wide range of important issues related to Cell BE
programming, that till this point were described in several different documents.

The programming techniques and libraries that are covered in this section are
divided into sections according to the functionality within the program that they
perform. We hope this approach is useful for the program developer as it enables
to find the corresponding subject according to the current stage in development
or according to the specific part of the program that is currently implemented.

This chapter is divided into the following sections:

>

“Task parallelism and PPE programming” on page 78 - describes how to
program the PPE and how to exploit task parallelism by distributing the work
between the SPEs.

“Storage domains, channels and MMIO interfaces” on page 95 discusses the
different storage domains on the Cell BE and how either a PPE or SPE
program can access them. The section also discusses how to use the MFC
which is the main component for communicating between the processors and
transferring data using DMA. It is useful to be familiar with this subject when
deciding on the program’s data partioning or when there is a need to use the
MFC (as any Cell BE program does).

“Data transfer” on page 109 discusses the various methods for performing
data transfers in Cell BE between the different available memories. Obviously
this is a key issue in any program development.

“Inter-processor communication” on page 174 describes how to implement
communication mechanisms between the different processors that run the
Cell BE in parallel (e.g. mailbox, signals, events).

“Shared storage synchronizing and data ordering” on page 213 discusses
how that data transfer of the different processors can be ordered and
synchronized. The Cell BE unique memory architecture requires the
programer to be aware of this issue which in many cases need to be handled
explicitly by the program using dedicated instructions.

“SPU programming” on page 240 shows how to write an optimized SPU
program. The intention here for programing issues related only to programing
the SPU itself an without interacting with external components (e.g. PPE,
other SPEs, main storage).

“Frameworks and domain-specific libraries” on page 283 discusses some
high level programing frameworks and libraries that aim to reduce the
development efforts and hide the Cell BE specific architecture (e.g. DaCS,
ALF and domain specific libraries). In some case using those frameworks
provide similar performance as programing using the low level libraries.

“Programming guidelines” on page 313 provides a collection of programming
guidelines and tips.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

— The section contains information gathered from various resources and
also new items that we added.

— It discuss issues that are described in details in other chapters. A
reference to the corresponding chapters is also mentioned.

— It may be a good idea for a programmer to read this chapter before starting
developing a new application in order to understand the different
consideration that need to be taken.

Chapter 4. Cell BE programming 77



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

4.1 Task parallelism and PPE programming

The Cell BE has a single PowerPC Processor Element (PPE) which is intended
primarily for running operating system, control the application process, managing
system resources, and managing SPE threads. Execution of any user program
also starts on this processor, and the PPE program may later off-load some of its
functionality to run on one or more of the SPEs.

From the programming point of view, managing the work with the SPEs is similar
to working with Linux threads, and the SDK contains libraries that assist in
managing the code running on the SPE and communicate with this code during
execution.

The PPE itself is conforms to the PowerPC Architecture so programs written for
the PowerPC 970 processor, for example, should run on the Cell BE processor
without modification. In addition, most program that run on a Linux based power
system and uses the OS facilities should work properly on a Cell BE based
system. Such facilities include accessing the file system, using sockets and MPI
for communicate with remote nodes, and managing memory allocation.

It is important for the programmer to know that using the operating system
facilities in any Cell BE application always take place on the PPE. While an SPE
code may use those facilities, doing so will cause blocking the SPU code and let
the PPE handle the system request. Only when the PPE complete handling the
request, the SPE execution will continue.

In this section we cover the following topics:

» Chapter 4.1.1, “PPE architecture and PPU programming” on page 79
describes the PPE architecture and instruction set and general issues
regarding programming code that runs on the PPU.

» Chapter 4.1.2, “Task parallelism and managing SPE threads” on page 83
discuss how PPU code may implement task parallelism using SPE threads.
The section discuss how to create and execute those threads and how to
create affinity between groups of threads.

» Chapter 4.1.3, “Creating SPEs affinity using gang” on page 93 discuss how to
create affinity between SPE threads the meant to run together.

We include in this book the issues related to PPE programming that we found the
most important when running most Cell BE applications. However, in case he
reader is interested in learning more about this subject or need to know some
specific detail that is not covered in this section, a good starting point to do so
may be PowerPC Processor Element chapter in Cell Broadband Engine
Programming Handbook.

78 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4.1.1 PPE architecture and PPU programming

Programming the PPU is similar to programming any Linux based program that
runs on a PowerPC processor system. Some of the key features of the PPE and
its PPU instructions set are:

» A general-purpose, dual-threaded, 64-bit RISC processor.

» Conforms to PowerPC Architecture with Vector/SIMD multimedia extensions.
» Uses 32 bits instructions that are word-aligned.

» Dual-threaded.

» Support Vector/SIMD Multimedia Extension 32 bits and word-aligned
instructions that works on 128 bits wide operands.

» 32 KB L1 instruction and data caches

» 512 KB L2 unified (instruction and data) cache.
» Cache line is 128 bytes.

» Instructions are executed in order.

The PPU supports two instruction sets: the PowerPC instruction set and the
Vector/SIMD Multimedia Extension instruction set. In most cases it is preferred to
use the eight SPEs to perform the massive SIMD operations and let the PPU
program managing the application flow. However, it may be useful in some cases
to add some SIMD computation on the PPU.

Although most of the coding for the Cell Broadband Engine will be in a high-level
language like C or C++, an understanding of the PPE architecture and PPU
instruction sets adds considerably to a developer’s ability to produce efficient,
optimized code. This is particularly true because C-language internals are
provided for some of the PPU’s instruction set. The following section discusses
the PPU intrinsics (C/C++ language extensions) and how to use them. This
section discuss both intrinsics that operate on scalars and also those that
operate on vector data type.

C/C++ language extensions (intrinsics)

The intrinsics are essentially inline assembly-language instructions, in the form of
function calls, that have syntax familiar to high-level programmers using the C
language. The intrinsics provide explicit control of the PPU instructions without
directly managing registers and scheduling instructions, as assembly-language
programming requires. The compilers that come with the SDK package supports
these C-language extensions.

Two main types of PPU intrinsics discussed in the following sections.

Chapter 4. Cell BE programming 79



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Scalar intrinsics

A minimal set of specific intrinsics to make the PPU instruction set accessible
from the C programming language. Except for __setf1m, each of these intrinsics
has a one-to-one assembly language mapping, unless compiled for a 32-bit ABI
in which the high and low halves of a 64-bit doubleword are maintained in
separate registers.

The most useful intrinsics under this category are those related to shared
memory access and synchronization and those related to cache management.
Efficient use of those intrinsic may assist in improving the overall performance of
the application.

The section “PPE ordering instructions” on page 217 discusses some of the
more important the intrinsics that are related to the shared memory access and
synchronization, such as ‘sync’, ‘lwsync’, ‘eieio’, and ‘isync’.

In addition, some of those scalar instruction provide access to the PPE registers
and internal data structures which enables the programmer to use some of the
PPE facilities.

All those intrinsics are declared in the ppu_intrinsics.h header file that need to
be included in order to use those intrinsics. They may be either defined within this
header as macros or implemented internally within the compiler.

By default, a call to an intrinsic with an out-of-range literal is reported by the
compiler as an error. Compilers may provide an option to issue a warning for
out-of-range literal values and use only the specified number of least significant
bits for the out-of-range argument.

The intrinsics do not have a specific ordering unless otherwise noted. The
intrinsics can be optimized by the compiler and be scheduled like any other
instruction.

Additional information about PPU scalar intrinsics can be found in the following
resources:

» PPU Specific Intrinsics chapter of C/C++ Language Extensions for Cell BE
Architecture document - a list of the available intrinsics and their meaning.

» PPE instruction sets chapter of the Cell Broadband Engine Programming
Tutorial document - a useful table that summarize those intrinsics.

Vector data types intrinsics

A set of intrinsics is provided in order to supports the Vector/SIMD multimedia
extension (VMX) instructions. Those instructions follow the AltiVec™ standard.

80 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

The VMX model adds a set of fundamental data types, called vector types. The
vector registers are 128 bits and can contain either sixteen 8-bit values (signed
or unsigned), eight 16-bit values (signed or unsigned). four 32-bit values (signed
or unsigned) or four single-precision IEEE-754 floating-point values.

The vector instructions include a reach set of operations that may be performed
on those vectors, including arithmetic operations, rounding and conversion,
floating-point estimate intrinsics, compare intrinsics, logical intrinsics, rotate and
shift Intrinsics, load and store intrinsics, pack and unpack intrinsics and more.

Vector/SIMD Multimedia Extension data types and Vector/SIMD Multimedia
Extension intrinsics can be used in a seamless way throughout a C-language
program. The programmer do not need to setup, to enter a special mode. The
intrinsics may be either defined as macros within the system header file or
implemented internally within the compiler.

In order to use PPU’s Vector/SIMD intrinsics the programmer should:

» Include system header file altivec.h which define the those intrinsics.

» Set -galtivec and -genablevmx flags in case XLC compilation is used.

» Set-mabi=altivec and -maltivec flags in case GCC compilation is used.

Example 4-1 demonstrates a simple PPU code that initiates two unsigned integer
vectors and add them while putting the results into third similar vector.

Source code: The code of Example 4-1 is included in the additional material
that is provided with this book. See “Simple PPU vector/SIMD code” on
page 612 for more information.

Example 4-1 Simple PPU Vector/SIMD code

#include <stdio.h>
#include <altivec.h>

typedef union {

int i[4];

vector unsigned int v;
} vec_u;

int main()

{

vec u a, b, d;

}s
}s

(vector unsigned int){1,2,3,
7

a.v 4
b.v = (vector unsigned int){5,6,7,8

Chapter 4. Cell BE programming 81



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

d.v = vec_add(a.v,b.v);

return 0;

Additional information about PPU vector data type intrinsics can be found in the
following resources:

» AltiVec Technology Programming Interface Manual - a detailed description of
VMX intrinsics.

» Vector Multimedia Extension Intrinsics chapter of C/C++ Language
Extensions for Cell BE Architecture document - a list of the available
intrinsics and their meaning.

» PPE instruction sets chapter of the Cell Broadband Engine Programming
Tutorial document - a useful table that summarize those intrinsics.

In most cases it is preferred to use the eight SPEs to perform the massive SIMD
operations and let the PPU program managing the application flow. For that
practical reason, we didn’t discuss the issue of PPU Vector/SIMD operations in
detail as we discuss the SPU SIMD instructions (see Chapter 4.6.4, “SIMD
programming” on page 253).

However, it may be useful in some application to add some SIMD computation on
the PPU. Another case when SIMD operation may take place on the PPU side is
when a programmer start the application development on the PPU and optimize
it to use SIMD instructions, and only later port the application to the SPU. We
don’t recommend to use this approach in most cases as it seems to consume
more development time.

One of the reason for the additional time is that despite the strong similarity

between the PPU’s Vector/SIMD instructions set and SPU instruction, those
instructions set are different. Most of the PPU Vector/SIMD instructions have
equivalent SPU SIMD instructions and vice versus but not all.

SDK also provides as set of header files that aim to minimize the effort when
porting PPU program to the SPU and vice versus.

» vmx2spu.h - macros and inline functions to map PPU Vector/SIMD intrinsics to
generic SPU intrinsics.

» spu2vmx.h - macros and inline functions to map generic SPU intrinsics to PPU
Vector/SIMD intrinsics.

82 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» vec_types.h - a SPU header file which defines a set of single token vector
data types that are available on both the PPU and SPU. The SDK3.0 provides
both GCC and XLC versions of this header file.

In case the programmer would like to read more about this issue we recommend
to read SPU and PPU Vector Multimedia Extension Intrinsics chapter and
Header Files chapter in C/C++ Language Extensions for Cell BE Architecture
document.

While the Vector/SIMD intrinsics contains various basic mathematical functions
that are implemented by corresponding SIMD assembly instructions, more
complex mathematical functions are not supported by those intrinsics. The
SIMDmath library is provided in the SDK and address this issue by providing a
set of functions that extend the SIMD intrinsics and support additional common
mathematical functions. Similar to SIMD intrinsics, the library operates on short
128 bits vectors from different types.

The SIMDmath library is supported both by SPU and the PPU. The SPU version
of this library is discussed in Chapter, “SIMDmath library” on page 257. The
PPU version is similar, but the location of the library files are different:

» simdmath.h file is located in the /usr/spu/include directory
» inline headers are located in the /usr/spu/include/simdmath directory
» thelibrary Tibsimdmath.a is located in the /usr/spu/1ib directory.

4.1.2 Task parallelism and managing SPE threads

Programs running on the Cell BE typically partition the work among the eight
available SPE as each SPE is assigned with a different task and data to work on.
We suggest several programming models how to partition the work between the
SPEs in Chapter 3.3, “Which parallel programming model ?” on page 51.

However, regardless the programming model, the main thread of the program is
executed on the PPE which create sub-threads that run on the SPEs and off-load
some function of the main program (to be run on the SPESs). It depends on the
programming model how later the threads and tasks are managed, how the data
is transferred and how the different processors communicate.

Managing the code running on the SPEs on a Cell BE based system can be
done using the libspe library (SPE runtime management library) that is part of the
SDK package. This library provides standardized low-level application
programming interface (API) that enables application access the SPEs and run
some of the program threads on those SPEs.

Chapter 4. Cell BE programming 83



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

In general, applications running on the Cell BE do not have control over the
physical SPE system resources as the operating system manages these
resources. Instead, applications manage and use software constructs called SPE
contexts. These SPE contexts are a logical representation of an SPE and holds
all persistent information about a logical SPE. The libspe library operates on
those contexts to manage the SPEs but the programmer should not access those
objects directly.

The operating system schedules SPE contexts from all running applications onto
the physical SPE resources in the system for execution according to the
scheduling priorities and policies associated with the runable SPE contexts.

Note: Re-scheduling SPE and performing the context switching usually
requires a fair amount of time as it required to store most of the 256 KB of the
local store in memory and reload it with the code and data of the new thread. It
is therefore recommended that application will not allow to do so by not
allocating more SPE threads then the number of physical SPEs that are
currently available (8 for a single Cell BE, 16 for QS20 or QS21 blade).

The programer is advised to run the SPE contexts on separate Linux thread
which enables the operating system to actually run them parallel compare to the
PPE threads and parallel compare to other SPEs.

SPE Runtime Management library document contains a detailed description of
the API for managing the SPE threads. The library also implements API which

provides the means for communication and data transfer between PPE threads
and SPEs. For more information see 4.3, “Data transfer’ on page 109 and 4.4,

“Inter-processor communication” on page 174.

When creating SPE thread, similar to Linux’s threads, the PPE program may
pass up to three parameters to this function. The parameters may be either 64
bits parameters or 128 bits vectors. Those parameter may be later used by the
code running on the SPE. One common use is to place in those parameters an
effective address of a control block that may be larger and contains additional
information. The SPE can use this address to fetch this control block into its local
store memory.

There are two main methods to load SPE programs:

1. Static loading of SPE object: statically compile the SPE object within the PPE
program. At run time, the object is can be accessed as an external pointer
that can be used by the programer to load the program into the local store.
The loading itself is implemented internally by the library APl using DMA.

2. Dynamic loading of SPE executable: compile the SPE as stand alone
application. At run time open the executable file, map it into the main memory

84 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

and then load it into the SPE’s local store. This method is more flexible as it
allow to decide on run time which program to load (e.g. depends on run time
parameters). Using this method saves linking the SPE program with the PPE
program at the cost of lost encapsulation such that the program is now a set
of files, not just a single executable

The following sections provides more information about the following subjects:

» “Running a single SPE program” on page 85 describe how to run code on a
single SPE using static loading of SPE object.

» “Producing a multi-threaded program using the SPEs” on page 89 describes
how to run code on multiple SPEs concurrently using dynamic loading of SPE
executable.

Running a single SPE program

This chapter describes how the user may run code on a single SPE. In this
example no Linux’s threads are used, so the PPE program blocks until the SPE
stops executing and the operating system returns from the system call that
invoked the SPE execution.

Example 4-2 covers the following topics for the PPU code, ordered according to
the same steps as executed in the code:

1. Initiate a control structure to point to input and output data buffers and initiate
SPU executable’s parameter to point to this structure (step 1in the code).

2. Create the SPE context using spe_context_create function.

3. Statically load the SPE object into the SPE context local store using
spe_program_Tload function.

4. Run the SPE context using spe_context_run function.

5. Optionally print the reason why the SPE stopped (obviously end of its main
function with return code 0 is the preferred one).

6. Destroy the SPE context using spe_context_destroy function.

The example covers the following topics for the SPU code:

» Use the parameters that the PPU code initiate in order to get the address a
control block, and get the control block from main storage to local store.

Example 4-3 on page 86 show the PPU code, Example 4-4 on page 88 shows
the SPU code while Example 4-2 on page 86 shows the common header file.

Please note that the 1ibspe2.h header file should be included in order to run the
SPE program.

Chapter 4. Cell BE programming 85



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Source code: The code in Example 4-2, Example 4-3, and Example 4-4 is
included in the additional material that is provided with this book. See
“Running a single SPE” on page 612 for more information.

Example 4-2 Running a single SPE - shared header file

// B
// B
#ifndef _COMMON_H_
#define _COMMON_H_
#define BUFF_SIZE 256
// the context that PPE forward to SPE
typedef struct({
uint64_t ea_in; // effective address of input buffer
uint64_t ea_out; // effective address of output buffer
} parm_context; // aligned to 16B

#endif // _COMMON_H_

Example 4-3 Running a single SPE - PPU code

#include <Tibspe2.h>
#include "common.h"

spe_program_handle_t spu_main; // a pointer to SPE object
spe_context_ptr_t spe ctx; // SPE context

// data structures to work with the SPE

volatile parm_context ctx _ attribute_ ((aligned(16))):

volatile char in_data[BUFF_SIZE] _ attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] _ attribute_ ((aligned(128)));
// function for printing the reason for SPE thread to stop

void print_stop_reason( spe_stop_info_t *stop_info ){

86 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

// result is a union that holds the SPE output result
int result=stop_info->result.spe_exit_code;

switch (stop_info->stop_reason) {
case SPE_EXIT:
printf(")PPE: SPE stop_reason=SPE_EXIT, exit_code=");
break;
case SPE_STOP_AND_SIGNAL:
printf(")PPE: SPE stop_reason=SPE_STOP_AND_SIGNAL,
signal_code=");
break;
case SPE_RUNTIME_ERROR:
printf(")PPE: SPE stop_reason=SPE_RUNTIME_ERROR,
runtime_error=");
break;
case SPE_RUNTIME_EXCEPTION:
printf(")PPE: SPE stop_reason=SPE_RUNTIME_EXCEPTION,
runtime_exception=");
break;
case SPE_RUNTIME_FATAL:
printf(")PPE: SPE stop_reason=SPE_RUNTIME_FATAL,
runtime_fatal=");
break;
case SPE_CALLBACK_ERROR:
printf(")PPE: SPE stop_reason=SPE_CALLBACK_ERROR
callback_error=");
break;
default:
printf(")PPE: SPE stop_reason=UNKNOWN, result=\n");
break;
}

printf("%d, status=%d\n",result,stop_info->spu_status);

int main( )

{
spe_stop_info_t stop_info;
uint32_t entry = SPE_DEFAULT_ENTRY;

// STEP 1: initiate SPE control structure

ctx.ea_in = (uint64_t)in_data;
ctx.ea_out = (uint64_t)out_data;

Chapter 4. Cell BE programming

7575CH_CHIPPGM.fm

87



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// STEP 2: create SPE context

if ((spe_ctx = spe_context_create (0, NULL)) == NULL){
perror("Failed creating context"); exit(1);

}

// STEP 3: Load SPE object into SPE context local store

// (SPU’s executable file name is spu_main’.

if (spe_program_load(spe_ctx, &spu_main)) {
perror("Failed loading program"); exit(1);

}

// STEP 4: Run the SPE context (see ‘spu_pthread’ function above

// Note: this a synchronous call to the operating system
// which blocks until the SPE stops executing and the
// operating system returns from the system call that
// invoked the SPE execution.

if(spe_context_run(spe_ctx,&entry,0, (void*)&ctx,NULL,&stop_info)<0) {
perror ("Failed running context"); exit (1);
}

// STEP 5: Optionally print the SPE thread stop reason
print_stop_reason( &stop_info );

// STEP 6: destroy the SPE context

if (spe_context_destroy( spe_ctx )) {

perror("Failed spe_context_destroy"); exit(l);
}

return (0);

Example 4-4 Running a single SPE - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

#include "common.h"
static parm_context ctx _ attribute__ ((aligned (128)));

volatile char in_data[BUFF_SIZE] _ attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] _ attribute__ ((aligned(128)));

int main(int speid , uint64_t argp)

88 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

{
uint32_t tag_id;

//STEP 1: reserve tag IDs
if((tag_id=mfc_tag_reserve())==MFC_TAG_INVALID){ // allocate tag
printf("SPE: ERROR - can't reserve a tag ID\n"); return 1;

}

//STEP 2: get context information from system memory.
mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);
mfc_write_tag_mask(l<<tag_id);
mfc_read_tag_status_all();

//STEP 3: get input buffer, process it, and put results in output
// buffer

//STEP 4: release tag IDs
mfc_tag_release(tag_id); // release tag ID before exiting
return 0;

Producing a multi-threaded program using the SPEs

In order to get the best performance out of an application running on Cell BE, it is
usually recommended to use multiple SPEs concurrently. In this case, the
application must create at least as many threads as concurrent SPE contexts are
required. Each of these threads may run a single SPE context at a time. If N
concurrent SPE contexts are needed, it is common to have a main application
thread plus N threads dedicated to SPE context execution

This chapter describes how the user may run code on a multiple SPEs
concurrent using Linux’s threads. We use a specific scheme which is the most
common one for Cell BE programming, but depending on the specific application
the programmer may use any other scheme.

The code example in this chapter execute two SPE threads and covers the
following topics:
» Initiate SPEs control structures.
» Dynamically loading of SPE executable into several SPEs:
— Create SPE contexts.
— Open images of SPE programs and map them into main storage.
— Load SPEs objects into SPE context local store

Chapter 4. Cell BE programming 89



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» Initiate Linux’s thread and run the SPE executable concurrently on those
threads. The PPU forward parameters the SPU programs.

Example 4-5 on page 90 show the PPU code, Example 4-6 on page 92 shows
the SPU code. The common header file is the same as in Chapter, “Running a
single SPE program” on page 85 and shown in Example 4-2 on page 86.

Please note that the 1ibspe2.h header file should be included in order to run the
SPE programs, and also pthread.h should be included to use Linux’s threads.

Source code: The code of Example 4-5 and Example 4-6 is included in the
additional material that is provided with this book. See “Running multiple SPEs
concurrently” on page 613 for more information.

Example 4-5 Running multiple SPEs concurrently - PPU code

// ppu_main.c file ================================================
#include <Tibspe2.h>
#include <cbe mfc.h>
#include <pthread.h>

#include "common.h"
#define NUM_SPES 2

// input and output data buffers
volatile char in_data[BUFF_SIZE] _ attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] _ attribute_ ((aligned(128)));

// Data structures to work with the SPE
volatile parm_context ctx[NUM SPES] _ attribute_ ((aligned(16)));
spe_program_handle_t *program[BUFF_SIZE];

// data structure for running SPE thread ==============================
typedef struct spu_data {

spe_context_ptr_t spe_ctx;

pthread_t pthread;

void *argp;
} spu_data_t;

spu_data_t data[NUM_SPES];

// create and run one SPE thread ======================================
void *spu_pthread(void *arg) f{

90 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

spu_data_t *datp = (spu_data_t *)arg;
uint32_t entry = SPE_DEFAULT_ENTRY;

if(spe_context_run(datp->spe_ctx,&entry,0,datp->argp,NULL,NULL)<0) {
perror ("Failed running context"); exit (1);

}

pthread_exit(NULL);

// majn ===============================================================
int main( )

{

int num;

// names of the two SPU executable file names
char spe_names[2][20] = {"spul/spu_mainl","spu2/spu_main2"};

// STEP 1: initiate SPEs control structures

for( num=0; num<NUM_SPES; num++) {
ctx[num].ea_in = (uint64_t)in_data + num*(BUFF_SIZE/NUM_SPES);
ctx[num] .ea_out= (uint64_t)out_data + num*(BUFF_SIZE/NUM_SPES);
data[num].argp = &ctx;

}

// Loop on all SPEs and for each perform two steps:
// STEP 2: create SPE context
// STEP 3: open images of SPE programs into main storage
// ‘spe_names’ variable store the executable name
// STEP 4: Load SPEs objects into SPE context local store
for( num=0; num<NUM_SPES; num++) {
if ((data[num].spe_ctx = spe_context_create (0, NULL)) == NULL) {
perror("Failed creating context"); exit(1);
}
if (!(program[num] = spe_image_open(&spe_names[num] [0]))) {
perror("Fail opening image"); exit(1);
}
if (spe_program_load ( data[num].spe_ctx, program[num])) {
perror("Failed loading program"); exit(1);
}
}

// STEP 5: create SPE pthreads
for( num=0; num<NUM_SPES; num++) {

Chapter 4. Cell BE programming 91



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

if(pthread_create(&data[num].pthread,NULL,&spu_pthread,
&data[num ])){
perror("Failed creating thread"); exit(1);
}
}

// Loop on all SPEs and for each perform two steps:
//  STEP 6: wait for all the SPE pthread to complete
//  STEP 7: destroy the SPE contexts
for( num=0; num<NUM_SPES; num++) {
if (pthread_join (data[num].pthread, NULL)) {
perror("Failed joining thread"); exit (1);

}

if (spe_context_destroy( data[num].spe_ctx )) {
perror("Failed spe_context_destroy"); exit(l);
}

}
printf(")PPE:) Complete running all super-fast SPEs\n");

return (0);

Example 4-6 Running multiple SPEs concurrently - SPU code version 1

// spu_mainl.c file ==================s==s==s====s===ssssssssssssss====
#include <spu_intrinsics.h>

#include <spu_mfcio.h>

#include "common.h"

static parm_context ctx _ attribute__ ((aligned (128)));

volatile char in_data[BUFF_SIZE] _ attribute__ ((aligned(128)));
volatile char out_data[BUFF_SIZE] _ attribute__ ((aligned(128)));

int main(int speid , uint64_t argp)

{
uint32_t tag_id;

if((tag_id=mfc_tag_reserve())==MFC_TAG_INVALID){ // allocate tag
printf("SPE: ERROR - can't reserve a tag ID\n"); return 1;
}

92 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// get context information from system memory.
mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);
mfc_write_tag_mask(l<<tag_id);
mfc_read_tag_status_all();

printf("<SPE: Harel Rauch joyfully sleeps on the coach\n" );
// get input, process it using method A, and put results in output

mfc_tag_release(tag_id); // release tag ID before exiting
return 0;

Example 4-7 Running multiple SPEs concurrently - SPU code version 2

// spu_ma-inz_c file ==================================================
// same variables and include as Example 4-6 on page 92

int main(int speid , uint64_t argp)

{

// same prefix as Example 4-4 on page 88

printf("<SPE: Addie Dvir would like to fly here.\n" );
// get input, process it using method A, and put results in output

mfc_tag_release(tag_id); // release tag ID before exiting
return 0;

4.1.3 Creating SPEs affinity using gang

The libspe library enables the programmer to create gang, which is group of SPE
contexts which should be executed together with certain properties. The
mechanism enables to create SPE to SPE affinity, which means allowing a
certain SPE context to be created and placed next to another previously created
SPE context (affinity is always is always specified for pairs).

The SPEs scheduler, which is responsible to map the SPE logical context to
physical SPE, honors this relationship by trying schedule the SPE contexts on
physically adjacent SPUs. It depends on the current status of the system if he will
be able to do so. If the PPE program tries to create such affinity when there are

Chapter 4. Cell BE programming 93



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

no other code running on the SPEs (in this program or other program) there is no
reason the schedule will not succeed doing so.

Using the SPE to SPE affinity can create performance advantages in some
cases. The performance gain is based mainly on the following characteristics of
the Cell BE architecture and systems:

1. On a Cell BE based SMP system, such as a Bladecenter QS21,
communication between SPEs which are located on the same Cell BE are
more efficient than data transfer between SPEs that are located on different
Cell BE chips. This includes both data transfer (e.g. LS to LS) and other types
of communication (e.g. mailbox and signals).

2. Similarly to #1 above, but on the same chip, communication between SPEs
which are adjacent on the local EIB bus is more efficient then between SPEs
which are not adjacent.

Given those characteristics, in case massive SPE to SPE communication is use
it is recommended to physically locate specific SPEs next to each other.

Example 4-8 show a PPU code that creates such chain of SPEs. This example is
inspired by the SDK code example named dmabench that is located in
/opt/cel1/sdk/src/benchmarks/dma directory.

Note: This example aims only to demonstrate how to create a chain of SPEs
which are physically located one next to the other. SPEs pipeline which is
based on this structure (e.g. each SPE execute DMA trasnfers from the local
store of the previous SPE on the chain) will NOT provide the optimal results
since only half of the EIB rings will be used (so half of the bandwidth is lost).
On the other hand, once the physical location of the SPEs is known (using the
affinity methods) the programer may use this information to locate the SPEs
elsewhere on the SPE pipeline.

The article “Cell Broadband Engine Architecture and its first implementation -
A performance view” provides information on the bandwidth that was
measured for some SPE-to-SPE DMA transfers, which may be useful when
deciding how to locate the SPEs related to each other on a given algorithm.

Example 4-8 PPU code for creating SPE physical chain using affinity

// take include files, ‘spu_data_t’ structure and the ‘spu_pthread’
// function from Example 4-5 on page 90

spe_gang_context_ptr_t gang;
spe_context_ptr_t ctx[NUM_SPES];

int main( )

94 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

{

int i;
gang = NULL;

// create a gang

if ((gang = spe_gang_context_create(0))==NULL) {
perror("Failed spe_gang context create"); exit(1);

}

// create SPE contexts as part of the gang which preserve affinity

// between each SPE pair.

// SPEs’ affinity is based on a chain architecture such as SPE[i]

// and SPE[i+1] are physically adjacent.

for (i=0; i<NUM_SPES; i++) {
ctx[i]=spe_context_create_affinity(0,(i==0)?NULL:ctx[i-1],gang));

if(ctx[i]==NULL){
perror("Failed spe_context _create_affinity"); exit(1);
}

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is comes with the book’s
// additional material).

// See also section 4.1.2, “Task parallelism and managing SPE
threads™

}

4.2 Storage domains, channels and MMIO interfaces

This chapter describe the main storage domains of the Cell BE architecture. Cell
BE has a unique memory architecture and understanding the those domains is a
key issue in order to know how to program Cell BE application and how the data
may be partitioned and transferred in such application. The storage domain is
discussed in the first chapter - “Storage domains”.

MFC is a hardware component that implements most of the Cell BE’s
inter-processor communication mechanism including the most significant means

Chapter 4. Cell BE programming 95



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

to initiate data transfer - DMA data transfers. While located in each of the SPEs,
the MFCs interfaces may be accessed by both program running on a SPU or a
program running on the PPU. The MFC is discussed in the next three chapters:

» “MFC channels and MMIO interfaces and queues” on page 98 discuss the
main features of the MFC and the two main interfaces is has with the
programs (channels interface and MMIO interface).

» “SPU programming methods to access MFC’s channel interface” discuss the
programming methods for accessing the MFC interfaces and initiate its
mechanisms from a SPU program.

» “PPU programming methods to access MFC’s MMIO interface” discuss the
programming methods for accessing the MFC interfaces and initiate its
mechanisms from a PPU program.

While this chapter discussed the MFC interfaces and programming methods to
program it, using the MFC mechanisms is described in other chapters:

» DMA data transfers and synchronization of data transfers is discussed in
Chapter 4.3, “Data transfer” on page 109

» Communication mechanism between the different processors (PPE, SPES)
such as mailbox, signals and events, are discussed in Chapter 4.4,
“Inter-processor communication” on page 174

4.2.1 Storage domains

96

Cell BE architecture defines three types of storage domains are defined in the
Cell BE chip: one main-storage domain, eight SPE LS domains, and eight SPE
channel domains. Figure 4-1 illustrates the storage domains and interfaces in
Cell BE.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_CHIPPGM.fm

Channel Interface Local Storage

(channel commands) (local-address space)

Main Storage
(effective-address space)

| SPE /
| wog /
I, SPU /

H'. an

%7

MKIC DA
Registers MFC Controller L

e——

PPE

PPU

PPSS

EIB
Cell BE Chi
Lo Y 3
DRAM

o Memory
DMA Direct Memory Access PPE PowerPC Processor Element
EIB Element Interconnect Bus PPS3 FowerPC Processor Storage Subsystemn
LS Local Storage PPU PowerPC Processor Unit
MFC Memory Flow Controller SPE Synergistic Processor Element
MIMIO Memory-Mapped 11O SPU Synergistic Processor Unit

Figure 4-1 Cell BE storage domains and interfaces

The main-storage domain, which is the entire effective-address space, can be
configured by the PPE operating system to be shared by all processors in the
system. On the other hand, the local-storage and channel problem-state
(user-state) domains are private to the SPE components. The main components
in each SPE are the SPU, the LS and the Memory Flow controller (MFC) which

handles the DMA data transfer.

Chapter 4. Cell BE programming 97



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Note: In this document we use the term main storage to describe any
component that have an effective address mapping on the main storage
domain.

An SPE program references its own LS using a Local Store Address (LSA). The
LS of each SPE is also assigned a Real Address (RA) range within the system's
memory map. This allows privileged software on the PPE to map LS areas into
the Effective Address (EA) space, where the PPE, other SPEs, and other devices
that generate EAs can access the LS like any regular component on the main
storage.

A code that runs on an SPU can only fetch instructions from its own LS, and
loads and stores can only access that LS.

Data transfers between the SPE's LS and main storage are primarily executed
using DMA transfers controlled by the MFC DMA controller for that SPE. Each
SPE's MFC serves as a data-transfer engine. DMA transfer requests contain
both an LSA and an EA. Thus, they can address both an SPE's LS and main
storage and thereby initiate DMA transfers between the domains. The MFC
accomplishes this by maintaining and processing an MFC command queue.

The fact that the local stores may be mapped to the main storage, allows SPEs to
use DMA operations to directly transfer data between their LS to another SPE’s
LS. This mode of data transfer is very efficient, because the DMA transfers go
directly from SPE to SPE on the high performance local bus without involving the
system memory.

4.2.2 MFC channels and MMIO interfaces and queues

Each MFC have two main interfaces though which MFC commands may be

initiated:

1. Channels interface - SPU can use this interface to interact with the associated
MFC by executing a series of writes or reads to the various channels which in
response enqueue MFC commands.

Since accessing the channel remains local within a certain SPE it have low
latency (for non blocking commands about 6 cycles if channel is not full) and
also doesn’t have any negative influence EIB bandwidth.

2. MMIO interface - PPE or other SPUs can use this interface to interact with
any MFC by accessing the MFC’s Command-Parameter Registers. Those
registers can be mapped to the system's real-address space so the PPE or
SPUs may access them by executing MMIO reads and writes to the
corresponding effective address.

98 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

For detailed description of the Channels and MMIO interfaces see SPE Channel
and Related MMIO Interface chapter in Cell Broadband Engine Programming
Handbook.

Accessing those two interfaces insert commands into one of the two MFC
independent command queues:

» Channels interface is associated with MFC SPU command queue
» MMIO interface is associated with MFC Proxy command queue.

Regarding the channels interface, each channel may be defined as either
blocking or non-blocking. When SPE reads or writes a non-blocking channel, the
operation executes without delay. However, when SPE software reads or writes a
blocking channel, the SPE might stall for an arbitrary length if the associated
channel count (which is its remaining capacity) is ‘0’. In this case, the SPE will
remain stalled until the channel count becomes ‘1’ or more.

The stalling mechanism reduces SPE software complexity and also allows an
SPE to minimize the power consumed by message based synchronization. To
avoid stalling on access to a blocking channel, SPE software can read the
channel count to determine the available channel capacity. In addition, many of
the channels have a corresponding and independent event that can be enabled
to cause an asynchronous interrupt.

Accessing the MMIO interface on the other hand is always non-blocking. If a PPE
(or other SPE) write a command while the queue is full then the last entry in the
queue is override with no indication to the software. Therefore, the PPE (or other
SPE) should first verify if there is available space in the queue by reading the
queue status register and only if it is not full - write a command to it. The
programer should be aware that waiting for available space by continuously
reading this register in a loop have negative affect on the performance of the
entire chip as it involve transactions on the local EIB bus.

Similarly, reading from a MMIO register when a queue is empty returns an invalid
data. Therefore, the PPE (or other SPE) should first read the corresponding
status register and only if there is a valid entry (queue is not empty) the MMIO
register itself should be read.

Table 4-1 summarizes the main attributes of MFC’s two main interfaces.

Chapter 4. Cell BE programming 99



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Table 4-1 MFC interfaces

Interface | Queue Initiator Blocking | Full Description
Channels | MFC SPU | Local blocking wait till For MFC
Command | SPU or non queue commands sent
Queue blocking has from the SPU
available through the channel
entry interface.
MMIO MFC PPE or always overwrite | For MFC
Proxy other non last entry | commands sent
Command | SPEs blocking from the PPE, other
Queue SPUs, or other
devices
through the MMIO
registers.

4.2.3 SPU programming methods to access MFC’s channel interface

Software running on a SPU may access the MFC facilities through the channel
interface. This chapter discuss the four main programing methods to access this
interface, as listed from the most abstract to the most low level one:

1. MFC functions

2. Composite intrinsics

3. Low level intrinsics

4. Assembly-language instructions

Note: The simplest way programming point of view to access the DMA
mechanism is through the first option - the MFC functions. Therefore. most of
the examples in this document, besides the examples in this chapter, are
written using MFC functions. However, from performance point of view, using
the MFC functions will not always provide the best results, especially when
invoked from a PPE program.

Many code examples in the SDK package also uses this method. However,
the examples in the SDK documentation rely mostly on the next two methods -
composite intrinsics and low level intrinsics. Many such examples are
available in Cell Broadband Engine Programming Tutorial document.

In this chapter we illustrate the differences between the four methods using
issuing of a DMA ‘get’ command which moves data from some component on
main storage to local storage. This is done only for demonstration and similar
implementation may be performed for using each of the other MFC facilities

100 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

(mailboxes, signals, events, etc.). In case the reader is not familiar with the MFC
DMA commands, it may first go over the chapter the discuss this issue, “Data
transfer” on page 109, before continuing with current chapter.

There are some parameters that are common to all DMA transfer commands.
Those parameters are described in Table 4-2:

Table 4-2 DMA transfer parameters

Name | Type Description

Isa void* local-storage address

» ea | » uint64_t | » effective address in main storage 2.

or or or

» eh | » uint32_t | » effective addr. higher bits in main storage®.

» eal | » uint32_t | » effective addr. lower bits in main storagemult_.

size uint32_t DMA transfer size in bytes

tag uint32_t DMA group tag ID.

tid uint32_t Transfer class identifier?.

rid uint32_t Replacement?.

a. Used for MFC functions only.
b. Used for methods other than MFC functions.

For all alternatives, we assume that the DMA transfer parameters, described in
Table 4-2, are defined previously to executing the DMA command.

The following sections describe the four major methods to access MFC facilities.

MFC functions

MFC functions are a set of convenience functions, each perform a single DMA
command (e.g. get, put, barrier). The functions are implemented either as
macros or as built-in functions within the compiler, causing the compiler to map
each of those functions to a certain composite intrinsic (similar to those
discussed in chapter “Composite intrinsics”) with the corresponding operands.

A list and a brief description of all the available MFC functions is in Table 4-3 on
page 112. For a more detailed description see Programming Support for MFC
Input and Output chapter in C/C++ Language Extensions for Cell BE Architecture
document.

To use those intrinsics the programmer must include spu_mfcio.h header file.

Chapter 4. Cell BE programming 101



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Example 4-9 illustrates initiating of a single ‘get’ command using MFC functions.

Example 4-9 SPU MFC function ‘get’ example

#include “spu_mfcio.h*

mfc_get(1sa, ea, size, tag, tid, rid);

// Implemented as the following composite intrinsic:

// spu_mfcdma64 (1sa, mfc_ea2h(ea), mfc_ea21(ea), size, tag,

/] ((tid<<24)|(rid<<16) [MFC_GET CMD));

// wait until DMA transfer is complete (or do other things before that)

Composite intrinsics

The SDK3.0 defines a small number of composite intrinsics to handle DMA
commands. Each composite intrinsics handles one DMA commands and is
actually constructed from a series of low-level intrinsics (similar to those
discussed in chapter “Low level intrinsics”). These intrinsics are further described
in Composite Intrinsics chapter in C/C++ Language Extensions for Cell BE
Architecture document, and also in Cell Broadband Engine Architecture
document.

To use those intrinsics the programmer must include spu_intrinsics.h header
file.

In addition, the header file spu_mfcio.h includes some useful predefined values
of the DMA commands (e.g. MFC_GET_CMD in the example below). The
programmer may include this file and use those predefined values instead of
explicitly writing the corresponding value.

Example 4-10 illustrates the initiating of a single ‘get’ command using composite
intrinsics.

Example 4-10 SPU composite intrinsics ‘get’ example

#include <spu_intrinsics.h>
#include “spu_mfcio.h*

spu_mfcdma64(1sa, eah, eal, size, tag, MFC_GET_CMD);
// Implemented using the six low Tevel intrinstics in Example 4-11

// MFC_GET CMD is defined as 0x0040 in spu_mfcio.h

102 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Low level intrinsics

A series of few low level intrinsics (means generic or specific intrinsics) should be
executed in order to executed a single DMA transfer. Each intrinsics is mapped to
a single assembly instruction.

The relevant low level intrinsic are described in Channel Control Intrinsics
chapter in C/C++ Language Extensions for Cell BE Architecture document.

To use those intrinsics the programmer must include spu_intrinsics.h header
file.

Example 4-11 illustrates the initiating of a single ‘get’ command using low level
intrinsics.

Example 4-11 SPU low level intrinsics ‘get’ example

spu_writech(MFC_LSA, 1sa);
spu_writech(MFC_EAH, eah);
spu_writech(MFC_EAL, eal);
spu_writech(MFC_Size, size);
spu_writech(MFC_TagID, tag);
spu_writech(MFC_CMD, 0x0040);

Assembly-language instructions

Assembly-language instructions are similar to low level intrinsics (intrinsics are a
series of ABI-compliant assembly language instructions executed for a single
DMA transfer). Each of the low level intrinsics represents one assembly
instruction). From practical point of view, the only case where we can
recommend using this method instead the low level intrinsics is when the
program is written in assembly.

Example 4-12 illustrates the initiating of a single ‘get’ command using
assembly-language instructions.

Example 4-12 SPU assembly-language instructions ‘get’ example

.text
.global dma_transfer
dma_transfer:

wrch$MFC_LSA, $3
wrch$MFC_EAH, $4
wrch $MFC_EAL, $5
wrch $MFC_Size, $6
wrch $MFC_TagID, $7

Chapter 4. Cell BE programming 103



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

wrch $MFC_Cmd, $8
bi $0

4.2.4 PPU programming methods to access MFC’s MMIO interface

Software running on a PPU may access the MFC facilities through the MMIO
interface. There are two main methods to access this interface and this chapter
discuss those methods. The two main methods, listed from the most abstract to
the most low level one, are:

1. MFC functions
2. Direct problem state access (or Direct SPE access)

Unlike the SPU case when using the channel interface, in the PPU case it is not
always recommended to use the MFC functions. The list below summarizes the
main differences between the two methods and when is recommended to use
either of them:

1. MFC functions are simpler from programming point of view and therefore
using this method may reduce development time and make the code more
readable.

2. Direct problem state access enables the programmer more flexibility and
therefore when non standard mechanism should be implemented.

3. Direct problem state access have significant better performance in many
cases (e.g. writing the inbound mailbox). Two of the reasons for the reduce
performance for the MFC functions is the call overhead and also the mutex
locking associated with the library functions being thread safe.

It is therefore recommended in cases where the performance (e.g. latency) of
the PPE access to the MFC is important to use the direct SPE access.

Note: If the performance (e.g. latency) of the PPE access to the MFC is
important it is recommended to use the direct SPE access which may have
significant better performance over the MFC functions. For more consideration
on deciding the preferred method - see the three items above.

Most of the examples in this document as well as many code examples in the
SDK package use the MFC functions method. However, the examples in the SDK
documentation relay mostly on the second method - direct SPE access. Many
such examples are available in Cell Broadband Engine Programming Tutorial.

In this chapter we are illustrating the differences between the two methods using
the DMA ‘get’ command to move data from some component on main storage to
local storage. This is done only for demonstration and similar implementation

104 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

may be performed for using each of the other MFC facilities (mailboxes, signals,
events, etc.). We used the same parameters that are defined in Table 4-2 on
page 101, but additional parameter is added in the PPU case:

» spe_context ptr t spe ctx: a pointer to the context of the relevant SPE.
This context is created when the SPE thread is created.

The following sections describe the two main methods for a PPE to access MFC
facilities.

MFC functions

MFC functions are a set of convenience functions. Each implements a single
DMA command (e.g. get, put, barrier). A list and brief description of all the
available functions is in Table 4-3 on page 112. For a more detailed description
see SPE MFC problem state facilities chapter in SPE Runtime Management
library document.

The implementation of the MFC functions for the PPE, unlike the SPE
implementation, usually involves accessing the operating system kernel which
add a non negligible number of cycles and increase the latency of hose
functions.

To use those intrinsics the programmer must include 1ibspe2.h header file.

Example 4-13 illustrates the initiating of a single ‘get’ command using MFC
functions.

Example 4-13 PPU MFC functions ‘get’ example

#include “libspe2.h*
spe_mfcio_get ( spe _ctx, 1sa, ea, size, tag, tid, rid);

// wait till data was transfered to LS, or do other things...

Direct problem state access

The second option for PPE software to access the MFC facilities, is explicitly
interact with the relevant MMIO interface of the relevant SPE. In order to do so,
the software should perform the following steps:

1. Map corresponding the problem state area of the relevant SPE to the PPE
thread address space. The programmer can do so using spe_ps_area_get
function in the libspe library (include Tibspe2.h file to use this function).

2. Once the corresponding problem state area is mapped, the programer can
access it using one of the following methods:

Chapter 4. Cell BE programming 105



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

— Use one of the inline functions for direct problem state access that are
defined in the cbe_mfc.h header file. This header file makes using direct
problem state as easy as using the libspe functions. For example, the
function _spe_sig_notify 1 read reads the SPU_Sig_Notify_1 register,
function _spe_out_mbox_read reads a value from the SPU_Out_Mbox
mailbox register, and _spe_mfc_dma function enqueues a DMA request.

— Use direct memory load or store instruction to access the relevant MMIO
registers. The easiest way to do so is using enum and structs that describe
the problem state areas and the offset of the MMIO registers. Thosestructs
and enum are defined in Tibspe2 types.h and cbea map.h header files
(see Example 4-15 on page 107) but in order to use them the programer
should simply include only Tibspe2.h file.

Please notice that once the problem state area is mapped, directly accessing this
area by the application doesn’t involve the kernel and therefore has a smaller
latency then the corresponding MFC function.

Note: PPE programer must set the SPE_MAP_PS flag when creating the SPE
context (in spe_context create function) of the SPE whose problem state
area the programmer later try to map (using spe_ps_area_get function). See
Example 4-14.

Example 4-14 shows the PPU code for mapping SPE problem state to the thread
address space and initiating a single ‘get’ command using direct SPE access.

Source code: The code of Example 4-14 is included in the additional material
that is provided with this book. See “Simple PPU vector/SIMD code” on
page 612 for more information.

Example 4-14 PPU dlrect SPE access ‘get’ example

#include <Tibspe2.h>
#include <cbe_mfc.h>
#include <pthread.h>

spe_context_ptr_t spe_ctx;

uint32_t 1sa, eah, eal, tag, size, ret, status;

volatile spe_mfc_command_area_t* mfc_cmd;

volatile char data[BUFF_SIZE] _ attribute  ((aligned (128)));

// create SPE context: must set SPE_MAP_PS flag to access problem state
spe_ctx = spe_context create (SPE_MAP_PS, NULL);

106 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// - open an SPE executable and map using ‘spe_image_open’ function
// - Toad SPU program into LS using ‘spe_program_load’ function
// - create SPE pthread using ‘pthread_create’® function

// map SPE problem state using spe_ps_area_get
if ((mfc_cmd = spe_ps_area_get( data.spe_ctx, SPE_MFC_COMMAND_AREA)) ==

NULL) {

perror ("Failed mapping MFC command area"); exit (1);
}
// 1sa = LS space address that SPU code provide
// eal = ((uintptr_t)&data) & Oxffffffff;
// eah = ((uint64_t) (uintptr_t)&data)>>32;
// tag = number from 0 to 15 (as 16-31 are used by the kernel)
/] size= .....

while( (mfc_cmd->MFC_QStatus & OxO000FFFF) == 0);

do{
mfc_cmd->MFC_LSA = Tsa;
mfc_cmd->MFC_EAH = eah;
mfc_cmd->MFC_EAL = eal;

mfc_cmd->MFC_Size_Tag = (size<<l6) | tag;
mfc_cmd->MFC_ClassID_CMD = MFC_PUT_CMD;

ret = mfc_cmd->MFC_CMDStatus;
} while(ret&0x3); //enqueuing until success
//following 2 Tines are commented in order to be similar to
Example 4-13

//ret=spe_mfcio_tag_status_read(spe_ctx, l<<tag, SPE_TAG_ALL, &status);
//if( ret !=0) printf("error in GET command");

The SDKS3.0 header files 1Tibspe2_types.h and cbea_map.h contain several
enums and structs that define the problem state areas and registers which
makes the programming more convenient when accessing the MMIO interface
from the PPE. Example 4-15 shows those enum and structs

Example 4-15 Structs and Enums for defining problem state areas and registers

// From 1ibspe2_types.h header file

Chapter 4. Cell BE programming 107



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

enum ps_area { SPE_MSSYNC_AREA, SPE_MFC_COMMAND_AREA, SPE_CONTROL_AREA,
SPE_SIG_NOTIFY 1 AREA, SPE_SIG_NOTIFY_2 AREA };

// From cbea_map.h header file

SPE_MSSYNC_AREA: MFC multisource synchronization register area
typedef struct spe_mssync_area {

unsigned int MFC_MSSync;
} spe_mssync_area_t;

// SPE_MFC_COMMAND_AREA: MFC command parameter queue control area
typedef struct spe_mfc_command_area {
unsigned char reserved_0_3[4];
unsigned int MFC_LSA;
unsigned int MFC_EAH;
unsigned int MFC_EAL;
unsigned int MFC_Size_Tag;
union {
unsigned int MFC_ClassID_CMD;
unsigned int MFC_CMDStatus;
bs
unsigned char reserved_18 103[236];
unsigned int MFC_QStatus;
unsigned char reserved_108 203[252];
unsigned int Prxy QueryType;
unsigned char reserved_208 21B[20];
unsigned int Prxy_QueryMask;
unsigned char reserved 220 22B[12];
unsigned int Prxy TagStatus;
} spe_mfc_command_area_t;

// SPE_CONTROL_AREA: SPU control area
typedef struct spe_spu_control_area {
unsigned char reserved_0_3[4];

unsigned int SPU_Out_Mbox;
unsigned char reserved_8 B[4];
unsigned int SPU_In_Mbox;
unsigned char reserved_10_13[4];
unsigned int SPU_Mbox_Stat;
unsigned char reserved_18 1B[4];
unsigned int SPU_RunCntT;
unsigned char reserved_20_23[4];
unsigned int SPU_Status;
unsigned char reserved_28 33[12];
unsigned int SPU_NPC;

108 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
} spe_spu_control_area_t;

// SPE_SIG_NOTIFY_1 AREA: signal notification area 1
typedef struct spe_sig notify 1 area {

unsigned char reserved_0_B[12];

unsigned int SPU_Sig Notify_1;
} spe_sig notify 1 area t;

// SPE_SIG_NOTIFY_2 AREA: signal notification area 2
typedef struct spe_sig notify 2 area {

unsigned char reserved_0_B[12];

unsigned int SPU_Sig_Notify_2;
} spe_sig notify 2 area_t;

4.3 Data transfer

The Cell BE has a radical organization of storage and asynchronous DMA
transfers between local store (LS) and main storage. While this architecture
enables high performance it requires the application programer to explicitly
handle the data trasnfers between LS and main memory or other local stores.
Programing efficient data transfers is a key issue not only for preventing errors
(e.g. synchronization errors which are hard to debug) but also for having the
optimized out of a program running on a Cell BE based system.

Programming the DMA data transfer can be done by either an SPU program
using the channel interface, or by the a PPU program using the MMIO interface.
Using those interfaces is discussed in Chapter 4.2, “Storage domains, channels
and MMIO interfaces” on page 95.

Regarding issue of DMA commands to the MFC command, the channel interface
has 16 entries in its corresponding MFC SPU command queue, which stands for
up to 16 DMA commands that may be handle simultaneously by the MFC. The
corresponding MMIO interface on the other hand has only 8 entries in its
corresponding MFC proxy command queue. For this reason as well as for other
reasons (smaller latency in issuing the DMA commands, less overhead on the
internal EIB bus, etc.) the programer should prefer issuing DMA commands from
the SPU program rather then from the PPU.

This section explains about DMA data transfer methods as well as other data
transfer methods (e.g. direct load and store) that may be used in order to transfer
data between a LS and main memory or between one LS to another LS.

Chapter 4. Cell BE programming 109



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The part contains the following sections:

» 4.3.1, “DMA commands” on page 111 - the first chapter provides an overview
over the DMA commands that are supported by the MFC, whether the
commands are initiated by the SPE of the PPE.

The next three sections discuss how to initiate various data transfer using the
SDK3.0 core libraries:

» 4.3.2, “SPE initiated DMA transfer between LS and main storage” on
page 119 - discuss how a program running on a SPU may initiate DMA
commands between its LS and the main memory using the associated MFC.

» 4.3.3, “PPU initiated DMA transfer between LS and main storage” on
page 137 discuss how a program running on a PPU may initiate DMA
commands between the LS of some SPE and the main memory using the
MFC which is associated with this SPE.

» 4.3.4, “Direct problem state access and LS to LS transfer” on page 143
discuss two different issues. The first is how a LS of some SPE can be
accessed directly by the PPU or by an SPU program running on other SPE.

The next two sections discuss two alternatives (other the core libraries) that
comes with SDKS.0 and can be used for simpler intuiting of data transfer
between the LS and main storage:

» 4.3.5, “Facilitate random data access using SPU software cache” on
page 146 discuss how to use the SPU software managed cache and in which
cases it is recommended to use it.

» 4.3.6, “Automatic software caching on SPE” on page 155 discuss an
automated version of the SPU software cache which provides even simpler
programing method but with possibly reduced performance.

The next three sections describes several fundamental techniques for
programming performance efficient data transfers:

» 4.3.7, “Efficient data transfers by overlapping DMA and computation” on
page 157 discuss the double buffering and multibuffering techniques that
enable to overlap between DMA transfers and computation. Doing so very
often provides a significant performance improvement.

» 4.3.8, “Improving page hit ratio using huge pages” on page 163 discuss how
to configure huge pages in the system and when it may be useful.

» 4.3.9, “Improving memory access using NUMA” on page 168 discuss how to
use the NUMA features on a Cell BE bases system.

Another topic which is very relevant to the data transfer and in not covered in
those chapters is the ordering between different data turnovers and

110 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

synchronization techniques. This topic is discussed in Chapter 4.5, “Shared
storage synchronizing and data ordering” on page 213.

4.3.1 DMA commands

MFC supports a set of DMA commands which provide the main mechanism that
enables data transfer between the LS and main storage. It also supports a set of
synchronization commands which used to control the order in which storage
accesses are performed and maintaining synchronization with other processors
and devices in the system.

Each MFC has an associated Memory Management Unit (MMU) that holds and
processes address-translation and access-permission information supplied by
the PPE operating system. While this MMU is distinct from the one used by the
PPE, to process an effective address provided by a DMA command, the MMU
uses the same method as the PPE memory-management functions. Thus, DMA
transfers are coherent with respect to system storage. Attributes of system
storage are governed by the page and segment tables of the PowerPC
Architecture.

The following sections discuss several issues related to the supported DMA
commands.

DMA commands
MFC supports a set of DMA commands:

» DMA commands may initiate or monitor the status of data transfers.

» Each MFC can maintain and process up to 16 in-progress DMA command
requests and DMA transfers which are executed asynchronous to the code
execution.

» The MFC can also autonomously manage a sequence of DMA transfers in
response to a DMA-list command from its associated SPU. DMA lists are a
sequence of eight-byte list elements, stored in an SPE’s LS, each of which
describes a single DMA transfer.

» Each DMA command is tagged with a 5-bit Tag ID (which defines up to 32
IDs) and the software can use this identifier to check or wait on the completion
of all queued commands in one or more tag groups.

The supported and recommended values for the DMA parameters are describe
in “Supported and recommended values for DMA parameters” on page 115.

The supported and recommended parameters of a DMA list are described on
“Supported and recommended values for DMA-list parameters” on page 116

Chapter 4. Cell BE programming 111



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

A summary of all the DMA commands which are supported by the MFC are
described in Table 4-3. For each command, we also mention the SPU and the
PPE MFC functions that implement it, it any (blank means that this command is
not supported by either the SPE or PPE). For detailed information on the MFC
commands, see DMA Transfers and Inter-processor Communication chapter on
Cell Broadband Engine Programming Handbook.

The SPU functions are defined in spu_mfcio.h header file and described in
C/C++ Language Extensions for Cell BE Architecture .

The PPE functions are defined in 1ibspe2.h header file and described in SPE
Runtime Management library document.

SDKS3.0 defines another set of PPE inline functions for handling the DMA data
transfer in cbe_mfc.h file which is preferred from performance point of view over
the Tibspe2.h functions. While the cbe_mfc.h functions are not well described in
the official SDK documents they are quite straight forward and easy to use. In
order to enqueue a DMA command the programmer may issue _spe_mfc_dma
function with ‘cmd’ parameter indicating the DMA command that should be
enqueued (e.g. set ‘cmd’ parameter to MFC_PUT_CMD for ‘put’ command, set it
to MFC_GETS_CMD for ‘gets’ command, etc.)

Table 4-3 DMA commands supported by the MFC

Function
Command Description
SPU PPE
Put commands
put mfc_put spe_mfcio_put | Moves data from LS to the effective address.
puts unsupported None? Moves data from LS to the effective address and starts
the SPU after the DMA operation completes.
putf mfc_putf spe_mfcio_putf | Moves data from LS to the effective address with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group and command queue).
putb mfc_putb spe_mfcio_putb | Moves data from LS to the effective address with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue).

112 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_CHIPPGM.fm

Command

Function

SPU

PPE

Description

putfs

unsupported

None?

Moves data from LS to the effective address with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group and command queue) and starts the SPU after
the DMA operation completes.

putbs

unsupported

None?

Moves data from LS to the effective address with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue) and starts the SPU after the DMA operation
completes.

putl

mfc_putl

unsupported

Moves data from LS to the effective address using an
MFC list.

putlf

mfc_putlf

unsupported

Moves data from LS to the effective address using an
MFC list with fence (this command is locally ordered
with respect to all previously issued commands within
the same tag group and command queue).

putlb

mfc_putlb

unsupported

Moves data from LS to the effective address using an
MFC list with barrier (this command and all
subsequent commands with the same tag ID as this
command are locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

get commands

get

mfc_get

spe_mfcio_get

Moves data from the effective address to LS.

gets

unsupported

None?

Moves data from the effective address to LS, and
starts the SPU after the DMA operation completes.

getf

mfc_getf

spe_mfcio_getf

Moves data from the effective address to LS with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

getb

mfc_getb

spe_mfcio_getb

Moves data from the effective address to LS with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue).

Chapter 4. Cell BE programming 113



7575CH_CHIPPGM.fm

Draft Document for Review February 15, 2008 4:59 pm

Command

Function

SPU

PPE

Description

getfs

unsupported

None?

Moves data from the effective address to LS with fence
(this command is locally ordered with respect to all
previously issued commands within the same tag
group), and starts the SPU after the DMA operation
completes.

getbs

unsupported

None?

Moves data from the effective address to LS with
barrier (this command and all subsequent commands
with the same tag ID as this command are locally
ordered with respect to all previously issued
commands within the same tag group and command
queue), and starts the SPU after the DMA operation
completes.

getl

mfc_getl

unsupported

Moves data from the effective address to LS using an
MFC list.

getlf

mfc_getlf

unsupported

Moves data from the effective address to LS using an
MFC list with fence (this command is locally ordered
with respect to all previously issued commands within
the same tag group and command queue).

getlb

mfc_getb

unsupported

Moves data from the effective address to LS using an
MFC list with barrier (this command and all
subsequent commands with the same tag ID as this
command are locally ordered with respect to all
previously issued commands within the same tag
group and command queue).

a. While this command may be issued by the PPE there is no MFC function that supports it

The suffixes in Table 4-4 are associated with the DMA commands, and extend or
refine the function of a command. For example, a ‘putb’ command moves data
from LS to the effective address similar to the ‘put’ command, but also adds a

barrier.

Table 4-4 MFC commands suffixes

Mnemonic

Possible Initiator

SPU

Description
PPE

Yes Start SPU. Starts the SPU running at

the address in the SPU Next Program

Counter Register (SPU_NPC) after the
MFC command completes.

114 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Possible Initiator

Mnemonic Description
SPU PPE

f Yes Yes Tag-specific fence. Command is locally
ordered with respect to all previously
issued commands in the same tag group
and command queue.

b Yes Yes Tag-specific barrier. Command is
locally ordered with respect to all
previously issued and all subsequently
issued commands in the same tag group
and command queue.

| Yes List command. Command processes a
list of DMA list elements located in LS.
Up to 2048 elements in a list; each list
element specifies a transfer of up to 16
KB.

Supported and recommended values for DMA parameters

The following list summarizes the MFC’s supported or recommended values for
the parameters of the DMA commands:

» Direction: Data transfer may be in any of the two directions as referenced
from the perspective of an SPE:

— get commands: transfer data to a LA from the main storage.
— put commands: transfers data out of the LS to the main storage.
» Size: Transfer size should obey the following guidelines:

— Supported transfer sizes are 1, 2, 4, 8, or 16 bytes, and multiples of
16-bytes

— Maximum transfer size is 16 KB.

— Peak performance is achieved when transfer size is a multiple of 128
bytes.

» Alignment: Alignment of the LSA and the EA should obey the following
guidelines:

— Source and destination addresses must have the same 4 least significant
bits.

— For transfer sizes less than 16 bytes, address must be naturally aligned
(bits 28 through 31 must provide natural alignment based on the transfer
size).

Chapter 4. Cell BE programming 115



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

— For transfer sizes of 16 bytes or greater, address must be aligned to at
least a 16-byte boundary (bits 28 through 31 must be ‘0’).

— Peak performance is achieved when both source and destination are
aligned on a 128-byte boundary (bits 25 through 31 cleared to ‘0’).

Note: The header file spu_mfcio.h contains some useful definitions the
supported parameter of DMA command (e.g. MFC_MAX_DMA_SIZE)

If a transaction have illegal size or the address is invalid (due to a segment fault,
a mapping fault, or other address violation) there will be no error during
compilation. Instead, during run time the corresponding DMA command queue
processing is suspended and an interrupt is raised to the PPE. The application
usually terminated in this case and a “Bus Error” message is printed.

The MFC checks the validity of the effective address during transfers. Partial
transfers can be performed before the MFC encounters an invalid address and
raises the interrupt to the PPE.

Supported and recommended values for DMA-list parameters

The following list summarizes the MFC’s supported or recommended values for
the parameters of the DMA-list commands:

» The parameters of each transfer (e.g. size, alignment) should be according to
the described in “Supported and recommended values for DMA parameters”
on page 115.

» All the data transfers that are issued in a single DMA-list command have the
same high 32 bits of a 64 bit effective address.

» All the data transfers that are issued in a single DMA-list command share the
same tag ID.

In addition, the supported and recommended parameters of the DMA list itself
are the following:

» Length: A DMA list command can specify up to 2048 DMA transfers, defining
up to 16 KB of memory in the LS to maintain the list itself. Since each such
transfer have up to 16 KB length, a DMA list command can transfer up to 32
MB, which is 128 times the size of the 256 KB LS.

» Continuity: DMA list can move data between a contiguous area in a LS and
possibly non-contagious area in the effective address space.

» Alignment: The local store address of the DMA list itself must be aligned on
an eight-byte boundary (bits 29 through 31 must be ‘0’).

116 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Note: The header file spu_mfcio.h contains some useful definitions the
supported parameter of DMA-list command (e.g. MFC_MAX DMA LIST SIZE)

Synchronization and atomic commands

MFC also support a set of synchronization and atomic commands that can be
used to control the order in which DMA storage accesses are performed. Those
commands include four atomic commands, three send-signal commands and
three barrier commands. Synchronization may be performed for all the
transactions in a queue or only to a group of them as explained in Chapter,
“DMA-command tag groups” on page 118

While this chapter provide a brief overview of those commands, a more detailed
description is in Chapter 4.5, “Shared storage synchronizing and data ordering”
on page 213.

The synchronization and atomic command supported by the MFC are described
in Table . For each command, we also mention the SPU and the PPE MFC
functions that implement it, it any (blank means that this command is not
supported by either the SPE or PPE). For detailed information on the MFC
commands, see DMA Transfers and Inter-processor Communication chapter on
Cell Broadband Engine Programming Handbook.

The SPU MFC functions are defined in spu_mfcio.h header file and are
described in C/C++ Language Extensions for Cell BE Architecture .

The PPE’s are defined in libspe2.h header file and are described in SPE Runtime
Management library.

Synchronization commands supported by the MFC

Command Possible Initiator Description

SPU PPE

Synchronization commands

barrier mfc_barrier unsupported Barrier type ordering. Ensures
ordering of all preceding DMA
commands with respect to all
commands following the barrier
command in the same command
queue. The barrier command has
no effect on the immediate DMA
commands: getllar, putllc, and
putlluc.

Chapter 4. Cell BE programming 117



7575CH_CHIPPGM.fm

118

Draft Document for Review February 15, 2008 4:59 pm

Command

Possible Initiator

SPU

PPE

Description

mfceieio

mfc_eieio

_eieio?

Controls the ordering of get
commands with respect to put
commands, and of gef commands
with respect to gef commands
accessing storage that is caching
inhibited and guarded. Also controls
the ordering of put commands with
respect to put commands accessing
storage that is memory coherence
required and not caching inhibited.

mfcsync

mfc_sync

__sync?

Controls the ordering of DMA put
and get operations within the
specified tag group with respect to
other processing units and
mechanisms in the system.

sndsig

mfc_sndsig

spe_signal_write

Write SPU Signal Notification
Register in another device.

sndsigf

mfc_sndsigf

unsupported

Write SPU Signal Notification
Register in another device, with
fence.

sndsigh

mfc_sndsigb

unsupported

Write SPU Signal Notification
Register in another device, with
barrier.

Atomic commands

getllar

mfc_getllar

Iwarx/Idarx &

Get lock line and reserve.

putllc

mfc_putlic

stwex/stdex?

Put lock line conditional.

putlluc

mfc_putlluc

unsupported

Put lock line unconditional.

putqlluc

mfc_putglluc

unsupported

Put queued lock line unconditional.

a. No function call for implementing this command but instead implemented as
intrinsic that is defined in ppu_intrinsics.h file.

DMA-command tag groups
All DMA commands except the atomic ones can be tagged with a 5-bit Tag
Group ID. By assigning a DMA command or group of commands to different tag
groups, the status of the entire tag group can be determined within a single

Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

command queue. Software can use this identifier to check or wait on the
completion of all queued commands in one or more tag groups.

Notice that tag groups can be formed separately within any of the two MFC
command queues. Thus, tags assigned to commands in the SPU command
queue are independent of the tags assigned to commands in the MFC’s proxy
command queue.

Tagging is useful when using barriers to control the ordering of MFC commands
within a single command queue. DMA commands within a tag group can be
synchronized with a fence or barrier option by appending an f’ or ‘b’, respectively,
to the command mnemonic:

» Execution of a fenced command option is delayed until all previously issued
commands within the same tag group have been performed.

» Execution of a bharrier command option and all subsequent commands is
delayed until all previously issued commands in the same tag group have
been performed.

4.3.2 SPE initiated DMA transfer between LS and main storage

Software running on a SPU initiate DMA data transfer by accessing the local
MFC facilities through the channel interface. In this chapter we describe how
such SPU code can initiate basic data transfers between main storage and LS.

We illustrate it though ‘get’ command which transfer data from main storage to
the LS, and ‘put’ command that transfer data in the opposite direction. We also
describe the ‘getl’ and ‘putl’ commands which transfer data using DMA list.

The MFC support additional data transfer commands which guarantees ordering
between data transfer (e.g. ‘putf’, ‘putlb’, ‘getlf’, ‘getb’). Those commands are
initiated in similar way to the basic ‘get’ and ‘put’ commands, but their behavior is
different.

For detailed information on the channel interface and information on the MFC
commands, see SPE Channel and Related MMIO Interface chapter and DMA
Transfers and Interprocessor Communication chapter respectively on Cell
Broadband Engine Programming Handbook document.

Tag manager

The tag manager facilitates the management of tag identifiers used for DMA
operations in an SPU application. It is implemented through a set of functions
that the programmer should use in order to reserve tag IDs before initializing
DMA transactions and release them when he/she is done.

Chapter 4. Cell BE programming 119



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The functions are defined in spu_mfcio.h header file and are described in C/C++
Language Extensions for Cell BE Architecture document. The main functions
are:

» mfc_tag reserve: reserve a single tag ID.

» mfc_tag release: release a single tag ID.

Some tags may be pre-allocated and being used by the operating environment
(e.g software managed cache, PDT: Performance Analysis Tool). The
implementation of the tag manager therefore does not guarantee to make all 32
architected tag IDs available for user allocation. If the programmer uses some
fixed value of tag IDs instead of using the tag manager to do so, it can lead to
possible inefficiencies caused by waiting for DMA completions on tag groups
containing DMAs issued by other software components.

Note: When programming a SPU application that initiate DMAs, it is
necessary to use the tag manager’s functions in order to reserve a tag ID or a
set of IDs and not use some random or fixed values. It is recommended that
tag allocation services be used to ensure that the other SW component’s use
of tag ID's does not overlap with the application’s use of tags. However, it is
not required.

The usage of the tag manager is illustrated through Example 4-16 on page 122.

Basic DMA transfer between LS and main storage

This chapter describes how SPU software can transfer data between the LS and
main storage using basics DMA commands. That term ‘basic’ commands implies
to commands that should be explicitly issued for each DMA transaction
separately. Another alternative is using the DMA list commands which may
initialize a sequence of DMA transfers as explained in Chapter, “DMA list data
transfer” on page 124.

The next sections describe how to initialize basic ‘get’ and ‘put’ DMA commands.
We illustrate it through a code example which also includes the use of the tag
manager.

Initiate a DMA transfer

To initialize a DMA transfer the SPE programmer can call one of the
corresponding functions of spu_mfcio.h header file. Each of those functions
implements a single command, such as:

» mfc_get: implements ‘get’ command.

» mfc_put: implements ‘put’ command.

120 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

These functions are non-blocking in terms of issuing the DMA command - the
software will continue its execution after enqueueing the commands into the MFC
SPU command queue but will not block till the DMA commands are actually
issued on the EIB bus. However, these functions will block if the command queue
is full and will wait till there is available space in that queue. The full list of the
supported commands are shown in Table 4-3 on page 112.

The programmer should be aware of the fact that the implementation of those
functions actually involve a sequence of the following six channel writes:

1. Write LSA (local store address) parameter to MFC_LSA channel.

Write EAH (effective address higher bits) parameter to MFC_EAH channel.
Write EAL (effective address lower bits) parameter to MFC_EAL channel.
Write transfer size parameter to MFC_Size channel.

Write tag ID parameter to MFC_TagID channel.

L S

Write class ID and command opcode to MFC_Cmd channel. The opcode
defines the transfer type (e.g. ‘get’, ‘put’).

Note: The supported and recommnded value of the different DMA parameters
are described in “Supported and recommended values for DMA parameters”
on page 115.

Waiting for completion of a DMA transfer

After DMA command was initiated, the software may wait for a completion of the
DMA transaction. Programmer may do so by calling to one of the functions that
are implemented in spu_mfcio.h header file. The two main functions to do so are:

1. mfc_write_tag_mask: write the tag mask which determines to which tag IDs a
completion notification is needed (done using the two functions below).

2. mfc_read_tag status_any: wait until any of the specified tagged DMA
commands is completed

3. mfc_read_tag_status_all: wait until a/l of the specified tagged DMA
commands are completed

The last two functions are blocking so it will cause the software to halt till all DMA
transfer related to the tag ID are complete. Full list of the supported commands
are in Table 4-3 on page 112.

The implementation of the first function generates the following channel
operations:

1. Set the bit that represents the tag ID by writing the corresponding value (all
bits are ‘0’ beside bit number tag ID) to the MFC_WrTagMask channel.

Chapter 4. Cell BE programming 121



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The implementation of the next two functions involve a sequence of the following
two channel operations:

1. Write MFC_TAG_UPDATE_ALL or MFC_TAG_UPDATE_ANY mask to
MFC_WrTagUpdate channel.

2. Read MFC_RdTagStat channel.

Basic DMA ‘get’ and ‘put’ transfers - code example

This chapter illustrate how SPU code can perform basic ‘get’ and ‘put’
commands and also illustrate some other relevant issues. The examples includes
in this chapter demonstrate the following techniques:

» SPU code uses the tag manager to reserve and release tag ID

» SPU code uses ‘get’ command to transfer data from main storage to LS.

» SPU code uses ‘put’ command to transfer data from LS to main storage.

» SPU code waiting for completion of the ‘get’ and ‘put’ commands.

» SPU macro for waiting to completion of DMA group related to input tag.

» PPU macro for rounding input value to the next higher multiple of either 16 or
128 (to fulfill MFC’s DMA requirements).

As mentioned in Chapter 4.2.3, “SPU programming methods to access MFC’s
channel interface” on page 100, we use the MFC functions method to access the
DMA mechanism. Each of such functions actually implements few of the steps
that were mentioned above causing the code to be simpler. From programmer
point of view it is important to be familiar with the number of commands that are
involve in order to understand the impact on its application execution.

Example 4-16 and Example 4-17 contains the corresponding SPU and PPU
code respectively.

Source code: The code of Example 4-16 and Example 4-17 is included in the
additional material that is provided with this book. See “SPU initiated basic
DMA between LS and main storage” on page 613 for more information.

Example 4-16 SPU initiated basic DMA between LS and main storage - SPU code

#include <spu_mfcio.h>

// Macro for waiting to completion of DMA group related to input tag:
// 1. Write tag mask

// 2. Read status which is blocked untill all tag’s DMA are completed
#define waitag(t) mfc_write tag mask(l<<t); mfc_read tag status all();

122 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// Local store buffer: DMA address and size alignment:

// - MUST be 16B aligned otherwise a bus error is generated

// - may be 128B aligned to get better performance

// In this case we use 16B becuase we don’t care about performance
volatile char str[256] _ attribute_ ((aligned(16)));

// argp - effective address pointer to the string in main storage

// envp - size of string in main memory in bytes

int main( uint64_t spuid , uint64_t argp, uint64_t envp ){
uint32_t tag_id = mfc_tag_reserve();

// reserve a tag from the tag manager
if (tag_id==MFC_TAG_INVALID) {

printf("SPE: ERROR can't allocate tag ID\n"); return -1;
}

// get data from main storage to local store
mfc_get((void *)(str), argp, (uint32_t)envp, tag_id, 0, 0);

// wait for ‘get’ command to complete. wait only on this tag_id.
waitag(tag_id);

printf("SPE: %s\n", str);
strcpy(str, "Am I there? No! I'm still here! I will go there

again....");

// put data to main storage from local store
mfc_put((void *)(str), argp, (uint32_t)envp, tag_id, 0, 0);

// wait for ‘get’ command to complete. wait only on this tag_id.
waitag(tag_id);

// release the tag from the tag manager
mfc_tag_release(tag_id);

return (0);

Example 4-17 SPU initiated basic DMA between LS and main storage - PPU code

#include <Tibspe2.h>
// macro for rounding input value to the next higher multiple of either

// 16 or 128 (to fulfill MFC’s DMA requirements)
#define spu_mfc_ceill28(value) ((value + 127) & ™127)

Chapter 4. Cell BE programming 123



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

#define spu_mfc_ceill6(value) ((value + 15) & ™15)
volatile char str[256] _ attribute__ ((aligned(16)));

int main(int argc, char *argv[])

{
void *spe_argp, *spe_envp;
spe_context_ptr_t spe_ctx;
spe_program_handle_t *program;
uint32_t entry = SPE_DEFAULT_ENTRY;

// Prepare SPE parameters
strcpy( str, "I am here but I want to go there!");
printf("PPE: %s\n", str);

spe_argp=(void*)str;
spe_envp=(void*)strien(str);
spe_envp=(void*)spu_mfc_ceill6((uint32_t)spe_envp);//round up to 16B

// Initialize and run the SPE thread using the four functions:
// 1) spe_context_create 2) spe_image_open
// 3) spe_program_load 4) spe_context_run

// Wait for SPE thread to complete using spe_context_destroy
// function (blocked untill SPE thread was complete).

printf("PPE: %s\n", str); // is he already there?
return (0);

DMA list data transfer

A DMA list is a sequence of transfer elements (or list elements) that, together
with an initiating DMA-list command, specifies a sequence of DMA transfers
between a single continuous area of LS and possibly discontinuous areas in main
storage. DMA lists can therefore be used to implement scatter-gather functions
between main storage and the LS. All the data transfers that are issued in a
single DMA-list command share the same tag ID and are the same type of
commands (‘getl’, or ‘putl’, or other command). The DMA list is self is stored in
the LS of the same SPE.

The next three chapter describes the three steps that a programmer who wish to
initiate sequence of transfers using a DMA-list should typically performs:

124 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

1. “Creating a DMA list’ on page 125 - create and initialize the DMA list in an
SPE’s LS. This step can be done by either the local SPE, the PPE or other
SPE.

2. “Initiating DMA list command” on page 126 - issue a DMA-list command such
as ‘getl’ or ‘putl’. Such DMA-list commands can only be issued by programs
running on the local SPE.

3. “Waiting for completion of data transfer” on page 126 - wait for completion of
the data transfers.

The last chapter, “DMA list transfer - code example” on page 127, provide a code
example which illustrate this sequence of steps.

Creating a DMA list
Each transfer element in the DMA list contains three parameters:

> notify: stall-and-notify flag that can be used to suspend list execution after
transferring a list element whose stall-and-notify bit is set.

» size: transfer size in bytes.

» eal: lower 32-bits of an effective address in main storage.

Note: The supported and recommended values of the DMA-list parameters
are described in “Supported and recommended values for DMA-list
parameters” on page 116.

SPU software creates the list and stores it in the LS. The list basic element is a
mfc_list_element structure that describes a single data transfer. This structure,
that is defined in spu_mfcio.h header file as shown in Example 4-18:

Example 4-18 DMA list basic element - mfc_list_element struct

typedef struct mfc_list element {
uint64 t notify : 1; // optional stall-and-notify flag
uint64_t reserved : 16; // the name speaks for itself
uint64_t size : 155 // transfer size in bytes
uint64_t eal : 32; // lower 32-bits of an EA in main storage
} mfc_list _element t;

Transfer elements are processed sequentially in the order they are stored. If the
notify flag is set for a transfer element, the MFC will stop processing the DMA
list after performing the transfer for that element until the SPE program send

Chapter 4. Cell BE programming 125



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

acknowledge. This procedure is described in “Waiting for completion of data
transfer” on page 126.

Initiating DMA list command

After the list is stored in the LS, the execution of the list is initiated by a DMA-list
command, such as ‘getl’ or ‘putl’, from the SPE whose LS contains the list. To
initialize a DMA list transfer the SPE programmer can call one of the
corresponding functions of spu_mfcio.h header file. Each of those functions
implements a single DMA list command, such as:

» mfc_getl: implements ‘getl’ command.

» mfc_putl: implements ‘putl’ command.

These functions are non-blocking in terms of issuing the DMA command - the
software will continue its execution after enqueueing the commands into the MFC
SPU command queue but will not block till the DMA commands are actually
issued on the EIB bus. However, these functions will block if the command queue
is full and will wait untill there is available space in that queue. The full list of
supported commands are in Table 4-3 on page 112.

Initializing a DMA-list commands requires similar steps and parameters as when
initializing basic DMA command. Those steps are described in “Initiate a DMA
transfer” on page 120. However, a DMA-list command requires two different
types of parameters than those required by a single-transfer DMA command:

» EAL which is written to the MFC_EAL channel should be the starting local
store address (LSA) of the DMA list (rather then with the EAL which is
specified in each transfer element separately).

» Transfer size which is written to MFC_Size channel should be the size in
bytes of the DMA list itself (rather then the transfer size which is specified in
each transfer element separately). The list size is equal to the number of
transfer elements, multiplied by the size of mfc_1ist_element structure (8
bytes).

The starting LSA and the EA-high (EAH) are specified only once, in the DMA-list
command that initiates the transfers. The LSA is internally increment based on
the amount of data transferred by each transfer element. However, if the starting
LSA for each transfer element in a list does not begin on a 16-byte boundary,
then hardware automatically increments the LSA to the next 16-byte boundary.
The EAL for each transfer element is in the 4-GB area defined by EAH.

Waiting for completion of data transfer

There are two main mechanism that enables the software to verify the
completion of the DMA transfers.

126 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

The first mechanism is the same as basic (non-listy DMA commands using
MFC_WrTagMask and MFC_RdTagStat channels and can be used to notify the
software on the completion of the entire transfer in the DMA list. This procedure
is explained in “Waiting for completion of a DMA transfer” on page 121.

The second mechanism is using the stall-and-notify flag that enables the
software to be notified on the completion of subset of the transfers in the list by
the MFC. The MFC halt it transfer on this list (but not only the operations) till it is
acknowledged by the software. This mechanism may be useful if the software
needs to update the characteristics of a stalled subsequent trasnfers depends on
the data that was just transferred to the LS on the previous transfers. In any case
the number of elements in the queued DMA list cannot be changed.

To use this mechanism, the following steps are performed by the SPE software
and the local MFC:

1. Software enables DMA List Command Stall-And-Notify event.
This step is illustrated in notify_event_enable function of Example 4-20.

2. Software sets the notify bit in a certain element in the DMA list
(SW says: “let me know when you're done..)

3. Software issues a DMA-list command on this list
(SW says: “do it...”)

4. MFC stop processing the DMA list after performing the transfer for that
specific element which activates DMA List Command Stall-And-Notify event.
(MFC says: “I've completed working on this - its yours now..”)

5. Software handles the event, optionally modify subsequent transfer elements
before they are processed by the MFC and then acknowledge the MFC.
This step is illustrated in notify_event_handler function of Example 4-20.
(SW says: “Got it - I'm checking the incoming data. Go back to your next
task..”)

6. MFC continue processing the subsequent transfer elements in the list (until
maybe another element sets the notify bit).

DMA list transfer - code example

This section contains a code example on how SPU program may initiate DMA list
transfer. The example demonstrate the following techniques:

» SPU code creates a DMA list on the LS.
» SPU code activates stall-and-notify bit in some of the elements in the list.

» SPU code spe_mfcio.h definitions to check if DMA transfer attributes are
legal.

» SPU code issue ‘getl’ command to transfer data from main-storage to LS.

Chapter 4. Cell BE programming 127



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

\{

SPU code issue ‘putl’ command to transfer data from LS to main-storage.

v

SPU code implements event handler to the stall-and-notify events.

» SPU code for dynamically updating DMA list according to the data that was
just transferred into the LS.

» PPU code mark the SPU code to stop transferring data after some data
elements using the stall-and-notify mechanism.

» PPU and SPU code for synchronizing the completion of SPE'’s writing the
output data. Implemented using a notification flag in main-storage and barrier
between writing the data to memory and updating this notification flag.

Example 4-19 shows the shared header file, Example 4-20 shows the SPU code,
while Example 4-20 shows the corresponding PPU code.

Source code: The code of Example 4-19 and Example 4-20 is included in the
additional material that is provided with this book. See “SPU initiated DMA list
transfers between LS and main storage” on page 613 for more information.

Example 4-19 SPU initiated DMA list transfers between LS and main storage - shared
header file

// Common.h f'i]e S-S ==-=-=-=S=SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS=S=S=S==========

// DMA 1ist parameters

#define DMA_LIST_LEN 512

#define ELEM_PER_DMA 16 // Guarantee alignment to 128 B
#define NOTIFY_INCR 16

#define TOTA NUM_ELEM ELEM_PER_DMA*DMA_LIST LEN
#define BUFF_SIZE TOTA_NUM_ELEM+128

#define MAX_LIST SIZE 2048 // 2K

// commands and status definitions
#define CMD_EMPTY 0
#define CMD_GO 1
#define CMD_STOP 2
#define CMD_DONE 3

#define STATUS_DONE 1234567
#define STATUS_NO_DONE ~(STATUS_DONE)

// data elements that SPE should work on
#define DATA_LEN 15

128 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

typedef struct {
char cmd;
char data[DATA_LEN];
} data_elem; // aligned to 16B

// the context that PPE forward to SPE
typedef struct{

uintb4_t ea_in;

uintb4_t ea_out;

uint32_t elem_per_dma;

uint32_t tot_num_elem;

uint64_t status;
} parm_context; // aligned to 16B

#define MIN(a,b) (((a)>(b)) ? (b) : (a))
#define MAX(a,b) (((a)>(b)) ? (a) : (b))

// dummy function for calculating the output from the input
inTine char calc_out_d( char in_d ){
return in_d-1;

}

Example 4-20 SPU initiated DMA list transfers between LS and main storage - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

#include "common.h"

// Macro for waiting to completion of DMA group related to input tag
#define waitag(t) mfc_write_tag _mask(l<<t); mfc_read_tag_status_all();

static parm_context ctx _ attribute__ ((aligned (128)));

// DMA data structures and and data buffer

volatile data_elem 1sa_data[BUFF_SIZE] _ attribute__ ((aligned (128)));
volatile mfc_list_element_t dma_list[MAX_LIST_SIZE] _ attribute__
((aligned (128)));

volatile uint32_t status __attribute__ ((aligned(128)));

// global variables

Chapter 4. Cell BE programming 129



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
int elem _per_dma, tot_num_elem, byte per_dma, byte tota, dma_list_len;
int event_num=1, continue_dma=1;

int notify_incr=NOTIFY_INCR;

// enables stall-and-notify event

//===================================================================
static inline void notify_event_enable( )
{
uint32_t eve_mask;
eve_mask = spu_read_event_mask();
spu_write_event_mask(eve mask | MFC_LIST_STALL_NOTIFY_EVENT);
}

// updates the remaining DMA 1ist according to data that was already
// transferred to LS

//===================================================================
static inline void notify_event update list( )
{
int i, j, start, end;
start = (event_num-1)*notify_incr*elem_per_dma;
end = event_num*notify_incr*elem per_dma-1;
// Toop on only data elements that were transffered since last event
for (i=start; i<=end; i++){
if ( 1sa_data[i].cmd == CMD_STOP) {
// PPE wants us to stop DMAs - zero remaing DMAs
dma_Tlist[event_num*notify_incr+l].size=0;
dma_Tlist[dma_list_len-1].size=0;
for (j=event_num*notify_incr; j<dma_list Ten; j++){
dma_list[j].size = 0;
dma_list[j].notify = 0;
}
continue_dma = 0;
break;
}
}
}
// handle stall-and-notify event include acknowledging the MFC
[ [=================================s===s======s===ss==s==ss=sssssssss==s
static inline void notify_event_handler( uint32_t tag_id )
{

130 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

uint32_t eve_mask, tag_mask;

// blocking function to wait for even
eve_mask = spu_read_event_mask();

spu_write_event_mask(eve_mask | MFC_LIST_STALL_NOTIFY_EVENT);

// Toop for checking that event is on the correct tag_id
do{
// loop for checking that stall-and-notify event occured
do{
eve_mask = spu_read_event_status();

twhile ( !(eve_mask&(uint32_t)MFC_LIST_STALL_NOTIFY_EVENT)

// disable event stall-and-notify event
eve_mask = spu_read_event_mask();

7575CH_CHIPPGM.fm

spu_write_event_mask(eve_mask & (“MFC_LIST_STALL_NOTIFY_EVENT));

// acknowledge stall-and-notify event
spu_write_event_ack(MFC_LIST_STALL_NOTIFY_EVENT);

// read the tag_id that caused the event. no infomation is
// provided on which DMA 1list command in the tag group has

// stalled or which element in the DMA list command has stalled

tag_mask = mfc_read_Tist_stall_status();

twhile ( !(tag_mask & (uint32_t)(l<<tag_id)) );

// update DMA list according to data that was just transferred to LS

notify event update Tist( );

// acknowlege the MFC to continue
mfc_write_Tist_stall_ack(tag_id);

// re-enable the event

eve_mask = spu_read_event_mask();
spu_write_event_mask(eve mask | MFC_LIST STALL NOTIFY_EVENT);

}
void exit_handler( uint32_t tag_id ){

// update the status so PPE knows that all data is in place
status = STATUS_DONE;

Chapter 4. Cell BE programming

131



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

//barrier to ensure data is written to memory before writing status
mfc_putb((void*)&status, ctx.status, sizeof(uint32_t), tag_id,0,0);
waitag(tag_id);

mfc_tag_release(tag_id); // release tag ID before exiting

printf("<SPE: done\n");
}

int main(int speid , uint64_t argp){
int i, j, num_notify_events;
uint32_t addr, tag_id;
// enable the stall-and-notify
notify_event_enable( );
// reserve DMA tag ID
tag_id = mfc_tag_reserve();
if(tag_id==MFC_TAG_INVALID){

printf("SPE: ERROR - can't reserve a tag ID\n");
return 1;

}

// get context information from system memory.

mfc_get((void*) &ctx, argp, sizeof(ctx), tag_id, 0, 0);
waitag(tag_id);

// initalize DMA tranfer attributes

tot_num_elem = ctx.tot_num_elem;

elem_per_dma = ctx.elem_per_dma;

dma_list_len = MAX( 1, tot_num_elem/elem per dma );
byte tota = tot_num_elem*sizeof(data_elem);
byte_per_dma = elem_per_dma*sizeof(data_elem);

// initalize data buffer
for (i=0; i<tot_num_elem; ++i){

Tsa_data[i].cmd = CMD_EMPTY;
}

132 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// use spe_mfcio.h definitions to check DMA attributes® Tegitimate

if (byte_per_dma<MFC_MIN_DMA SIZE || byte per_dma>MFC_MAX_DMA_SIZE)({
printf("SPE: ERROR - illegal DMA transfer's size\n");
exit_handler( tag_id ); return 1;

}

if (dma_list_len<MFC_MIN_DMA_LIST_SIZE||
dma_list_Ten>MFC_MAX_DMA_LIST SIZE){
printf("SPE: ERROR - illegal DMA list size.\n");
exit_handler( tag_id ); return 1;

}

if (dma_list_len>=MAX_LIST_SIZE){
printf("SPE: ERROR - DMA list size bigger then local list \n");
exit_handler( tag_id ); return 1;

}

if(tot_num_elem>BUFF_SIZE){
printf("SPE: ERROR - dma length bigger then local buffer\n");
exit_handler( tag_id ); return 1;

}

// create the DMA lists for the 'getl' comand
addr = mfc_ea21(ctx.ea_in);

for (i=0; i<dma_list_len; i++) {
dma_list[i].size = byte per_dma;
dma_list[i].eal = addr;
dma_list[i].notify = 0;
addr += byte_per_dma;

}

// update stall-and-notify bit EVERY ‘notify_incr’ DMA elements

num_notify_events=0;

for (i=notify_incr-1; i<(dma_list_len-1); i+=notify_incr) {
num_notify_events++;
dma_list[i].notify = 1;

}

// issue the DMA 1ist 'getl' command

mfc_get1((void*)1sa_data, ctx.ea_in, (void*)dma_list,
sizeof (mfc_list_element_t)*dma_list_len,tag_id,0,0);

Chapter 4. Cell BE programming 133



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// handle stall-and-notify events

for (event_num=1; event _num<=num_notify events; event_num++) {
notify event_handler( tag_id );

if( !continue_dma ){ // stop dma since PPE mark us to do so
break;

}
}

// wait for completion of the 'getl' command

waitag(tag_id);

// calculate the output data

for (i=0; i<tot_num_elem; ++i){
Tsa_data[i].cmd = CMD_DONE;
for (j=0; j<DATA_LEN; j++){
1sa_data[i].data[j] = calc_out_d( Tsa_data[i].data[j] );
}
}

// + update the existing DMA lists for the 'putl' comand
// + update only the address since the length is the same

addr = mfc_ea21(ctx.ea_out);

for (i=0; i<dma_list_len; i++) {
dma_list[i].eal = addr;
dma_list[i].notify = 0;

addr += byte_per_dma;
}

// + no notification is needed for the 'putl' command
// issue the DMA 1ist 'getl' command

mfc_putl((void*)Isa_data,ctx.ea_out,(void*)dma_list,
sizeof (mfc_list_element_t)*dma_list_len,tag_id,0,0);

// wait for completion of the 'putl' command

waitag(tag_id);

134 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

exit_handler(tag_id);
return 0;

Example 4-21 SPU initiated DMA list transfers between LS and main storage - PPU code

#include <Tibspe2.h>
#include <cbe_mfc.h>

#include "common.h"

// data structures to work with the SPE

volatile parm_context ctx _ attribute__ ((aligned(16)));
volatile data_elem in_data[TOTA_NUM_ELEM] _ attribute__
((aligned(128)));

volatile data_elem out_data[TOTA_NUM_ELEM] _ attribute__
((aligned(128)));

volatile uint32_t status _ attribute__ ((aligned(128)));

// take ‘spu_data_t’ structure and ‘spu_pthread® function from
// Example 4-5 on page 90

int main(int argc, char *argv[])
{
spe_program_handle_t *program;
int i, j, error=0;

printf(")PPE: Start main \n");
status = STATUS_NO_DONE;

// initiate input and output data

for (i=0; i<TOTA_NUM_ELEM; i++){
in_data[i].cmd = CMD_GO;
out_data[i].cmd = CMD_EMPTY;

for (j=0; J<DATA_LEN; jt){
in_data[i].data[j] (char)j;
out_data[i].data[j] = 0;

Chapter 4. Cell BE programming 135



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// tell the SPE to stop in some random element (number 3) after 10
// stall-and-notify events.

// 3
in_data[3+10*ELEM_PER DMA*NOTIFY_INCR].cmd = CMD_STOP;

// initiate SPE parameters
ctx.ea_in = (uint64_t)in_data;
ctx.ea_out = (uint64_t)out_data;
ctx.elem_per_dma = ELEM_PER DMA;
ctx.tot_num_elem = TOTA_NUM_ELEM;
ctx.status = (uint64_t)&status;

data.argp = (void*)&ctx;

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in section 4.1.2, “Task
parallelism and managing SPE threads”

// wait for SPE data to be written into memory
while (status != STATUS_ DONE);

for (i=0, error=0; i<TOTA_NUM_ELEM; i++){
if (out_data[i].cmd != CMD_DONE) {
printf("ERROR: command is not done at index %d\n",i);
error=1;
}
for (j=0; j<DATA_LEN; j++){
if ( calc_out_d(in_data[i].data[j]) != out_data[i].data[j]){
printf("ERROR: wrong output : entry %d char %d\n",i,j);}
error=1; break;

}

if (error) break;
}
if(error){ printf(")PPE: program was completed with error\n");
telsef printf(")PPE: program was completed successfully\n");}

return (0);

136 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4.3.3 PPU initiated DMA transfer between LS and main storage

Software running on a PPU initiate DMA data transfers between the main storage
and LS of some SPE by accessing the MFC facilities of this SPE through the
MMIO interface. In this chapter we describe how such PPU code can initiate
basic data transfers between main storage and LS of some SPE.

For detailed information on the MMIO (or Direct Problem State) interface and
information on the MFC commands, see SPE Channel and Related MMIO
Interface chapter and DMA Transfers and Interprocessor Communication chapter
respectively on Cell Broadband Engine Programming Handbook.

Note: The tag ID used for the PPE initiated DMA transfer is not related to the
tag ID used by the software that runs on this SPE - each of them related to a
different queue of the MFC. There is currently no mechanism for allocating tag
IDs on the PPE side (like the SPE’s tag manager) so the programmer should
use some predefined tag ID. Since tag IDs 16 to 31 are reserved for the Linux
kernel, the user must use only tag IDs 0 to 15.

Another alternative for a PPU software to access the LS of some SPE is mapping
the LS to main storage and then use regular direct memory access. This issue is
discussed in chapter “Direct PPE access to LS of some SPE” on page 143.

Basic DMA transfer between LS and main storage

This chapter describes how PPU software can transfer data between the LS of
some SPE and main storage using basics DMA commands. That term ‘basic’
commands implies to commands that should be explicitly issued for each DMA
transaction separately, unlike DMA list commands.

We describe how the PPU may initialize those command and illustrate it using a
code example of ‘get’ and ‘put’ commands. The available DMA commands are
described in Chapter , “DMA commands” on page 111.

Please note that the naming of the commands is based on a SPE centric view,
for example, ‘put’ means a transfer from the SPE LS to an effective address.

Chapter 4. Cell BE programming 137



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Note: The programmer should try to avoid initiating DMA commands from the
PPE and prefer initiating them by the local SPE. First reason is that accessing
the MMIO by the PPE is executed on the interconnect bus which has larger
latency then the SPU accessing the local channel interface. (The latency is
high because the SPE problem state is mapped as guarded, cache inhibited
memory.) Second, by adding this traffic it reduces the available bandwidth for
other resources on the interconnect bus. Third, the PPE is expensive resource
anyway so it is better to have the SPEs to do more work instead.

Initiate a DMA transfer

To initialize a DMA transfer the PPE programmer can call one of the
corresponding functions of 1ibspe2.h header file. Each of those functions
implements a single command, such as:

» spe_mfcio_get: implements ‘get’ command.
» spe_mfcio_put: implements ‘put’ command.

Those functions are nonblocking so the software will continue its execution after
issuing those commands. Full list of the supported commands are in Table 4-3 on
page 112.

Another alternative is using the inline function that is defined in che_mfc.h file
and support all the DMA commands:

» _spe_mfc_dma : Enqueues a DMA request using the values provided. The
function supports all types of DMA commands according to the value of ‘cmd’
input parameter (e.g. ‘cmd’ parameter set to MFC_PUT_CMD for ‘put’
command, set it to MFC_GETS_CMD for ‘gets’ command, etc.). This function
will block until the MFC queue has space available (in the che_mfc.h file) and
is preferred from a performance point of view over the 1ibspe2.h functions.

Note: When issuing DMA commands from the PPE, using the cbe_mfc.h
functions are preferred from performance point of view over the 1ibspe2.h
functions. While the cbe_mfc.h functions are not well described in the SDK
documentation they are quite straight forward and easy to use. In our
examples we used the Tibspe2.h functions.

The programmer should be aware of the fact that the implementation of those
functions actually involve a sequence of the following commands:

The programmer should be aware of the fact that the implementation of those
functions actually involve a sequence of the following commands:

1. Write LSA (local store address) parameter to MFC_LSA register.

138 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

2. Write EAH (effective address higher bits) and EAL (effective address lower
bits) parameters to MFC_EAH registers respectively.
Software can implement is by two 32-bit stores or one 64-bit store.

3. Write transfer size and tag ID parameters to MFC_Size and MFC_TagID
registers respectively.
Software can implement it by one 32-bit store (MFC_Size in upper 16 bits,
MFC_TagID in lower 16 bits) or along MFC_ClassID_CMD in one 64-bit store.

4. Write class ID and command opcode to MFC_ClassID_CMD register. The
opcode defines the transfer type (e.g. ‘get’, ‘put’).

5. Read the MFC_CMDStatus register using a single 32 bits store to determine
the success or failure of the attempt to enqueue a DMA command, as
indicated by the 2 least-significant bits of returned value:

¢ 0: The enqueue was successful.

* 1 - Sequence error occurred while enqueuing the DMA (e.g. interrupt
occurred, then another DMA was started within interrupt handler).
Software should restarted the DMA sequence by going to step 1.

¢ 2: The enqueue failed due to insufficient space in command queue.
Software could either wait for space to become available before
attempting the DMA transfer again, or can simply continue attempting
to enqueue the DMA until successful (go to step 1).

¢ 3: Indicates that both errors occurred.

Note: The supported and recommnded value of the different DMA parameters
are described in “Supported and recommended values for DMA parameters”
on page 115.

Waiting for completion of a DMA transfer

After DMA command is initiated, the software may wait for a completion of the
DMA transaction. Programmer may do so by calling to one of the functions that
are defined in 1ibspe2.h header. For example:

» spe_mfcio_tag_status_read: The function input parameters include a mask
which defines group ID (as explained below) and blocking behavior (continue
waiting until completion or quit after one read).

The programmer should be aware of the fact that the implementation of this
function include a sequence of the following commands:

1. Set the Prxy_QueryMask register to the groups of interest. Each tag ID is
represented by one bit (tag 31 is assigned the most-significant bit and tag 0 is
assigned the least-significant bit).

Chapter 4. Cell BE programming 139



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

2. Issue an eieio instruction before reading the Prxy_TagStatus register to
ensure the effects of all previous stores complete

3. Read the Prxy_TagStatus register.

4. If the value is nonzero, at least one of the tag groups of interest has
completed. If waiting for all the tag groups of interest to complete, XOR the
tag group status value with the tag group query mask. A result of ‘0’ indicates
that all groups of interest are complete.

5. Repeat steps 3 and 4 until the tag groups of interest are complete.

Another alternative is using the inline functions that is defined in che_mfc.h file:

» spe_mfc_write_tag_mask : A nonblokcing function which writes the mask
value to the Prxy_QueryMask register.

» spe mfc_read tag status_immediate : A nonblokcing function which reads
the Prxy_TagStatus register and returns the value read. Beore calling this
function, the spe _mfc_write_tag mask function should be called to set the
tag mask.

There are various other methods to wait for the completion of the DMA transfer o
as described in chapter PPE-Initiated DMA Transfers in Cell Broadband Engine
Programming Handbook document. We chose to show the simplest one.

Basic DMA ‘get’ and ‘put’ transfers - code example

This section contains a code example on how PPU program may initiate basic
DMA transfers between the LS and main storage. This example demonstrate the
following techniques:

» PPU code maps the LS to share memory and retrieve pointer to its EA base.
» SPU code uses the mailbox to send PPU the offset to its data buffer in LS.

» PPU code initiates DMA ‘put’ command to transfer data from LS to main
storage (please notice that the direction of this commands may be confusing).

» PPU code wait for the completion of the ‘put’ command before using the data.

Example 4-22 shows the PPU code while Example 4-23 shows the
corresponding SPU code.

We use the MFC functions method to access the DMA mechanism from the PPU
side. Each of such functions actually implements few of the steps that were
mentioned above causing the code to be simpler. From programmer point of view
it is important to be familiar with the number of commands that are involve in
order to understand the impact on its application execution.

140 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Source code: The code of Example 4-22 and Example 4-23 is included in the
additional material that is provided with this book. See “PPU initiated DMA
transfers between LS and main storage” on page 614 for more information.

Example 4-22 PPU initiated DMA transfers between LS and main storage - PPU code

#include <Tibspe2.h>
#include <cbe_mfc.h>

#define BUFF_SIZE 1024
spe_context_ptr_t spe_ctx;
uint32_t 1s _offset; // offset from LS base of the data buffer in LS

// PPU’s data buffer
volatile char my data[BUFF_SIZE] _ attribute_ ((aligned(128)));

int main(int argc, char *argv[]){

int ret;
uint32_t tag, status;

// MUST use only tag 0-15 since 16-31 are used by kernel
tag = 7; // choose my Tucky number

spe_ctx = spe_context create (....); // create SPE context
spe_program _load (....); // load SPE program to memory
pthread create (....); // create SPE pthread

// collect from the SPE the offset in LS of the data buffer. NOT the
// most efficient using mailbox- but sufficient for initialization
while(spe_out mbox read( data.spe_ctx, &ls offset, 1)<=0);

//intiate DMA ‘put’® command to transfer data from LS to main storage
dof
ret=spe_mfcio_put( spe_ctx, 1s_offset, (void*)my data, BUFF_SIZE,
tag, 0,0);
}while( ret!=0);

// wait for completion of the put command
ret = spe_mfcio tag status_read(spe ctx,0,SPE_TAG_ALL, &status);

if(ret!=0){

Chapter 4. Cell BE programming 141



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

perror ("Error status was returned");
// ‘status’ variable may provide more information
exit (1);

}

// MUST issue synchronization command before reading the ‘put’ data
__Twsync();

printf(“SPE says: %s\n”, my_data);
// continue saving the world or at least managing the 16 SPEs

return (0);

Example 4-23 PPU initiated DMA transfers between LS and main storage - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

#define BUFF_SIZE 1024

// SPU’s data buffer
volatile char my data[BUFF _SIZE] _ attribute  ((aligned(128)));

int main(int speid , uint64_t argp)

{ strcpy((char*)my_data, “Racheli Paz lives in La-Paz.\n” );
// send to PPE the offest the data buffer- stalls if mailbox is full
spu_write_out_mbox((uint32_t)my_data);
// continue helping PPU saving the world or at least do what he says
return 0;

}

DMA list data transfer

A DMA list is a sequence of transfer elements (or list elements) that, together
with an initiating DMA-list command, specifies a sequence of DMA transfers

142 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

between a single continuous area of LS and possibly discontinuous areas in
main storage.

The PPE software may participate in the initiating of such DMA-list command by
create and initialize the DMA list in an SPE’s LS. The way on which a PPU
software can access the LS is described in Chapter , “Direct PPE access to LS of
some SPE” on page 143. Once such list was created only a code running on this
SPU may proceed with the execution of the command itself. This entire process
is described in Chapter, “DMA list data transfer” on page 124.

4.3.4 Direct problem state access and LS to LS transfer

This chapter describes how applications can access directly an SPE’s LS. The
intention is for applications that do not run on this SPE but runs on either the PPE
or other SPEs.

PPE access to the LS is described in the first chapter “Direct PPE access to LS
of some SPE”. Programmer should try to avoid massive use of this technique
because of performance considerations.

Other SPEs accessing the LS is described on the next chapter - “SPU initiated
LS to LS DMA data transfer”. For memory bandwidth reasons it is highly
recommended to prefer this technique whenever it fit the application structure.

Direct PPE access to LS of some SPE

In this chapter we describe how the PPE can directly access the LS of some
SPE. The programmer should try to avoid frequent PPE direct access to the LS
and should try to use DMA transfer instead. However, it may be useful to use
direct PPE to LS access of occasionally with small amount of data in order to
control the program flow, for example to write a notification.

A code running on the PPU can access the LS by performing the following steps:

1. Map the LS to the main storage and provides an effective address pointer to
the LS base address. Function spe_1s_area_get of the 1ibspe2.h header file
implements this step as described in SPE Runtime Management library
document. Note that this type of memory access is not cache coherent.

2. Optionally, get from the SPE the offset compare to the LS base of the data to
be read or written. May be implemented using the mailbox mechanism.

3. Access this region like any regular data access to main storage using direct
load and store instructions.

Chapter 4. Cell BE programming 143



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Note: The LS stores the SPU program’s instructions, program stack as well as
global data structure. The PPU code should therefore be cautious in
accessing the LS in order to prevent override those SPU program’s
components. The recommended way to do so is letting the SPU code manage
its LS space. Using any other communication technique, the SPU code can
send to the PPE the offset of the region in LS that the PPE may access.

Example 4-24 shows code that illustrates how a PPE may access the LS of an
SPE:

» The SPU program forwards the offset of the corresponding buffer in the LS to
the PPE using the mailbox mechanism.

» The PPE program maps the base address of the LS to the main storage using
libspe function

» The PPE program adds the buffer offset to the LS base address to retrieve the
buffer effective address.

» The PPE program uses the calculated buffer address to access the LS (and
copy some data to it).

Source code: The code of Example 4-24 is included in the additional material
that is provided with this book. See “Direct PPE access to LS of some SPE” on
page 614 for more information.

Example 4-24 Direct PPE access to LS of some SPE

// Take ‘spu_data_t® stucture and ‘spu_pthread® function from
// Example 4-5 on page 90

#include <ppu_intrinsics.h>
uint64_t ea_ls_base; // effective address of LS base
uint32_t 1s offset; // offset (LS address) of SPE’s data buffer
uinté4_t ea_ls_str; // effective address of SPE’s data buffer
#define BUFF_SIZE 256
int main(int argc, char *argv[])
{
uint32_t mbx;

// create SPE thread as shown in Example 4-3 on page 86

144 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// map SPE’s LS to main storage and retrieve its effective address

if( (ea_ls_base = (uint64_t)(spe_ls_area_get(data.spe_ctx)))==NULL){
perror("Failed map LS to main storage"); exit(1);

}

// read from SPE the offset to the data buffer on the LS
while(spe_out_mbox_read( data.spe_ctx, &Is_offset, 1)<=0);

// calculate the effective address of the LS data buffer
ea_ls_str = ea_ls_base + 1s_offset;

printf("ea_ls_base=0x%11x, 1s_offset=0x%x\n",ea_ls_base, 1s_offset);

// copy a data string to the LS
strcpy( (char*)ea_1s_str, "Ofer Thaler is Temon’s Temons");

// make sure that writing the string to LS is complete before
// writing the mailbox notification

__Twsync();

// use mailbox to notify SPE that the data is ready

mbx = 1;

spe_in_mbox_write(data.spe_ctx, &mbx,1,1);

// wait SPE thread completion as shown in Example 4-3 on page 86

printf("PPE: Complete this educating (but useless) example\n" );

return (0);

SPU initiated LS to LS DMA data transfer

This section contains a code example on how SPU program may access LS of
another SPE in the chip. The LS is mapped to an effective address in the main
storage which allows SPEs to use ordinary DMA operations to transfer data to
and from this LS.

It is highly recommended to prefer LS to LS data transfer whenever it fits the
application structure. This type of data transfer is very efficient because it goes
directly from SPE to SPE on the internal EIB bus without involving the main
memory interface. The internal bus have much higher bandwidth then the
memory interface (up to 10 times faster) and lower latency.

Chapter 4. Cell BE programming 145



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The following steps may be taken to enable a group of SPEs to initiated DMA
transfer between each other local stores:

1.

PPE maps the local stores to the main storage provides an effective address
pointer to the local stores base addresses.

Function spe_1s_area_get of 1ibspe2.h header file implement this step as
described in SPE Runtime Management library document.

SPEs send to the PPE the offset compare to the LS base of the data to be
read or written.

PPE provides the SPEs the LS base addresses and the data offsets of other
SPEs. May be implemented using mailbox also.

SPEs access this region like regular DMA transfer between LS and effective
address on the main storage.

Source code: An code example that uses LS to LS data transfer to implement
a multistage pipeline programming mode is available as part the additional
material that is provided with this book. See “Multistage pipeline using LS to
LS DMA transfer” on page 614 for more information.

4.3.5 Facilitate random data access using SPU software cache

This chapter discuss the software cache' library which is a part of the SDK
package and is based on the following principles:

»

Provides a set of SPU functions calls to manage the data on the LS and to
transfer data between the LS and main storage.

The library maintain a cache memory that is statically allocated on the LS.

From the programer point of view accessing the data using the software
cache is similar to using ordinary load and store instructions, unlike the SPU’s
typical DMA interface for transferring data.

For each data on the main storage that the program try to access, the cache
mechanism first check if it is already located in the cache (i.e. in LS). If it does,
the data is simply taken from there and by that saves the latency of bringing
the data from the main storage. Otherwise - the cache automatically and
transparent to the programer perform DMA transfer.

the cache also provides asynchronous interface which, like double buffering,
enables the programmer to hide the memory access latency by overlapping
between data transfer and computation.

1 While in this chapter we call this library ‘software cache’, its full name is actually ‘SPU software

managed cache’. We use the shorted name for simplicity. The library specification is in Example
Library API Reference document.

146 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

The library has the following advantages over using standard SDK functions call
to activate the DMA transfer:

» Better performance in some applications2 can be achieved by taking
advantage of locality of reference and save redundant data transfers if the
corresponding data is already in LS.

» Use familiar load/store instructions with effective address which are easier to
program in most cases.

» Since the topology and behavior of the cache is configurable, can be easily
optimized to match data access patterns (unlike most hardware cache).

» Decreases the development time that is needed to port some application to
SPE.

However, since the software cache functions add some computation overhead
compare to ordinary DMA data transfers, in case the data access pattern is
sequential it is therefore preferred from performance point of view to use ordinary
DMA data transfer instead.

Note: The software cache activity is local to a single SPU, managing the data
access of such SPU program to the main storage and LS.

The software cache does not coordinate between data accesses of different
SPUs to main storage neither take care of coherency between them.

The chapter discuss the following issues:

» “Main features of the software cache” - summarizes the main features of the
software cache and how the programer may configure them.

» “Software cache operation modes” - discuss the two different modes that are
supported by the cache to perform either synchronous or asynchronous data
transfer.

» “Programing using software cache” - shows how to practically program using
the software cache include some code examples.

» “When and how to use the software cache” - provides some examples of
application where using the software cache is beneficial.

Main features of the software cache

Many features related to the software cache topology and behavior can be
configured by the programmer which creates an advantage to the software cache
over hardware cache in some cases. Configuring those features allows the

2 Chapter, “When and how to use the software cache” on page 153 provides some examples for
applications for which the software cache provides a good solution.

Chapter 4. Cell BE programming 147



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

programer to iteratively adjust those cache attributes to what best suites the
specific application that currently runs in order to achieve optimal performance.

The main feature of the software cache are:

» Associativity: direct mapped, 2-way, or 4-way set associative.

» Access mode: read-only or read-write (the former has better performance).
» Cache line size3: 16 B to 4 KB (a power of two values)

» Number of lines: 1 to 4K lines (a power of two values)

» Data type: any valid data type (but all the cache has the same type).

In order to set those software cache attributes the programer should statically
add the corresponding definition to the program code. It means that the cache
attributes are taking into account during compilation of the SPE program (i.e. and
not on run time) when many of the cache structures and functions are
constructed.

In addition, the programer should assign a specific name to the software cache
which allows to define several separate caches in the same program. This may
be useful in case several different data structures are accessed by the program
and each structure has different attributes (e.g. some structures are read-only
and some are read-write, some are integers and some single precision)

By default, the software managed cache may use the entire range of the 32 tag
ID which are available for DMA transfers and doesn’t not take into account other
application uses of tag IDs. If a program also initiate DMA transfers (which
require separate tag IDs) the programmer should limit the number of tag ID used
by the software cache by explicitly configure range of tag IDs that the software
cache may use.

Software cache operation modes

The software cache support two different modes in which the programer may use
the cache once it was created. The two supported modes are ‘safe mode’ and
‘unsafe mode’ which are discussed in next two chapters.

Safe mode and synchronous interface

The safe interfaces provide the programmer with a set of functions to access
data simply by using the data’s effective address. The software cache library
performs the data transfer between LS and the main memory transparently to the
programer and manages the data that is already in LS.

3 Unless explicitly mentioned otherwise, we use the term ‘cache line’ for the entire chapter to define
the software cache line. While hardware cache line is fixed to 128 B, the software line can be
configured to any power of 2 value between 16B to 4 KB.

148 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

One of the advantage using this method is that the programmer doesn’t need to
worry the LS addresses and can simply use effective addressees like any other
PPE program. From programing point of view it is therefore very simple.

Data access function call using this mode are done synchronously and are
performed according to the following guidelines:

» If data is already in LS (in the cache) - a simple load from LS is performed.

» if data is not currently in LS - software cache function perform DMA between
LS and main storage and the program is blocked until the DMA is completed.

Such synchronous interface has the disadvantage of having a long latency when
the software cache needs to transfer data between LS and main storage.

Unsafe mode and asynchronous interface

The unsafe provides a more efficient means of accessing the LS compared to the
safe services. Software cache provides functions to map effective addresses to
LS addresses. The programer should later use those LS address to access the
data (unlike in safe mode where the effective addresses are used).

In this mode, like in safe mode, the software cache keeps tracking which data is
already in the LS and perform data transfer between LS and main storage only if
the data is not currently in LS.

One of the advantages when using this method, is that the programer may ask
the software cache to asynchronously prefetch the data by ‘touching’ it. The
programer can implement double buffering like data transfer, letting the software
cache start transferring the next data to be processed while the program can
continue performing computation on the current data.

The disadvantage of using this mode is that programming is slightly more
complex. The programmer should access the data using the LS address and use
software cache functions to lock the data in case the data is updated. For optimal
performance software cache functions for prefetching the data may be called.

Programing using software cache

This chapter demonstrate how the programmer can use the software cache in an
SPU program. The following programming techniques are shown in the next
sections:

» “Constructing a software cache” shows how to construct a software cache
and define its topology and behavior attributes.

» “Synchronous data access using safe mode” shows how to perform
synchronous data access using the library’s safe mode.

Chapter 4. Cell BE programming 149



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» “Asynchronous data access using unsafe mode” shows how to perform
asynchronous data access using the library’s unsafe mode.

Source code: The code of examples that are presented in this section -
Example 4-25 through Example 4-27, is included in the additional material
that is provided with this book. See “SPU software managed cache” on
page 614 for more information.

Constructing a software cache

In order to construct a software cache on a SPU program the programer should
define a couple of required attributes may define other optional attributes which
defines the cache topology and behavior. If the programer choose not to define
those attributes the library sets default values to those attributes. In either case it
is recommended to be familiar with all the attributes since their values may effect
the performance.

The next thing in the code following those definition must be the including of the
cache header file that is located at:
/opt/cel1/sdk/usr/spu/include/cache-api.h

Multiple caches may be defined in the same program by re-defining these
attributes and re-including the cache-api . h header file. The only restriction is that
the CACHE_NAME must be different for each cache.

Example 4-25 shows a code example of using the software cache. The example
shows how to:

» Construct a software cache named MY _CACHE and define both its mandatory
and optional attributes.

» Reserve tag ID to be used by the software cache.

Example 4-25 Constructing software cache

unsigned int tag_base; // should be defined before the cache

// Manadatory attributes
#define CACHE_NAME MY_CACHE // name of the cache
#define CACHED TYPE int // type of basic element in cache

// Optional attributes
#define CACHE_TYPE CACHE_TYPE_RW // rw type of cache

#define CACHELINE LOG2SIZE 7 // 277 = 128 bytes cache Tine
#define CACHE_LOG2NWAY 2 // 272 = 4-way cache
#define CACHE_LOG2NSETS 4 /] 274 = 16 sets

#define CACHE_SET TAGID(set) (tag base + (set & 7)) // use 8 tag IDs

150 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

#define CACHE_STATS//collect statistics
#include <cache-api.h>

int main(unsigned Tong Tong spu_id, unsigned long Tong parm)

{

// reserve 8 tags for the software cache
if((tag_base=mfc_multi_tag_reserve(8))==MFC_TAG_INVALID) {
printf( "ERROR: can't reserve a tags\n"); return 1;

}

// can use the cache here

Synchronous data access using safe mode

Once the caches was define, the programer can use its function calls to access
data. This chapter shows how to perform synchronous data access using the
safe mode.

Please notice that using this mode only the effective addresses are used to

access the main memory data and there is no need for the programmer to be

aware of the LS address to which the data was transferred (i.e. by the software

cache).

The code in Example 4-26 shows how to do the following:

» Use safe mode to perform synchronous data access.

» Flush the cache so the modified data will be written into main memory.

» Reads variables from main memory using their effective address, modify
them and write them back to memory using their effective address.

Example 4-26 Synchronous data access using safe mode

Take Example 4-25 code to construct the cache and initialize tag IDs

int a, b;
unsigned eaddr_a, eaddr_b;

// initialize effective addresses from PPU parameter
eaddr_a = parm;
eaddr_b = parm + sizeof(int);

// read a and b from effective address
a = cache_rd(MY_CACHE, eaddr_a);

Chapter 4. Cell BE programming 151



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm
b = cache_rd(MY_CACHE, eaddr_b);
// write values into cache (no write-through to main memory)
cache_wr(MY_CACHE, eaddr_ b, a);
cache_wr(MY_CACHE, eaddr_a, b);

// at this point only the variables in LS are modified

// writes all modified (dirty) cache lines back to main memory
cache_flush(MY_CACHE);

Asynchronous data access using unsafe mode

This chapter shows how to perform asynchronous data access using the unsafe
mode.

In addition the chapter show how the programer can print cache statistics that
provide information about the cache activity. Those statistics may later be used to
tune the cache topology and behavior.

Please notice that using this mode the software cache maps the effective
address of the data in the main memory into local store. The programer should
later use the mapped local addresses to use the data.

The code in Example 4-27 shows how to do the following:

» Use unsafe mode to perform synchronous data access.

» Touch a variable so the cache will start asynchronous prefetching of this
variable from main memory to local store.

» Wait till the prefetched data is present in LS before modifying it.
» Flush the cache so the modified data will be written into main memory.
» Print software cache statistics.

Example 4-27 Asynchronous data access using unsafe mode

// Take the begining of the program from Example 4-26
int *a_ptr, *b_ptr;

// asynchronously touch data 'b' so cache will start to prefetch it
b_ptr = cache_touch(MY_CACHE, eaddr_b);

152 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// synchronously read data 'a' - blocked till data is present in LS
a_ptr = cache_rw(MY_CACHE, eaddr_a);

// MUST Tock variables in LS since it will be modified.
// ensures that it will not cast out while the reference is held.

cache_Tlock(MY_CACHE,a_ptr);

// 'a' is locked in cache - can now safely be modified through ptr
*a_ptr = *a_ptr+10;

// blocking function that waits till 'b' is present in LS
cache_wait(MY_CACHE, b_ptr);

// need to lock 'b' since it will be updated
cache_Tlock(MY_CACHE,b_ptr);

// now 'b' is in cache - can now safely be modified through ptr
*b_ptr = *b_ptr+20;

// at this point only the variables in LS are modified

// writes all modified (dirty) cache lines back to main memory
cache_flush(MY_CACHE);

//print software cache statistics
cache_pr_stats(MY_CACHE);

mfc_multi_tag_release(tag_base, 8);
return (0);

When and how to use the software cache

In this chapter we discuss two main cases in which we recommend to use the
software cache. Each of the next four sections define one such case and also
discuss how it is recommended to use the software cache in this case (mainly
regarding which safe/unsafe mode should be selected).

Note: Using unsafe mode and performing asynchronous data access provide
better performance then using safe mode’s synchronous access. It depends
on the specific program if the performance improvement is indeed significant.
However, programing is slightly more complex using the unsafe mode.

Chapter 4. Cell BE programming 153



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Case 1: First pass SPU implementation

This section refer to cases in which there is a need to develop a first pass
implementation of an application on the SPU in relatively short time. If the
programer use the software cache in safe mode the program is not significantly
different neither requires more programming compare to other single processor
program (e.g. program that runs on the PPE).

Case 2: Random data access with high cache hit rate

Some application has random or not predicted data access pattern which make it
hard to implement a simple and efficient double or multi buffering mechanism. In
this section we mainly refer to streaming applications which contain many
iterations, and in each iteration few blocks of data are read and are used as an
input for computing some output blocks. Examples for such applications include:

» The data blocks that are accessed by the program are scattered in memory4
and are relatively small.

» Indirect mechanism, in which the program should first read index vectors from
main storage and those vectors contains the location of the next blocks of
data that need t be processed.

» Only after computing the results of current iteration the program know which
blocks should be read next.

If those application also have high cache hit rate then the software cache can
provided better performance compare to other techniques. Such high rate may
be occur if blocks that are read in one iteration are likely to be used in the
sequential iterations. Or another similarly is if blocks that are read in some
iteration are close enough to the blocks of previous iteration (i.e. in the same
software cache line).

A high cache hit rate ensures that in most cases when a structure is accessed by
the program, the corresponding data is already in the LS so the software cache

will be smart enough to take the data form the LS instead of transferring it again
from main memory.

If the hit rate is significantly high, performing synchronous data access using safe
mode will provide good performance since waiting for data transfer completion
will not occur too often. However, in most case the programer may try to use
asynchronous data access of unsafe mode and measure whether performance
improvement is indeed achieved.

4 The intention is not that the data itself is necessarily scattered in memory, but each iteration of the
algorithm uses several different blocks which aren’t continuos in memory (scattered).

154 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4.3.6 Automatic software caching on SPE

A simple way for an SPE to reference data on the main storage can be achieved
through an extension to the C language syntax which enables to share data in
this way between an SPE and the PPE or between SPEs. This extension makes
it easier to pass pointers so that the programer can use the PPE to perform
certain functions on behalf of the SPE. Similarly this mechanism can be used to
share data between all SPEs through variables in PPE address space.

This mechanism is based on the software cache safe mode mechanism that was
discussed in Chapter 4.3.5, “Facilitate random data access using SPU software
cache” on page 146 but provides a more user friendly interface to activate it.

In order to use this mechanism the programer should use the __ea address
space identifier when declaring a variable to indicate to the SPU compiler that a
memory reference is in the remote (or effective) address space, rather than in
local store. The compiler automatically generates code to DMA these data
objects into local store and caches references to these data objects.

This identifier can be used as an extra type qualifier like const or volatile in
type and variable declarations. The programer can qualify variable declarations
in this way, but not variable definitions.

Accessing an __ea variable from an SPU program creates a copy of this value in
the local storage of the SPU. Subsequent modifications to the value in main
storage are not automatically reflected in the copy of the value in local store. It is
the programer’s responsibility to ensure data coherence for __ea variables that
are accessed by both SPE and PPE programs.

The following are examples on how to use this variable:

// Variable declared on the PPU side.
extern _ea int ppe_variable;

// Can also be used in typedefs.
typedef __ea int ppe_int;

// SPU pointer variable point to memory in main storage address space
__ea int *ppe_pointer;

The SPU program should initiate this pointer to a valid effective address:

// Init the SPU pointer according to ‘ea_val’ which is a valid effective
// address that PPU forward to the SPU (e.g. using mailbox)
ppe_pointer = ea_val;

Chapter 4. Cell BE programming 155



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

After the pointer was initiated, it can be used as an any SPU pointer while the
software cache will map it into DMA memory access, for example:

for (i = 0; i < size; i++) {
*ppe_pointer++ = i; // memory accesses use software cache

}

Another case if pointers in the SPE’s LS space that can be cast to pointers in the
main storage address space. Doing this transforms an LS address into an
equivalent address in the main storage (as the LS is mapped also to the main
storage domain). The following is an example.

int x;
__ea int *ppe_pointer_to_x = &x;

The pointer variable ppe_pointer_to x can be passed to the PPE process by of
a mailbox and used by PPE code to access the variable x in the LS. The
programer should be aware or the ordering issues in case both the PPE access
this variable (from the main storage) and SPE access it (from the LS domain).
Similarly this pointer can be used to transfer data between on LS to another by
the SPEs.

GCC for the SPU provides the following command line options to control the
runtime behavior of programs that use the __ea extension. Many of these options
specify parameters for the software-managed cache. In combination, these
options cause GCC to link the program to a single software-managed cache
library that satisfies those options. Table 4-5 describes these options:

Table 4-5 GCC options for supporting main storage access from the SPE

Option Description

-mea32 Generate code to access variables in 32-bit PPU objects. The
compiler defines a preprocessor macro __EA32__ to allow
applications to detect the use of this option. This is the
default.

-meab64 Generate code to access variables in 64-bit PPU objects. The
compiler defines a preprocessor macro _ EA64__ to allow
applications to detect the use of this option.

-mcache-size=X Specify an X KB cache size (X=8, 16, 32, 64 or 128)

-matomic-updates Use DMA atomic updates when flushing a cache line back to
PPU memory. This is the default.

-mno-atomic-updates | This negates the -matomic-updates option.

156 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

A complete example using __ea qualifiers to implement a quick sort algorithm on
the SPU accessing PPE memory can be found in the SDK’s
/opt/cell/sdk/src/examples/ppe_address_space directory.

4.3.7 Efficient data transfers by overlapping DMA and computation

One of the unique features of the Cell BE architecture is the DMA engines in
each of the SPEs which enables asynchronous data transfer. In this chapter we
discuss fundamental techniques to achieve overlapping between data transfers
and computation using the DMA engines. This is an important topic as it enables
to dramatically increase the performance of many applications.

Motivation
Consider a simple SPU program that repeating the following steps:

1. DMA incoming data from main storage to LS buffer B.

2. Wait for the transfer to complete.

3. Compute on data in buffer B.

This sequence is not efficient because it waste a lot of time waiting for the

completion of the DMA transfer and has no overlap between data transfer and
computation. The time graph for such scenario is illustrate in Figure 4-2:

l}g First Iteration Second lteration

w

Time

DMA input
Compute

Figure 4-2 Serial computation and data transfer

Double buffering

We can significantly speed up the process described above by allocating two
buffers, By and B4, and overlapping computation on one buffer with data transfer
in the other. This technique is called double buffering whose flow diagram
scheme is shown in Figure 4-3:

Chapter 4. Cell BE programming 157



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Initiate ODMA fransfer
from EA to LS buffer B

Initiate DMA transfer N Wait for DMA transfier » Compute on data in
from EA to LS buffer B4 to buffer Bp to complets buffer Bg
=
-
Compute on data in ’ Wait for DMA transfer " Initiate DMA tranafer
buffer B4 to buffer B4 to complete from E& to LS buffer B

Figure 4-3 Double buffering scheme

Double buffering is a private class of multibuffering, which extends this idea
using multiple buffers in a circular queue instead of only the two buffers of double
buffering. While In most cases using the two buffers in the double buffering case
are enough to guarantee overlapping between computation and data transfer.

However, in case the software still need to wait for completion of the data
transfer, the programmer may consider extending the number of buffers and
move to multibuffering scheme. Obviously this requires more memory on the LS
which may be a problem in some cases. The multibuffering technique is
described in “Multibuffering” on page 163.

Below is an example code for double buffering mechanism. Example 4-28 is the
header file which is common to the SPE and PPE side, Example 4-29 is the SPU
code that contains the double buffering mechanism, and Example 4-30 is the
corresponding PPU code.

Source code: The code of Example 4-28 through Example 4-30, is included
in the additional material that is provided with this book. See “Double
buffering” on page 615 for more information.

The code also demonstrate the use of barrier on the SPE side to ensure that all
the output data that SPE updates in memory is written into memory before PPE
tries to read it.

Example 4-28 Double buffering code - common header file

// common.h file ===---mmmm el

#define ELEM_PER BLOCK 1024 // # of elements to process by the SPE
#define NUM_OF ELEM 2048*ELEM_PER BLOCK // total # of elements

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

#define STATUS_DONE 1234567
#define STATUS_NO_DONE ~(STATUS_DONE)

typedef struct {
uint32_t *in_data;
uint32_t *out_data;
uint32_t *status;
int size;

} parm_context;

Example 4-29 Double buffering mechanism - SPU code

#include <spu_intrinsics.h>
#include <spu_mfcio.h>
#include "common.h"

// Macro for waiting to completion of DMA group related to input tag
#define waitag(t) mfc_write tag mask(l<<t); mfc_read tag status all();

// Local store structures and buffers.

volatile parm context ctx _ attribute  ((aligned(16)));;
volatile uint32_t 1s_in_data[2] [ELEM_PER BLOCK] _ attribute_ _
((aligned(128)));

volatile uint32_t 1s_out_data[2] [ELEM_PER BLOCK] _ attribute__
((aligned(128)));

volatile uint32_t status _ attribute  ((aligned(128)));

uint32_t tag_id[2];

int main(unsigned Tong Tong spu_id, unsigned long long argv)
{
int buf, nxt_buf, cnt, nxt_cnt, left, i;
volatile uint32_t *in_data, *nxt_in_data, *out_data, *nxt_out_data;

tag_id[0]
tag_id[1]

mfc_tag_reserve();
mfc_tag_reserve();

// Fetch the parameter context, waiting for it to complete.

mfc_get((void*) (&ctx), (uint32_t)argv, sizeof(parm_context),
tag_id[0], 0, 0);

waitag(tag_id[0]);

// Init parameters
in_data = ctx.in_data;

Chapter 4. Cell BE programming 159



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

out_data = ctx.out_data;
left = ctx.size;
cnt = (left<ELEM_PER_BLOCK) ? left : ELEM_PER BLOCK;

// Prefetch first buffer of input data.

buf = 0;

mfc_getb((void *)(1s_in_data), (uint32_t)(in_data),
cnt*sizeof(uint32_t), tag_id[0], 0, 0);

while (cnt < left) {
left -= SPU_Mbox_Statnt;

nxt_in_data in_data + cnt;
nxt_out_data = out_data + cnt;
nxt_cnt = (Teft<ELEM_PER_BLOCK) ? Tleft : ELEM_PER_BLOCK;

// Prefetch next buffer so it is available for next iteration.
// IMPORTANT: Put barrier so that we don't GET data before

// the previous iteration's data is PUT.

nxt_buf = buf"l;

mfc_getb((void*) (&1s_in_data[nxt_buf][0]),
(uint32_t) (nxt_in_data) , nxt_cnt*sizeof(uint32_t),
tag_id[nxt_buf], 0, 0);

// Wait for previously prefetched buffer
waitag(tag_id[buf]);

for (i=0; i<ELEM_PER BLOCK; i++){
Is_out_data[buf][i] = ~(1s_in_data[buf][i]);
}

// Put the output buffer back into main storage
mfc_put((void*) (&1s_out_data[buf][0]), (uint32_t)(out_data),
cnt*sizeof(uint32_t),tag_id[buf],0,0);

// Advance parameters for next iteration
in_data = nxt_in_data;

out_data = nxt_out_data;

buf = nxt_buf;

cnt = nxt_cnt;

}

// Wait for previously prefetched buffer

160 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm
waitag(tag_id[buf]);

// process_buffer
for (i=0; i<ELEM_PER BLOCK; i++){
1s_out_data[buf][i] = ~(1s_in_data[buf][i]);

}

// Put the output buffer back into main storage

// Barrier to ensure all data is written to memory before status

mfc_putb((void*) (&1s_out_data[buf][0]), (uint32_t) (out_data),
cnt*sizeof(uint32_t), tag_id[buf],0,0);

// Wait for DMAs to complete
waitag(tag_id[buf]);

// Update status in memory so PPE knows that all data is in place
status = STATUS_DONE;

mfc_put((void*)&status, (uint32_t)(ctx.status), sizeof(uint32_t),
tag_id[buf],0,0);
waitag(tag_id[buf]);

mfc_tag_release(tag_id[0]);
mfc_tag_release(tag_id[1]);

return (0);

Example 4-30 Double buffering mechanism - PPU code

#include <Tibspe2.h>

#include <cbe_mfc.h>

#include <pthread.h>

#include "common.h"

volatile parm_context ctx _ attribute_ ((aligned(16))):

volatile uint32_t in_data[NUM_OF ELEM] _ attribute  ((aligned(128)));
volatile uint32_t out_data[NUM_OF ELEM] _ attribute  ((aligned(128)));
volatile uint32_t status _ attribute_ ((aligned(128)));

// Take ‘spu_data t’ stucture and ‘spu_pthread® function from
// Example 4-5 on page 90

Chapter 4. Cell BE programming 161



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

int main(int argc, char *argv[])
{
spe_program_handle_t *program;
int i, error;

status = STATUS_NO_DONE;

// Init input buffer and zero output buffer
for (i=0; i<NUM_OF ELEM; i++){

in_data[i] = i3

out_data[i] = 0;

}

ctx.in_data = in_data;
ctx.out_data = out_data;
ctx.size = NUM_OF_ELEM;
ctx.status = &status;

data.argp = &ctx;

// ... Omitted section:
// creates SPE contexts, load the program to the local stores,
// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in 4.1.2, “Task parallelism and
managing SPE threads”

// Wait for SPE data to be written into memory
while (status != STATUS DONE);

for (i=0, error=0; i<NUM_OF ELEM; i++){
if (in_data[i] != (“out_data[i])){
printf("ERROR: wrong output at index %d\n", i);
error=1; break;

}
}
if(error){ printf(")PPE: program was completed with error\n");
telsef printf(")PPE: program was completed successfully\n"); }
return 0;

162 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Multibuffering

Data buffering can be extended to use more than two buffers if there is no
complete overlapping between computation and data transfer, causing the
software to significantly wait to the completion of the DMA transfers. Extending
the number of buffer will obviously extend the amount of memory needed to store
those buffer, so the programmer should guarantees that there is enough space is
available in the LS for doing so.

Building on similar concepts to double buffering, the multibuffering uses multiple
buffers in a circular queue. Example 4-31 show a pseudo code of a multibuffering
scheme:

Example 4-31 Multibuffering buffering scheme

1. Allocate multiple LS buffers, BO..Bn.

2. Initiate transfers for buffers B0..Bn. For each buffer Bi, apply tag
group identifier i to transfers involving that buffer.

3. Beginning with BO and moving through each of the buffers in round
robin fashion:
- Set tag group mask to include only tag i, and request conditional

tag status update.

- Compute on Bi.
- Initiate the next transfer on Bi.

This algorithm waits for and processes each B; in round-robin order, regardless
of when the transfers complete with respect to one another. In this regard, the
algorithm uses a strongly ordered transfer model. Strongly ordered transfers are
useful when the data must be processed in a known order as happens in many
streaming model applications.

4.3.8 Improving page hit ratio using huge pages

In this chapter we discuss how the programer may use huge pages in order to
enhance the data access and performance of a given application. The chapter
contain the commands required for configuring huge pages on a system and also
short code example on how using the huge pages within a program.

Another code example which also shows how to use huge pages with NUMA API
is presented in Example 4-34 on page 170.

Chapter 4. Cell BE programming 163



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

164

The huge page support on the SDK aim to address the issue of reducing the
latency of address translation mechanism on the SPEs. This mechanism is
implemented using 256 entry translation lookaside buffers (7LBs) which reside
on the on the SPEs and store the information regarding address translation. The
operating system on the PPE is responsible to manage those buffers.

The following process runs whenever the SPE try to access some data on the
main storage:

1. SPU code initiate MFC DMA command for accessing data on main storage
and provide the effective address of the data in main storage.

2. SPE SMM?® checks if the effective address falls within one of the TLB entries:

— If exists (page hit): use this entry to translate to real address and exit the
translation process.

— If not (page miss): continue to step 3.
3. SPU halts program execution and generates an external interrupt to the PPE.

4. Operating systems on the PPE allocate the page and writes the require
information into the TLB of this particular SPE using memory access to the
problem state of this SPE.

5. PPE signal the SPE that translation is complete.
6. MFC starts transferring the data and SPU code continue running.

This mechanism causes the SPU program to halt until the translation process is
complete which may take significant amount of time. This may be not efficient in
case the process repeats itself many times during the program execution.

However, the process is taken place only for the first time a page is accessed,
unless and the translation information in the TLB is replaced by information of
other pages which are later accessed.

Hence, using very large pages may significantly improve the performance in
cases where the application operates on large data sets. In those cases, using
very large pages can significantly reduce the number of time this process occurs
(only once for each page).

The SDK supports the huge TLB file system, which allows the programmer to
reserve 16 MB huge pages of pinned, contiguous memory. For example, if 50
pages are configured, it provides 600 MB of pinned contiguous memory. In the
worst case where each SPE accesses the entire memory range, a TLB miss will
occur only once for each of the 50 pages since the TLB will have enough room to
store all those pages. For comparison, the size of ordinary pages on the
operating system that runs on Cell BE is either 4 KB or 64 KB.

5 SMM (synergistic memory management) unit is responsible for address translation in the SPE.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Note: It is recommended to use huge pages in cases where the application
uses large data sets. This can significantly improve the performance in many
cases and usually it requires only minor changes in the software.

The number of pages that the programmer should allocated depends on the
specific application and that way data is partitioned on this application.

Few issues related to the huge pages mechanism:

» Configuring the huge pages is not related to a specific program but to the
operating system.

» Any program that runs on the system may use the huge pages by explicitly
mapping data buffers on the corresponding huge files.

» The area that is used by the huge pages is pinned in the system memory, so
it equivalently reduces the amount of system memory bytes available for other
purposes (i.e. any memory allocation that doesn’t explicitly use huge pages).

In order to configure huge pages, a ‘root’ user needs to execute a set of
commands. Those commands may be executed at any time and create memory
mapped files at /huge/ path that will store the huge pages content.

The first part of Example 4-32 shows the commands required to set 20 huge
pages which provided 320 MB of memory. The last four commands in this part
(groupadd, usermod, chgrp, chmod commands) provide permission to the user the
huge pages files. Without those executing those commands, only the root user
will later be able to access those files and use the huge pages.

The second part of this example demonstrates how to verify if the huge pages
were successfully allocated.

However, in many cases the programmer may have difficulties configuring
adequate huge pages usually because the memory is fragmented. Rebooting the
system is required in those cases.

The alternative and recommended way is to add the first part of the command
sequence shown Example 4-32 to the startup initialization script, such as
/etc/rc.d/rc.sysinit, so that the huge TLB file system is configured during the
system boot.

Some programmer may use huge pages while also using NUMA (Non-Uniform
Memory Architecture) to restrict memory allocation to a specific node (as
described in 4.3.9, “Improving memory access using NUMA” on page 168). The
number of available huge pages for the specific node in this case is half of what is
reported in /proc/meminfo. This is because on Cell based blade systems the
huge pages are equally distributed across both memory nodes.

Chapter 4. Cell BE programming 165



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Example 4-32 Configuring huge pages

> Part 1: Configuring huge pages:

mkdir -p /huge

echo 20 > /proc/sys/vm/nr_hugepages
mount -t hugetlbfs nodev /huge
groupadd hugetlb

usermod -a -G hugetlb <user>

chgrp -R hugetlb /huge

chmod -R g+w /huge

> Part 2: Verify that huge pages are successfully configured:
cat /proc/meminfo

The following output should be printed:

MemTotal: 1010168 kB

MemFree: 155276 kB

HugePages Total: 20

HugePages Free: 20
Hugepagesize: 16384 kB

Once the huge pages are configured, any application may allocate data on the
corresponding memory mapped file. This can be done by explicitly invoking
mmap of a /huge file of the specified size.

Example 4-33 shows a code example which opens a huge page file using the
open function and allocates 32 MB of private huge paged memory using mmap
function (32 MB indicated by the 0x2000000 parameter of mmap function).

Source code: The code of Example 4-33 is included in the additional material
that is provided with this book. See “Huge pages” on page 615 for more
information.

Note: The mmap function succeeds even if there are insufficient huge pages to
satisfy the request. On first access to a page that can not be backed by huge
TLB file system, the application process is terminated and the message
“killed” is emitted. The programmer must therefore ensure that the number of
huge pages requested does not exceed the number available.

166 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Another useful standard Linux library that handles the access to huge pages
from the program code is libhugetlbfs®. This library provides an API for
dynamically managing the huge pages in a way which is very similar to working
with ordinary pages.

Example 4-33 PPU code for using huge pages

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, char *argv[])

{

void *ptr;
int fmem;
char *mem_file = "/huge/myfile.bin";

// open a huge pages file

if ( (fmem = open(mem_file, O CREAT|0_RDWR, 0755))==-1){
perror("ERROR: Can't open huge pages file"); exit(1);

}

remove (mem_file);

// map 32MB (0x2000000) huge pages file to main sotrage
// get pointer to effective address
ptr = mmap(0, 0x2000000, PROT_READ|PROT_WRITE, MAP_PRIVATE,fmem,0) ;
if(ptr==NULL) {
perror("ERROR: Can't map huge pages"); exit(1);
}

printf("Map huge pages to 0x%11x\n", (unsigned Tong long int)ptr);

// now we can use ‘ptr’ effective addr. pointer to store our data
// for example forward to the SPEs to use it

return (0);

6 See http://sourceforge.net/projects/1ibhugetlbfs

Chapter 4. Cell BE programming 167


http://sourceforge.net/projects/libhugetlbfs

7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

4.3.9 Improving memory access using NUMA

The first two cell based blade system, the BladeCenter Q520 and BladeCenter
QS21 are both Non-Uniform Memory Architecture (NUMA) systems, which
consist of two Cell BE processors, each with its own system memory. The two
processors are interconnected through a FlexIO interface using the fully coherent
BIF protocol.

Since coherent access is guaranteed, from software point of view a program that
runs on either of the two processors can coherently access either of the two
attached memories. The programer may therefore can choose to ignore the
NUMA architecture having the data stored in two different memories and
program as if the program runs on an SMP system. However, in many cases
doing so will results in performance which are far from optimal.

The bandwidth between processor elements or processor elements and memory
is greater if accesses are local and do not have to communicate across the

FlexIO. In addition, the access latency is slightly higher on node 1 (Cell BE 1) as
compared to node 0 (Cell BE 0) regardless of whether they are local or non-local.

To maximize the performance of a single application, the programmer can
specify CPU and memory binding to either reduce FlexIO traffic or exploit the
aggregated bandwidth of the memory available on both nodes.

Note: Applications that are memory bandwidth-limited should consider
allocating memory on both nodes and exploit the aggregated memory
bandwidth. The optimal case is in which the data and tasks execution can be
perfectly divided between nodes (processor on node 0 primarily access
memory on this node, and the same for node 1)

Linux provide NUMA API” to address this issue and to enable allocating memory

on specific node. For doing so, the programmer may use the NUMA API in the

following way:

» Use NUMA API to allocate memory on the same processor on the current
thread runs.

» Use NUMA API to guarantee that this thread keep running on a specific
processor (node affinity).

The following chapters discuss the two separate interfaces that Linux provides to
control and monitor the NUMA policy and also some program consideration
regarding NUMA:

7 A NUMA API for LINUX, Technical Linux Whitepaper

168 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» Chapter, “NUMA program level API (libnuma library)” on page 169 discuss
the ‘libnuma’ shared library which provides an application level API.

» Chapter, “NUMA command utility (numactl)” on page 173 discuss the
‘numactl’ command utility.

» Chapter, “NUMA policy considerations” on page 173 present the main
consideration the programer should take when deciding if and how to use
NUMA.

Once NUMA was configured and the application completed its execution, the
programer can use NUMA'’s numastat command to retrieve some statistics
regarding the status of NUMA allocation and data access on each of the nodes.
This information can be used to estimate the effectiveness of the current NUMA
configuration.

NUMA program level API (libnuma library)

Linux provides s shared library name ‘libnuma’ that implements set of API for
controlling and tracing the NUMA policy. The library functional calls can be called
from any application level program which allow programing flexibility and also
have the advantage of creating self contained program that manage the NUMA
policy unique to them.

In order to use the NUMA API the programer should do the following:

» Include the numa.h header file in the source code.

» Add the -1numa flag to the compilation command in order to link the library to
the application.

Additional information is available in the man pages of this library that can be
retrieved using the man numa command.

A suggested method for using NUMA is described through Example 4-34 which
shows a corresponding PPU code. The example is inspired by the SDK’s matrix
multiply demo which is in /opt/cel1/sdk/src//demos/matrix_mul directory.

Please note that NUMA terminology uses the term ‘node’ that in the example
below refer to as one Cell BE processor (having two of those on a Cell BE blade).

The main principles behind the NUMA example that we present are:

1. Use NUMA API to allocate two memory continuos memory regions - one on
each of the nodes’ memories.

2. The allocation is done using huge pages to minimize SPE’s page miss. Notice
that the huge pages are equally distributed across both memory nodes on a
Cell BE based blade systems. Huge pages are further discussed in
Chapter 4.3.8, “Improving page hit ratio using huge pages” on page 163

Chapter 4. Cell BE programming 169



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

3. Duplicate the input data structures (matrix and vector in this case) by initiating
two different copies - one on each of the regions that were allocated in step 1.

4. Use NUMA to split the SPE threads so each half of the threads is initiate and
runs on a separate node.

5. The threads that runs on node number O are assigned to work on the memory
region that was allocated on this node, and node 1’s threads are assigned to
work on node 1’s memory region.

In this example there was a need to duplicate the input data since the entire input
matrix is needed for any of the threads. While this is not the optimal solution. in
many other applications there is no need to do so and the input data can simply
be divided between the two nodes (e.g. when adding two matrixes one half of
those matrixes can be located on one node’s memory and second half on the
other node’s memory).

Two more comments regarding combining NUMA API with other SDK’s functions:

» SDK’s spe_cpu_info_get function can be use to retrieve the number of
physical Cell BE processors and in specific number of physical SPEs that are
currently available. Using this function is demonstrated in Example 4-34.

» SDK'’s SPEs affinity mechanism may be used in conjunction with NUMA API
in order to add affinity between SPEs to the SPEs to near memory binding
that is provided by NUMA. The SPE affinity relevant mainly when there is
significant SPE to SPE communication and is discussed in Chapter 4.1.3,
“Creating SPEs affinity using gang” on page 93.

Example 4-34 Code example for using NUMA

#include <numa.h>

char *mem_file = "/huge/matrix_mul.bin";
char *mem_addr0=NULL, *mem_addrl=NULL;

#define MAX_SPUS16
#define HUGE_PAGE_SIZE(size_t) (16*1024*1024)

int main(int argc, char *argv[])
{
int i, nodes, phys_spus, spus;
unsigned int offset0, offsetl;
nodemask_t maskO, maskl;

// calculate the number of SPU for the program

170 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

spus = <number of required SPUs>;
phys_spus = spe_cpu_info_get (SPE_COUNT_PHYSICAL_SPES, -1);
if (spus > phys_spus) spus = phys_spus;

// check NUMA availability and intiate NUMA data structures
if (numa_available() >= 0) {
nodes = numa_max_node() + 1;

if (nodes > 1){
// Set NUMA masks; maskO for node # 0, maskl for node # 1
nodemask_zero(&mask0) ;
nodemask_set (&mask0, 0);
nodemask_zero(&maskl);
nodemask_set(&maskl, 1);
telsef
printf("WARNING: Can't use NUMA - insufficient # of nodes\n");
}
lelse{
printf("WARNING: Can't use NUMA - numa is not available.\n");

}

// calculate offset on the huge pages for input buffers
offset0 = <offset for node 0's buffer>
offsetl = <offset for node 1's buffer>

// allocate inout buffers - mem_addrO0 on node 0, mem_addrl on node 1
mem_addr0 = allocate_buffer(offset0, &mask0);
mem_addrl = allocate_buffer(offsetl, &maskl);

// Initialize the data in mem_addr0 and mem_addrl

// Create each of the SPU threads
for (i=0; i<spus; i++){

if (i < spus/2) {
// Tower half of the SPE threads uses input buffer of ndoe 0
threads[i].input_buffer = mem_addr0;

// binds the current thread and its children to node 0

// they will only run on the CPUs of node 0 and only be able
// to allocate memory from this node

numa_bind (&mask0) ;

Chapter 4. Cell BE programming 171



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

telsef
// similarly - second half use buffer of node 1
threads[i].input_buffer = mem_addrl;
numa_bind(&maskl);

}

// create SPE thread - will be binded to run only on
// NUMA's specified node

spe_context_create(...);

spe_program_load(...);

pthread create(...);

}

for (i=0; i<spus; i++) {
pthread_join(...); spe_context_destroy(...);
}
}

// alocate_buffers=s===================================================
// allocate a cacheline aligned memory buffer from huge pages or the
char * allocate_buffer(size_t size, nodemask t *mask)
{

char *addr;

int fmem = -1;

size_t huge_size;

// sets memory allocation mask. The thread will only allocate memory
// from the nodes set in 'mask’.
if (mask) {

numa_set_membind(mask) ;

}

// map huge pages to memory

if ((fmem=open (mem file, O_CREAT|0_RDWR, 0755))==-1) {
printf("WARNING: unable to open file (errno=%d).\n", errno);
exit(1);

}

remove (mem_file);

huge_size = (size + HUGE_PAGE_SIZE-1) & ™~(HUGE_PAGE_SIZE-1);

addr=(char*)mmap (0, huge_size, PROT_READ|PROT_WRITE,
MAP_PRIVATE, fmem,0);

if (addr==MAP_FAILED) {
printf("ERROR: unable to mmap file (errno=%d).\n", errno);

172 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

close (fmem); exit(1l);

}

// Perform a memset to ensure the memory binding.
if (mask) {

(void*)memset (addr, 0, size);
}

return addr;

NUMA command utility (numactl)

Linux provide a command utility names 'numactl’ that enable control and trace on
the NUMA policy. The programer may combine the ‘numctl’ commands in a script
that execute the appropriate those commands and later runs the application.

For example, the following command invokes a program that allocates all CPUs
on node 0 with a preferred memory allocation on node O:

numactl --cpunodebind=0 --preferred=0 ./matrix_mul

A shorter version command that perform the same action is:

numactl -c 0 -m 0 ./matrix_mul

To read the man pages of this command run the man numactl command.

One of the advantages of using this method is that there is no need to recompile
the program to run with different setting of NUMA configuration. On the other
hand, using the command utility enables less flexibility to the programer compare
to calling the API of ‘libnuma’ library from the program itself.

Controlling NUMA policy using the command utility is usually sufficient in cases
where all SPU threads can run on a single Cell BE processor. If more then one
processor is needed (usually because more then 8 threads are needed) and the
application required dynamic allocation of data, it is usually hard to use only the
command utility. Using ‘libnuma’ library API from the program itself is more
appropriate and allow greater flexibility in this case.

NUMA policy considerations

Choosing an optimal NUMA policy depends upon the application’s data access
patterns and communication methods. We suggest the following guidelines when
the programmer need to decide if using NUMA commands or APl is needed and
which NUMA policy should be implemented:

Chapter 4. Cell BE programming 173



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» Applications that are memory bandwidth-limited should consider allocating
memory on both nodes and exploit the aggregated memory bandwidth. If
possible, partition application data such that CPUs on node 0 primarily
access memory on node 0 only. Likewise, CPUs on node 1 primarily access
memory on node 1 only.

» The programmer should choose a NUMA policy compatible with typical
system usage patterns. For example, if the multiple applications are expected
to run simultaneously, the programmer should not bind all CPUs to a single
node forcing an overcommit scenario that leaves one of the nodes idle. In this
case, it is recommended not to constrain the Linux scheduler with any specific
bindings.

» If the access patterns are not predictable and SPE are allocated on both
nodes, then using a interleaved memory policy will improve overall memory
throughput.

» In Cell BE system node 0 usually have better memory access performance so
it should be preferred over node 1 if possible.

» The programmer should consider the operating system services when
choosing the NUMA policy. For example, if the application incorporates
extensive GbE networking communications, the TCP stack will consume
some PPU resources on node 0 for ethO. In this case. In those specific cases,
it may be advisable to bind the application to node 1.

» The programmer should avoid over committing CPU resources. Context
switching of SPE threads is not instantaneous and the scheduler quanta for
SPE’s threads is relatively large. Scheduling overhead is minimized when
avoiding over-committing resources.

4.4 Inter-processor communication

The Cell BE contains several mechanisms that enable communication between
the PPE and SPEs and between the SPEs to themselves. These mechanisms
are mainly implemented by the MFCs (one instance of MFC exists in every of the
eight SPEs). The code that runs on an SPU may interact with the MFC of the
associated SPE using the channels interface while PPU code or code that runs
on the other SPUs may interact with this MFC using the MMIO interface.

The following chapters discuss four of the primary communication mechanisms
between the PPE and SPEs are:

» 4.4.1, “Mailboxes” on page 176 discuss the mailbox mechanism which allows
to send 32-bits messages to and from the SPE. Should be used mainly to
control communication between an SPE and the PPE or between SPEs to
themselves. other devices. Mailboxes hold

174 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» 4.4.2, “Signal notification” on page 187 discuss the signal notifications
(signaling) mechanism which allows to send 32-bits messages to an SPE.
Used for control communication from the PPE or other SPEs to another SPE.
Can be configured for one-sender-to-one-receiver signalling or
many-senders-to-one-receiver signalling.

» 4.4.3, “SPE events” on page 199 discuss how event may be used to create
asynchronous communication between the processors.

» 4.4.4, “Using atomic unit and the atomic cache” on page 206 discuss how to
implement a fast shared data structure for inter-processor communication
using the Atomic Unit and the Atomic Cache hardware mechanism.

The MFC interfaces and the different programing methods in which a programs
may interact with the MFC are described in Chapter 4.2, “Storage domains,
channels and MMIO interfaces” on page 95. In our chapter we use only the MFC
functions method in order interact with the MFC.

Another mechanism that can be used to apply inter-processor communication is
DMA data transfers. For example, and SPE may compute an output data and use
DMA to transfer this data to the main memory. Later the SPE can notify the PPE
that the data is ready using additional DMA to a notification variable in the
memory which the PPE polls. The available data transfer mechanisms and how
the programmer may initiate them are described in Chapter 4.3, “Data transfer’
on page 109.

Both mailboxes and signals are mechanism that may be use for program control
and sending short messages between the different processors. While those
mechanisms have a lot in common, there are some differences between the two
mechanisms. As general, mailbox implements a queue for sending separate
32-bits messages, while signaling is more similar to interrupts which are may be
accumulated when being written and are reset when being read. Table 4-6
compares between the two mechanisms.

Table 4-6 Comparison between mailboxes and signals

Attribute Mailboxes Signals
Direction One inbound, two outbound Two inbound (toward the SPE).
Interrupts One mailbox can interrupt PPE. Two signal-notification event
Two mailbox-available event interrupts.
interrupts.
Message No Yes, using logical OR mode
accumulation (many-to-one). Other alternative
is overwrite mode (one-to-one),

Chapter 4. Cell BE programming 175



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Attribute Mailboxes Signals

Unique SPU No; programs use channel reads | Yes, ‘sndsig’, ‘sndsigf’, and
commands and writes. ‘sndsigb’ enables and SPU to
send signals to another SPE.

Destructive Reading a mailbox consumes an | Reading a channel resets all 32
read entry. bits to ‘0’.

Channel Indicates number of available Indicates waiting signal.

count entries.

Number Three mailboxes: 4-deep Two signal registers.

incoming, 1-deep outgoing,
1-deep outgoing with interrupt.

4.4.1 Mailboxes

This chapter discuss the mailbox mechanism which is an easy to use mechanism
that enables to send 32-bits messages between the different processors on the
chip (PPE and SPEs).

The following chapters discuss the following topics:

» “Mailbox overview” on page 176 provides an overview on this mechanism and
its hardware implementation.

» “Programing interface for accessing mailboxes” on page 179 describes the
main software interfaces for a SPU or PPU program to use the mailbox
mechanism.

» “Blocking versus non-blocking access to the mailboxes” on page 180
discusses how the programer may implement either blocking or nonblocking
access to the mailbox on either a SPU or PPU program.

» “Practical scenarios and code examples for using mailboxes” on page 181
provides some practical scenarios and techniques for using the mailboxes
and also emphasize some code examples.

Please notice that monitoring the mailbox status may be done asynchronously
using events that are generated whenever a new mailbox was written or read by
external source (e.g. PPE or other SPE). While this chapter do not discuss the
mailbox events, Chapter 4.4.3, “SPE events” on page 199 discuss the events
mechanism in general.

Mailbox overview

Mailboxes is an easy to use mechanism that enables the software to exchange
32-bit messages between the local SPU and the PPE or local SPU and other

176 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

SPEs®. The term local SPU stands for the SPU of the same SPE where the
mailbox is located. The mailboxes are access from the local SPU using the
channel interface and from the PPE or other SPEs using the MMIO interface.

Mailbox mechanism is similar in some sense to the signaling mechanism.
Table 4-6 on page 175 displays a comparison between the two mechanism.

Note: Local SPU access to the mailbox are internal to that SPE and have very
small latency (<=6 cycles for non blocking access). On the other hand, PPE or
other SPEs access to the mailbox are done through the local memory EIB
bus. The result is larger latency and also overloading the bus bandwidth
(especially when polling to wait for mailbox to become available).

The MFC of each SPE contains three mailboxes divided into two categories:

1. Outbound mailboxes: Two mailboxes that are used to send messages from
the local SPE to the PPE or other SPEs:

a. SPU Write Outbound mailbox (SPU_WrOutMbox)
b. SPU Write Outbound Interrupt mailbox (SPU_WrQutIntrMbox)

2. Inbound mailbox: One mailbox that is used to send messages to the local
SPE from the PPE or other SPEs:

c. SPU Read Inbound mailbox (SPU_RdInMbox)

The main attributes of those mailboxes and the differences between outbound
mailboxes and inbound mailbox are summarized in Table 4-7. This table also
describes the differences between accessing the mailboxes from the SPU
programs and accessing them from the PPU other SPEs programs.

8 Mailboxes can also be used as a communications mechanism between SPEs. This is accomplished
by an SPE DMAIng data into the other SPE’s mailbox using the effective addressed problem state

mapping.

Chapter 4. Cell BE programming 177



7575CH_CHIPPGM.fm

Draft Document for Review February 15, 2008 4:59 pm

Table 4-7 Attributes of inbound and outbound mailboxes

Attribute

Inbound mailboxes

Outbound mailboxes

Direction

Messages from the PPE or
another SPEs to the local SPE.

Messages from the local SPE to
the PPE or another SPEs.

Read/Write

» Local SPE reads.
» PPEP writes.

» Local SPE write.
» PPEP reads.

# mailboxes

1

2

# entries

4

1

Counter?

Counts number of valid entries:
» Decremented when SPU

program reads from mailbox.

» Incremented when PPU
programb writes to mailbox.

Counts number of empty entries:

» Decremented when SPU
program writes to mailbox .

» Incremented when PPU
programb reads from
mailbox.

Buffer

A first-in-first-out (FIFO) queue -
SPU program reads the oldest
data first.

A first-in-first-out (FIFO) queue -
SPU program reads the oldest
data first.

Overrun

PPU programb writing new data
when buffer is full overrun the
last entry in this fifo.

SPU program writing new data
when buffer is full blocks till there
is available space in the buffer
(e.g PPEP reads from the
mailbox).

Blocking

» SPU program blocks when
trying to read an empty
buffer and will continues only
when there is a valid entry
(e.g PPEP write to the
mailbox).

» PPU program® never block.
Writing to mailbox when full
overide the last entry and
the PPU immediately
continues.

» SPU program blocks when
trying to write to the buffer
when it is full and will
continues only when there is
an empty entry (e.g PPEP
reads from the mailbox).

» PPU programb never block.
Reading from mailbox when
it is empty returns a in-valid
data and the PPU program
immediately continues.

a. This per-mailbox counter may be read by local SPU program using a separate
channel or by the PPU or other SPUs program using separate MMIO register.
b. Or other SPE that access the mailbox of the local SPE.

178 Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Programing interface for accessing mailboxes
The simplest way to access the mailboxes is through the MFC functions that are
part of SDK package library.

» Local SPU program can access the mailboxes using spu_* mbox functions in
spu_mfcio.h header file.

» PPU program can access the mailboxes using spe_* mbox* functions in
1ibspe2.h header file.
» Other SPUs program may access the mailboxes using DMA functions of

spu_mfcio.h header file which enables to read or write the mailboxes that are
may be mapped to main storage as part of the problem state of local SPU.

The spu_mfcio.h functions are described in SPU Mailboxes chapter in C/C++
Language Extensions for Cell BE Architecture document. The 1ibspe2.h
functions are described in SPE mailbox functions chapter in SPE Runtime
Management library document.

Table 4-7 summarizes the simple functions in those files for accessing the
mailboxes from a local SPU program or from a PPU program.

In addition to the value of the mailboxes messages, the counter that is mentioned
in Table 4-7 can also be read by software using the SPU’s *_stat_* functions of
PPU’s *_status functions.

Table 4-8 MFC functions for accessing the mailboxes

Name SPU code functions > PPU code functions >
(channel interface) % (MMIO interface) %
o 9
m m
SPU write spu_write_out_mbox Yes | spe_out_mbox_read No
outbound
mailbox spu_stat_out_mbox No | spe_out_mbox_status No
SPU write spu_write_out_intr_mbox | Yes | spe_out_intr_mbox_read User
outbound a
int. mailbox
spu_stat_out_intr_mbox No | spe_out_intr_mbox_status No
SPU read spu_read_in_mbox Yes | spe_in_mbox_write User
inbound - -
mailbox spu_stat_in_mbox No | spe_in_mbox_status No
a. A user parameter to this function chooses whether the function is blocking or not
blocking.

Chapter 4. Cell BE programming 179



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

180

In order to access a mailbox of the local SPU from other SPU several steps
should be taken:

1. PPU code map the SPU’s controls area to main storage using 1ibspe2.h file’s
spe_ps_area_get function with SPE_CONTROL_AREA flag set.

2. PPE forward the SPU’s control area base address to another SPU.

3. The other SPU uses ordinary DMA transfers to access the mailbox. Effective
address should be control area base plus offset to specific mailbox register.

Blocking versus non-blocking access to the mailboxes
Using the SDK library functions for accessing the mailboxes (which are
described in chapter “Programing interface for accessing mailboxes”) enables the
programmer to implement either blocking or non blocking mechanisms.

As for the SPU, the instructions to access the mailbox are blocking by nature and
are stalled when the mailbox is non available (empty for read or full for write). The
SDK simply implement those instructions.

For the PPU, the instructions to access the mailbox are nonblocking by nature.
SDK functions provides software abstraction of blocking behavior functions for
some of the mailboxes (which is implemented by polling the mailbox counter till
there is available entries).

In case the programer wants to explicitly read the mailbox status (the counter that
is mentioned in Table 4-7) is can be done by calling *_stat_* functions for SPU
program and *_status functions for PPU program.

Note: Nonblocking approach are slightly more complicated to program but
enables the program to perform other tasks in case the fifo is empty instead
being stalled waiting for a valid entry.

Different programming approaches for performing either blocking or nonblocking
access to the mailbox on a PPU or SPU program are summarized on Table 4-9:

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_CHIPPGM.fm

Table 4-9 Blocking versus nonblocking access to mailboxes - programming approaches

Proc. | Mailbox | Blocking Nonblocking

SPU In Simply read the mailbox using | Before reading the mailbox poll
spu_read_in_mbox function. the counter using

spu_stat_in_mbox function till
fifo is not empty.
Out Simply write to mailbox using | Before writing to mailbox poll the
spu_write_out_mbox function. | counter using
spu_stat_out_mbox function
function till fifo is not full.
Outlintr Write to mailbox using Before writing to mailbox poll the
spu_write_out_intr_mbox counter using
function. spu_stat_out_intr_mbox
function function till fifo is not
full.

PPU In Call spe_in_mbox_write and Call spe_in_mbox_write and set
set ‘behavior’ parameter to ‘behavior’ parameter to
blocking. nonblocking.

Out Not implemented.? Call spe_out_mbox_read
function.
Outlintr Call spe_out_intr_mbox_read | Call spe_out_intr_mbox_read
and set ‘behavior’ parameter and set ‘behavior’ parameter to
to blocking. nonblocking.

a. Programmer should check the function return value to see that the data that was
read it valid.

Practical scenarios and code examples for using mailboxes

When using the mailbox it is important to be aware of the following attributes of
the mailboxe’s access:

» Local SPU access is internal to that SPE and has very small latency (<=6
cycles for non blocking access).

» Local SPU access to not available mailbox (empty for read or full for write) is
blocking. To avoid blocking, the program may first read the counter as

explained below.
» PPE or other SPEs access is done through the local memory EIB bus, so they

have larger latency and also overload the bus bandwidth (especially when
polling the mailbox counter waiting for mailbox to become available).

Chapter 4. Cell BE programming

181



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» PPU or local SPU access to the mailboxes may be either blocking or
nonblocking using SDK library functions, as discussed in Chapter, “Blocking
versus non-blocking access to the mailboxes” on page 180.

The following sections describe different scenarios for using the mailbox
mechanism and provide a mailbox code example.

Using mailbox to notify PPE on data transfer completion

Mailbox may be useful when a SPE need to notify the PPE about completion of
transferring data that was previously computed by the SPE to the main memory.

Such mechanism may be implemented using the following steps:
1. SPU code places computational results in main storage via DMA
2. SPU code waits for the DMA transfer to complete.

3. SPU code writes to an outbound mailbox to notify the PPE that its
computation is complete. This ensures only that the SPE’s LS buffers are
available for reuse but does not guarantee that data has been coherently
written to main storage.

4. PPU code reads the SPE’s outbound mailbox and is notified that computation
is complete.

5. PPU code issue an ‘lwsync’ instruction to be sure that results are coherently
written to memory.

6. PPU code reads the results from memory.

Please notice that in order to implement step 4 the PPU may need to poll the
mailbox status to see if there is a valid data in this mailbox. Doing so is not very
efficient since it cause overhead on the bus bandwidth which may effect other
data transfer on this bus such as SPEs reading from main memory.

Comment: Alternatively, an SPU can notify the PPU that it has completed
computation by using a fenced DMA to write notification to some address in
the main storage. The PPU may poll this area on the memory which may be
local to the PPE in case the data is in the L2 cache so it minimizes the
overhead on the EIB bus and memory subsystem. Example 4-19 on page 128
and the following Example 4-20 and Example 4-21 provide code for such
mechanism.

Using mailbox to exchange parameters between PPE and SPE

Mailbox may be used for any short-data transfer purpose, such as sending of
storage effective addresses from PPE to SPE.

182 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Because the operating system runs on the PPE, only the PPE is originally aware
of the effective addresses of different variables in the program. For example
when the PPE dynamically allocate data buffers or when it maps the SPE’s local
stores or problem state to an effective address on the main storage. The inbound
mailboxes may be use to transfer those addresses to the SPE. Example 4-35 on
page 183 and the following Example 4-36 provides code for such mechanism.

Similarly, any type of function or command parameters may be forwarded from
the PPE to the SPE using this mechanism.

On the other direction, an SPE may use the outbound mailbox to notify the PPE
about a local store offset of some buffer which is located on the local store and
may be later accessed by either the PPE or another SPE. Chapter “Code
example for using mailboxes” provides code example for such mechanism.

Code example for using mailboxes
The code example below covers the following techniques:

» Example 4-35 show the PPU code which access SPEs’ mailboxes using
either non blocking methods for (most of the methods described in the list
above are illustrated) and blocking methods.

This example also shows how to map the control area of the SPEs to the
main storage to enable SPEs to access each other’s mailbox.

» Example 4-36 show the SPU code which access the local mailboxes using
either non blocking methods for (most of the methods described in the list
above are illustrated) and blocking methods. The code also send mailbox to
another SPE’s mailbox.

» The functions who implement the writing to a mailbox of another SPE using
DMA transactions is in Example 4-39 on page 195. The code also contains
functions for reading the status of other SPE’s mailbox

Source code: The code of Example 4-35, Example 4-36 and Example 4-39 is
included in the additional material that is provided with this book. See “Simple
mailbox” on page 615 for more information.

Example 4-35 PPU code for accessing SPEs’ mailboxes

// add the ordinary SDK and C libraries header files...
// take ‘spu_data_t’ structure and ‘spu_pthread® function from
// Example 4-5 on page 90

extern spe_program_handle t spu;

volatile parm_context ctx[2] _ attribute  ((aligned(16)));
volatile spe_spu_control_area_t* mfc_ct1[2];

Chapter 4. Cell BE programming 183



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// main============================================s===ssss=ssss=ssssss
int main()
{

int num, ack;
uint64_t ea;
char str[2][8] = {"0 is up","1 is down"};

for( num=0; num<2; num++) {
// SPE_MAP_PS flag should be set when creating SPE context
data[num].spe_ctx = spe_context_create(SPE_MAP_PS,NULL);

}

// ... Omitted section:
// load the program to the local stores, and run the SPE threads.

// (the entire source code for this example is part of the book’s
// additional material)

// This is also described in 4.1.2, “Task parallelism and managing

SPE threads”

// STEP 0: map SPEs® MFC problem state to main storage (get EA)
for( num=0; num<2; num++) {
if ((mfc_ct1[num] = (spe_spu_control_area_t*)spe_ps_area_get(
data[num].spe_ctx, SPE_CONTROL_AREA))==NULL) {
perror ("Failed mapping MFC control area");exit (1);
}
}
// STEP 1: send each SPE its number using BLOCKING mailbox write
for( num=0; num<2; num++) {

// write 1 entry to in_mailbox

// we don't know if we have availalbe space so use blocking

spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&num,1,
SPE_MBOX_ALL_BLOCKING) ;

}

// STEP 2: send each SPE the EA of other SPE's MFC area and a string
// Use NON-BLOCKING mailbox write after first verifying

// availability of space.

for( num=0; num<2; num++) {

ea = (uint64_t)mfc_ct1[(num==0)?1:0];

184 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// Toop till we have 4 entries available
while(spe_in_mbox_status(data[num].spe ctx)<4){
// PPE can do other things meanwhile before check status again

}

//write 4 entries to in_mbx- we just checked having 4 entries
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&ea,2,
SPE_MBOX_ANY_NONBLOCKING);
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&str[num],2,
SPE_MBOX_ANY_NONBLOCKING);
}

// STEP 3: read acknowledge from SPEs using NON-BLOCKING maibox read
for( num=0; num<2; num++) {
while(!spe_out_mbox_status(data[num].spe_ctx)){
// simulate the first second after the universe was created or
// do other computations before check status again
}s
spe_out_mbox_read(data[num] .spe_ctx, (uint32_t*)&ack, 1);
}

// ... Omitted section:
// waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material)

return (0);

Example 4-36 SPU code for accessing local mailboxes and other SPE’s mailbox

// add the ordinary SDK and C Tibraries header files...
#include "spu_mfcio_ext.h" // the file described in Example 4-39

uint32_t my_num;

// Macro for waiting to completion of DMA group related to input tag:
#define waitag(t) mfc_write tag mask(l<<t); mfc_read tag status all();

int main( )

{
uint32_t data[2],ret, mbx, ea mfc_h, ea mfc_1, tag id;
uintb4_t ea_mfc;

Chapter 4. Cell BE programming 185



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

if ((tag_id= mfc_tag_reserve())==MFC_TAG_INVALID) {
printf("SPE: ERROR can't allocate tag ID\n"); return -1;
}

// STEP 1: read from PPE my number using BLOCKING mailbox read
while( spu_stat_in_mbox()<=0 );
my_num = spu_read_in_mbox();

// STEP 2: receive from PPE the EA of other SPE's MFC and string
/! use BLOCKING mailbox, but to avoid bloking we first read
// status to check that we have 4 valid entries
while( spu_stat_in_mbox()<4 ){
// SPE can do other things meanwhile before check status again

}

ea_mfc_h = spu_read_in_mbox(); // read EA lower bits
ea_mfc_1 = spu_read_in_mbox(); // read EA higher bits

data[0] = spu_read_in_mbox(); // read 4 bytes of string
data[l] = spu_read_in_mbox(); // read 4 more bytes of string

ea_mfc = mfc_hl12ea( ea_mfc_h, ea_mfc_1);

// STEP 3: send my ID as acknowledge to PPE using BLOCKING mbx write
spu_write_out_mbox(my_num+1313000); //add dummy constant to pad MSb

// STEP 4: write message to other SPE's mailbox using BLOCKING write
mbx = my_num + 1212000; //add dummy constant to pad MSh

ret = write_in_mbox( mbx, ea_mfc, tag_id);
if (ret!=1){ printf("SPE: fail sending to other SPE\n");return -1;}

// STEP 5: read mailbox written by other SPE
data[0] = spu_read_in_mbox();

return 0;

186 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4.4.2 Signal notification

This chapter discuss the signal notification mechanism which is an easy to use
mechanism that enables a PPU program or SPU program to signal a program
running on another SPU.

The following chapters discuss the following topics:

» “Signal notification overview” on page 187 provides an overview on this
mechanism and its hardware implementation.

» “Programing interface for accessing signaling” on page 189 describes the
main software interfaces for a SPU or PPU program to use the signal
notification mechanism.

» “Practical scenarios and code examples for using signaling” on page 189
provide some practical scenarios and techniques for using the signal
notification and also emphasize some code examples.

This chapter also contains printing macros for tracing inter-processors
communication, such as sending mailboxes and signaling between PPE and
SPE and SPE and SPE. Those macro can be useful when tracing a flow of a
given parallel program.

Please notice that monitoring the signals status may be done asynchronously
using events that are generated whenever a new signal is set by external source
(e.g. PPE or other SPE). While this chapter do not discuss the signal events,
Chapter 4.4.3, “SPE events” on page 199 discuss the events mechanism in
general.

Signal notification overview

Signal notification is an easy to use mechanism that enables a PPU program to
signal an SPE using 32-bit registers. It also enables a SPU program so signal a
program running on another SPU using the other SPU’s signal mechanism. The
term local SPU is used in this chapter to define the SPU of the same SPE where
the signal register is located.

Each SPE contain two identical signal notification registers named Signal
Notification 1 (SPU_RdSigNotifyl) and Signal Notification 2 (SPU_RdSigNotify?2).

Unlike the mailboxes. the signal notification has only one direction and enables to
send information toward the SPU that resides in the same SPE as the signal
registers (and not vice versus). Programs may access the signals using the
following interfaces:

» Local SPU program reads the signal notification using the channel interface.
» PPU program signals a SPE by writing to it the MMIO interface.

Chapter 4. Cell BE programming 187



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» SPU program signals another SPE using special signaling commands
(‘sndsig’, ‘sndsigf’, and ‘sndsigb’). Those commands are actually
implemented using DMA ‘put’ commands and optionally contain ordering
information (‘f" and ‘b’ suffix in the commands above indicate ‘fence’ and
‘barrier’ respectively).

When the local SPU program reads a signal notification, the value of the signals
register is reset to ‘0’. Reading the signal’'s MMIO (or problem state) register by
the PPU or other SPUs does not reset their value.

Regarding writing of PPU or other SPUs to the signals registers, there are two
different modes that can be configured:

» OR mode (many-to-one): MFC accumulates several write to the
signal-notification register by combining all the values written to this register
using a logical OR operation. The register is reset when the SPU reads it.

» Overwrite mode (one-to-one): writing a value to a signal-notification register
overwrites the value in this register. This mode is actually very similar to using
inbound mailbox and have similar performance.

Configuring signaling mode can be done by the PPU when it creates the
coresponding SPE context.

Note: OR mode allows the signal producers to send their signals at any time
and independently of other signal producers (no synchronization is needed).
When SPU program reads the signal notification register, it becomes aware of
all the signals that have been sent since the most recent read of the register.

Similar to the mailboxes, the signal notification register maintain a counter, which
had different behavior in the signaling case:

» The counter indicates only if there are pending signals (at least one bit set)
and not how many writes to the this register have taken place.

» Reading a value of ‘1’ indicates that there is at least one event pending and
value of ‘0’ indicates that no signals are pending.

» May be read by program running on either the local SPU, PPU or other SPUs.
Regarding the blocking behavior, the accessing the signal notification has the
following characters:

» PPU code writing to the signal register is nonblocking. It may override its
previous value or not depends on the configured mode (OR or overwrite
mode as explained above).

» SPU code writing to signal register of another SPU behaves similar to DMA
‘put’ command and blocks only if the MFC fifo is full.

188 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» Local SPU reading the signal register is blocking when no events are pending.
Reading is completed immediately in case there is at least one pending event.

The similarities and differences between the signal notification and mailbox
mechanism are summarized in Table 4-6 on page 175.

Programing interface for accessing signaling

The simplest way to access the signal notification mechanism is through the
MFC functions that are part of SDK package library.

» Local SPU program can read the local SPE’s signals using spu_read_signal*
and spu_stat_signal* functions in spu_mfcio.h header file for reading the
signals register and the status (counter) respectively.

» Other SPUs’ program can signal other SPU using the functions mfc_sndsig*
(* is ‘b’, '’ or blank) in spu_mfcio.h header file, which enables to signal the
other SPU by doing write operation on its memory mapped problem state.

» PPU program can access the signals using two main functions in 1ibspe2.h
header file. The function spe_signal_write to send a signal to an SPU and
optionally setting SPE_CFG_SIGNOTIFY1_OR flag when creating the SPE
context (spe_context_create function) to enable OR mode.

The spu_mfcio.h functions are described in SPU Signal Notification chapter in
C/C++ Language Extensions for Cell BE Architecture document. The 1ibspe2.h
functions are described in SPE SPU signal notification functions chapter in SPE
Runtime Management library document.

In order to signal local SPU from other SPU several steps should be taken:

1. PPU code map the SPU’s signaling area to main storage using 1ibspe2.h
file’s spe_ps_area_get function with SPE_SIG_NOTIFY_x_AREA flag set.

2. PPE forward the SPU’s signaling area base address to another SPU.

3. Other SPU uses spu_mfcio.hfile’smfc_sndsig function to access the signals.
Effective address should be signaling area base plus offset to specific signal
register.

The programer may take either blocking or nonblocking approach when reading
the signals from the local SPU. The programming methods to do so are similar to
those discuss for the mailboxes in chapter Chapter, “Blocking versus
non-blocking access to the mailboxes” on page 180. However, setting signals
from the PPU program or other SPUs is always nonblocking.

Practical scenarios and code examples for using signaling

Similar to the mailboxes mechanism, local SPU access to the signals notification
is internal to that SPE and have very small latency (<=6 cycles for non blocking

Chapter 4. Cell BE programming 189



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

190

access), and PPE or other SPEs MMIO access to the mailbox are done through
the local memory EIB bus which has larger latency. However, since it is not
common (and usually not useful) to poll the signal notification from the MMIO
side, overloading the bus bandwidth is usually not a significant issue.

Regarding blocking behavior, local SPU reading the signals register when no bits
are set is blocking. To avoid blocking, the program may first read the counter as
explained below. PPE or other SPEs signaling some SPU is always non-blocking.

When using the OR mode the PPE or other SPEs usually don’t need to poll the
signals counter since events are accumulated. Otherwise (overwrite mode) the
signals have similar behavior to inbound mailboxes.

The following two chapters describes two different scenarios for using the signals
notification mechanism. Next, the third chapter provide a signals code example.

Since in overwrite mode the signals behave similar to mailboxes, the scenarios
for using this mode are similar to the described in Chapter, “Practical scenarios
and code examples for using mailboxes” on page 181.

Using signal value as processor ID

This chapter describe one useful scenario for using OR mode. This mode can be
useful when one processor needs to asynchronously send some notification (i.e.
about reaching a certain step in the program) to a SPE and uses the signal value
to identify which processor has sent the signal. In this scenario it is assumed that
a SPE may receive notification from different sources.

Following are suggested steps to implement such mechanism:
» Each processor (PPE, SPE) is assigned with one bit in the signaling register.

» A processor that wants to signal some SPE, sends write to the SPE’s signal
register with the processor’s corresponding is set to 1 and other bits are 0.

» A SPE that reads its signal register check which bits are set. For each bit that
is set, the SPE knows that the corresponding processor has send a signal to
this SPE.

» The SPE that received the signal may then get more information from the
sending processor, for example by reading its mailbox or memory.

Using signal value as event ID

This chapter describe one useful scenario for using OR mode. This mode can be
useful when a single source processor, usually the PPE, needs to
asynchronously send notification about some event (i.e. about the need to
execute some command) to a SPE (or few SPESs). In this scenario there are
several different events in the program and the signal value is used to identify
which event has occurred at this time.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Following are suggested steps to implement such mechanism:
» Each event in the program is assigned with one bit in the signaling register.

» A PPE that wants to signal some SPE about some event write to the SPE’s
signal register with the event’s corresponding bit set to 1 and other bits are 0.

» A SPE that reads its signal register check which bits are set. For each bit that
is set, the SPE knows that the corresponding event occurred and handles it.

Code example for using signals notification
The code example below shows covers the following techniques:

» Example 4-37 show the PPU code which signals a SPE. Since the SPE is
configured to OR mode we use non blocking access.
This example also shows how to map the signaling area of the SPEs to the
main storage to enable SPEs to signal each other.

» Example 4-38 show the SPU code which reads the local signals using either
non blocking methods and blocking methods. The SPUs signals each other in
a loop till they receive asynchronous signal from the PPU to stop.

» Example 4-39 show a SPU code that contains functions who implement both
signaling another SPE. The code also contains functions for writing the other
SPE’s mailbox and reading the mailbox status using DMA transactions.

» Example 4-40 show PPU and SPU printing macros for tracing
inter-processors communication, such as sending mailboxes and signaling
between PPE and SPE and SPE and SPE.

Source code: The code of Example 4-37 through Example 4-40 is included in
the additional material that is provided with this book. See “Simple signals” on
page 616 for more information.

Example 4-37 PPU code for signaling the SPEs

// add the ordinary SDK and C libraries header files...
#include <cbea map.h>

#include <com print.h> // the code from Example 4-40

extern spe_program_handle t spu;

// EA pointer to SPE's singnall and singnal2 MMIO registers

volatile spe_sig notify 1 area t *ea_sigl[2];
volatile spe_sig notify 2 area t *ea_sig2[2];

int main()

Chapter 4. Cell BE programming 191



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

{

int num, ret[2],mbx[2];
uint32_t sig=0x80000000; // bit 31 indicates signal from PPE
uint64_t ea;

for( num=0; num<2; num++) {
// SPE_MAP_PS flag should be set when creating SPE context
data[num].spe_ctx = spe_context_create(SPE_MAP_PS,NULL);

}

// ... Omitted section:
// Toad the program to the Tocal stores. and run the SPE threads

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in TBD_REF: Chapter 4.1.2 Task

parallelism and managing SPE threads

// STEP 0: map SPE's signals area to main storage (get EA)
for( num=0; num<2; num++) {
if ((ea_sigl[num] = (spe_sig_notify 1 area_t*)spe_ps_area_get(
data[num].spe_ctx, SPE_SIG NOTIFY_1 AREA))==NULL){
perror("Failed mapping Signall area");exit (1);
}
if ((ea_sig2[num] = (spe_sig_notify 2 area_t*)spe_ps_area_get(
data[num].spe_ctx, SPE_SIG NOTIFY_2 AREA))==NULL){
perror("Failed mapping Signal2 area");exit (1);
}
}

// STEP 1: send each SPE the EA of the other SPE's signals area
// first time writing to SPE so we know mailbox has 4 entries empty
for( num=0; num<2; num++) {
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&num,1,
SPE_MBOX_ANY_NONBLOCKING);
ea = (uint64_t)ea_sigl[(num==0)?1:0];
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&ea,2,
SPE_MBOX_ANY_NONBLOCKING);

// wait we have 2 entries free and then send the last 2 entries
while(spe_in_mbox_status(data[num].spe ctx)<2);

ea = (uint64_t)ea_sig2[(num==0)?1:0];
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&ea,2,

192 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

SPE_MBOX_ANY_NONBLOCKING);
}

// STEP 2: wait for SPEs to start signaling loop

for( num=0; num<2; num++) {
while(!spe_out_mbox_status(data[num].spe ctx));
spe_out_mbox_read(data[num] .spe_ctx, (uint32_t*)&mbx[num], 1);
prn_p_mbx_s2m(4,1,sig);

}s

// STEP 3: wait for while - let SPEs signal one to another
for( num=0; num<20000000; num++) {

mbx[0] = mbx[0] *2;
}

// STEP 4: send the SPEs a signal to stop

prn_p_sig m2s(4,0,sig);

prn_p_sig m2s(4,1,sig);

ret[0]= spe_signal write(data[0].spe_ctx, SPE_SIG_NOTIFY REG_1,sig);
ret[1]= spe_signal write(data[l].spe_ctx, SPE_SIG_NOTIFY REG_2,sig);

if (ret[0]==-1 || ret[1]==-1){
perror ("Failed writing signal to SPEs"); exit (1);

}

// STEP 5: wait till SPEs tell me that they're done

for( num=0; num<2; num++) {
while(!spe_out_mbox_status(data[num].spe ctx));
spe_out_mbox_read(data[num] .spe_ctx, (uint32_t*)&mbx[num], 1);
prn_p_mbx_s2m(5,num,mbx [num] ) ;

}s

// STEP 6: tell SPEs that they can omplete execution
for( num=0; num<2; num++) {
mbx [num] = “mbx[num] ;
spe_in_mbox_write(data[num].spe_ctx, (uint32_t*)&mbx[num],2,
SPE_MBOX_ANY_NONBLOCKING);
prn_p_mbx_m2s(6,num,mbx [num] ) ;

}

// ... Omitted section:
// waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

Chapter 4. Cell BE programming 193



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

return (0);

Example 4-38 SPU code for reading local signals and signaling other SPE

// add the ordinary SDK and C Tibraries header files...
#include "spu_mfcio_ext.h" // the code from Example 4-39
#include <com print.h> // the code from Example 4-40

#define NUM_ITER 1000

uint32_t num;

// Macro for waiting to completion of DMA group related to input tag:
// 1. Write tag mask. 2. Read status untill all tag’s DMA are completed
#define waitag(t) mfc_write tag mask(l<<t); mfc_read tag status all();

int main( )

{

uint32_t in_sig,out_sig,mbx,idx,i,ea_h,ea 1,tag_id;
uint64 t ea sig[2];

if ((tag_id= mfc_tag_reserve())==MFC_TAG_INVALID) {
printf("SPE: ERROR can't allocate tag ID\n"); return -1;

}

// STEP 1: read from PPE my number using BLOCKING mailbox read
num = spu_read_in_mbox();

idx = (num==0)?1:0;

out_sig = (l<<num);

// STEP 2: receive from PPE EA of other SPE's signal area and string
while( spu_stat_in_mbox()<4 ); //wait till we have 4 entries
for (i=0;i<2;i++){

ea_h = spu_read_in_mbox(); // read EA Tower bits

ea_l = spu_read_in_mbox(); // read EA higher bits

ea_sig[i] = mfc_hl12ea( ea_h, ea 1);

}

// STEP 3: Tell the PPE that we are going to start loopoing
mbx = 0x44332211; prn_s_mbx_m2p(3,num,mbx);
spu_write_out_mbox( mbx );

194 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// STEP 4: Start looping- signal other SPE and read my signal
if (num==0){
write signal2( out_sig, ea_sig[idx], tag_id);
while(1){
in_sig = spu_read_signall();

if (in_sig&0x80000000){ break; } // PPE signals us to stop

if (in_sig&0x00000002){ // receive signal from other SPE
prn_s_sig m2s(4,num,out_sig);
write signal2( out_sig, ea_sig[idx], tag_id);
telsef
printf("}}SPE%d<<NA:  <%08x>\n",num,in_sig); return -1;
}
}

telse{ //num==
while(1){
in_sig = spu_read_signal2();
if (in_sig&0x80000000){ break; } // PPE signals us to stop

if (in_sig&0x00000001){ // receive signal from other SPE
prn_s_sig m2s(4,num,out_sig);
write signall( out_sig, ea_sig[idx], tag_id);

telsef
printf("}}SPE%d<<NA:  <%08x>\n",num,in_sig); return -1;

}

}
}

prn_s_sig_p2m(4,num,in_sig);

// STEP 5: tell tell the PPE that we're done
mbx = 0x11223344*(num+1); prn_s_mbx_m2p(5,num,mbx) ;
spu_write_out_mbox( mbx );

// STEP 6: block mailbox from PPE- to not finish before other SPE
mbx = spu_read_in_mbox(); prn_s_mbx_p2m(5,num,mbx) ;

mfc_tag_release(tag_id);
return 0;

Example 4-39 SPU code for accessing other SPE’s mailbox and signals

spu_mfcio_ext.h =======================s===============================

Chapter 4. Cell BE programming 195



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

#include <spu_intrinsics.h>
#include <spu_mfcio.h>

static uint32_t msg[4] attribute__ ((aligned (16)));

// mailbox status register definitions
#define SPU_IN_MBOX_OFFSET 0x0C // offset from control area base
#define SPU_IN_MBOX_OFFSET_SLOT 0x3 // 16B alignment= (OFFSET&0xF)>>2

// mailbox status register definitions
#define SPU_MBOX_STAT_OFFSET 0x14 // offset from control area base
#define SPU_MBOX_STAT_OFFSET_SLOT Ox1 // 16B alignment= (OFFSET&O0xF)>>2

// signal notify 1 and 2 registers definitions
#define SPU_SIG_NOTIFY_OFFSET 0x0C // offset from signal areas base
#define SPU_SIG_NOTIFY_OFFSET_SLOT 0x3 // 16B alignment (OFFSET&O0xF)>>2

// returns the value of mailbox status register of remote SPE
inline int status_mbox(uint64_t ea_mfc, uint32_t tag_id)
{

uint32_t status[4], idx;

uint64_t ea_stat_mbox = ea_mfc + SPU_MBOX_STAT_OFFSET;

idx = SPU_MBOX_STAT_OFFSET_SLOT;

mfc_get((void *)&status[idx], ea_stat_mbox, sizeof(uint32_t),
tag_id, 0, 0);

mfc_write_tag_mask(l<<tag_id);

mfc_read_tag_status_any();

return status[idx];

}

// returns the status (counter) of inbound mailbox of remote SPE
inline int status_in_mbox(uint64_t ea_mfc, uint32_t tag_id)
{

int status = status_mbox( ea_mfc, tag_id);

status = (status&0x0000ff00)>>8;

return status;

}

// returns the status (counter) of outbound_mailbox of remote SPE
inline int status_out_mbox(uint64_t ea_mfc, uint32_t tag_id)

196 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

{

int status = status_mbox( ea_mfc, tag_id);
status = (status&0x000000ff);
return status;

}

//returns status (counter) of inbound_interrupt_mailbox of remote SPE
inline int status_outintr_mbox(uint64_t ea_mfc, uint32_t tag_id)

{

int status = status_mbox( ea_mfc, tag_id);
status = (status&0xffff0000)>>16;
return status;

}

// writing to a remote SPE’s inbound mailbox
inline int write_in_mbox(uint32_t data, uint64_t ea_mfc,
uint32_t tag_id)

{
int status;
uint64_t ea_in_mbox = ea_mfc + SPU_IN_MBOX_OFFSET;
uint32_t mbx[4], idx;

while( (status= status_in_mbox(ea_mfc, tag_id))<l);

idx = SPU_IN_MBOX_OFFSET_SLOT;
mbx[idx] = data;

mfc_put((void *)&mbx[idx], ea_in_mbox,sizeof(uint32_t),tag_id, 0,0);
mfc_write_tag_mask(l<<tag_id);
mfc_read_tag_status_any();

return 1; // number of mailbox being written

}

// signal a remote SPE’s signall register
inline int write_signall(uint32_t data, uint64_t ea_sigl,
uint32_t tag_id)
{
uint64_t ea_sigl_notify = ea_sigl + SPU_SIG_NOTIFY_OFFSET;
uint32_t idx;

idx = SPU_SIG_NOTIFY_OFFSET_SLOT;
msg[idx] = data;

mfc_sndsig( &msg[idx], ea_sigl notify, tag_id, 0,0);

Chapter 4. Cell BE programming 197



7575CH_CHIPPGM.fm

198

mfc_write_tag_mask(l<<tag_id);
mfc_read_tag_status_any();

return 1; // number of mailbox being written

}

// signal a remote SPE’s signall register

Draft Document for Review February 15, 2008 4:59 pm

inline int write_signal2(uint32_t data, uint64_t ea_sig2, uint32_t

tag_id)
{

uint64_t ea_sig2_notify = ea_sig2 + SPU_SIG_NOTIFY_OFFSET;

uint32_t idx;

idx = SPU_SIG_NOTIFY_OFFSET_SLOT;
msg[idx] = data;

mfc_sndsig( &msg[idx], ea_sig2_notify, tag_id, 0,0);

mfc_write_tag_mask(l<<tag_id);
mfc_read_tag_status_any();

return 1; // number of mailbox being written

Example 4-40 PPU and SPU macros for tracing inter-processor communication

// add the ordinary SDK and C Tibraries header files.

// Printing macros for tracing PPE-SPE and SPE-SPE communication

// Syntax: prn_X_Y_Z2W:

//  X: °p’ when printing from the PPE, s’ printing from SPE

// Y: ‘mbx’ for mailbox, ‘sig’ for signaling

// Z: ‘m’ source is me, ‘s’ source SPE, ‘p’ source PPE
//  W: ‘m’ destination is me, ‘s’ destination SPE, ‘p’ destination PPE

// Paremeters (i,s,m) stands for:

// i: some user-defined index for example step # in program execution

// s: For PPE - # of SPE with-which we communicate,

// For SPE - # of local SPE

// m: message value (mailbox 32b value, signal value)

#define prn_p mbx _m2s(i,s,m) printf("%d)PPE>>SPE%02u:
) PPE<<SPE%02u:
) PPE->SPE%02u:
) PPE<-SPE%02u:

#define prn_p _mbx_s2m(i,s,m) printf("%d
#define prn_p sig m2s(i,s,m) printf("%d
#define prn_p sig s2m(i,s,m) printf("%d

Programming the Cell Broadband Engine: Examples and Best Practices

<%08x>\n",1,s,m);
<%08x>\n",1,s,m);
<%08x>\n",1,s,m);
<%08x>\n",1,s,m);



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

#define prn_s_mbx_m2p(i,s,m) printf("%d{SPE%02u>>PPE: <%08x>\n",i,s,m);
#define prn_s_mbx_p2m(i,s,m) printf("%d{SPE%02u<<PPE: <%08x>\n",i,s,m);
#define prn_s_mbx_m2s(i,s,m) printf("%d{SPE%02u<-SPE: <%08x>\n",i,s,m);
#define prn_s_mbx_s2m(i,s,m) printf("%d{SPE%02u->SPE: <%08x>\n",i,s,m);
#define prn_s_sig m2p(i,s,m) printf("%d{SPE%02u->PPE: <%08x>\n",i,s,m);
#define prn_s_sig p2m(i,s,m) printf("%d{SPE%02u<-PPE: <%08x>\n",i,s,m);
#define prn_s_sig m2s(i,s,m) printf("%d{SPE%02u->SPE: <%08x>\n",i,s,m);
#define prn_s_sig_s2m(i,s,m) printf("%d{SPE%02u<-SPE: <%08x>\n",i,s,m);

4.4.3 SPE events

This chapter discuss the SPE events mechanism that enables a code that runs
on the SPU to trace events which are external to the program execution. SDK
package provide software interface that also enables a PPE program to trace
events that occurred on the SPEs.

The following chapters discuss the following topics:

» “SPE events overview” on page 199 provides an overview on this mechanism
and its hardware implementation.

» “Programing interface for accessing events” on page 201 describes the main
software interfaces for a SPU or PPU program to use the SPE events
mechanism.

» “Practical scenarios and code example for using events” on page 202
provides some practical scenarios and techniques for using the mailboxes
and also emphasize some code examples.

SPE events overview

Events is an SPE mechanism that enables a code that runs on the SPU to trace
events which are external to the program execution. Those event can be set
either internally by the hardware of this specific SPE or due to external events
such as sending mailbox messages of signal notification by the PPE or the
SPEs.

In addition, the SDK package provides software interface that enables a PPE
program to trace events that occurred on the SPEs, and create event handler to
service those events. Please notice that only a subset of four events are
supported by this mechanism. This mechanism is discussed in Chapter,
“Programing interface for accessing events” on page 201.

The main events that may be monitored falls into the following categories:

Chapter 4. Cell BE programming 199



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

MFC DMA: Events related to MFC’s DMA commands. In specific, a code
example for handling ‘MFC direct memory access (DMA) list command
stall-and-notify’ is shown in Example 4-20 on page 129.

Mailbox or signals: External write or read to mailbox or signal notification
registers.

Synchronization events: Events related to multi source synchronization or lock
line reservation (atomic) operation.

Decrementer: events that are set whenever the decrementer’s elapsed time
has expired.

The events are generated asynchronous to the program execution but software
may choose to monitor and correspond to those events either synchronous or
asynchronous:

» synchronous monitoring: program explicitly check the events status in one of

the following ways:

— nonblocking: poll for pending events by testing the events counts in a loop.
— blocking: read the event status which stalls when no events are pending.
asynchronously monitoring: implement an event interrupt handler.

intermediate approach: sprinkle ‘bisled’ instructions, either manually or
automatically using code-generation tools, throughout application code so
that they are executed frequently enough to approximate asynchronous event
detection.

There are four different 32 bits channels that enables an SPU software to
manage the events mechanism. The channels have identical bit definition while
each event is represented by a single bit. The typical steps that a SPE software
should take in order to deals with SPE events are:

1.

Initialize event handling by write to ‘SPU Write Event Mask’ channel and set
the bits that correspond to the events that the program wish to monitor.

Monitor that some events are pending using either synchronous,
asynchronous or intermediate approach as described above.

Recognize which events are pending by reading from the ‘SPU Read Event
Status’ channel and see which bits were set.

Clear events by writing a value to ‘SPU Write Event Acknowledge’ and set the
bit correspond to the pending events in the written value.

Service the events by executing application-specific code for handle the
specific events that are pending.

Similarly to the mailbox or signal notification mechanism, each of those registers
maintains a counter that may be read by the SPU software. The only counter that

200 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

7575CH_CHIPPGM.fm

is usually relevant to the software is the one related to ‘SPU Read Status’
channel which may be read by the software to know how many events are
pending. Reading the counter returns ‘0’ if no enabled events are pending, and it
returns ‘1’ if enabled events have been raised since the last read of the status.

A summery of the four available channels is in Table 4-10:

Table 4-10 SPE event channels

Acknowledgment
(SPU_WrEventAck)

Name RW | Description

SPU Write Event w To enable only the events that are relevant to its operation,
Mask SPU program can initializes a mask value with event bits
(SPU_WrEventMask) set to ‘1’ only for the relevant events

SPU Read Event R Reading this channel reports events that are both pending
Status at the time of the channel read and are enabled (the
(SPU_RdEventStat) corresponding bit is set in ‘SPU Write Event Mask’).
SPU Write Event w Before SPE program services the events reported in ‘SPU

Read Event Status’, it should write a value to the ‘SPU
Write Event Acknowledge’ to acknowledge (clear) the

events that will be processed. Each bit in the written value
acknowledge the corresponding event.

SPU Read Event R
Mask
(SPU_RdEventMask)

Enables the software to read the value that was recently
written to ‘SPU Write Event Mask’.

Programing interface for accessing events
The simplest way to access the events is through the MFC functions that are part
of SDK package library:

» The SPU programer can manages events with the following functions in
spu_mfcio.h header file:

— Enable events using spu_read_event_mask and spu_write_event mask
functions which access ‘Event Mask’ channel

— Monitor events using spu_read_event status and spu_stat_event_status
functions which reads the value and counter of ‘Event Status’ channel.

— Acknowledge events using spu_write_event_ack function which write into
‘Event Acknowledgment’ channel.

— Retrieve which event are pending using MFC_*_EVENT defines (e.g.
MFC_SIGNAL_NOTIFY_1 EVENT and MFC_OUT_MBOX_AVAILABLE_EVENT)

» PPU program can trace the events that are set on the SPE and implemented
an event handler using several functions in libspe library (SPE Runtime
Management, defined in Tibspe2.h header file):

Chapter 4. Cell BE programming 201



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

— spe_event_handler_* functions to create, register, unregister and destroy
the event handler.

— spe_event_wait function to synchronously wait for events. This is a
semi-blocking function - it is stalled till the input timeout parameter expired.

— Use other functions to service the detected event. Depends on the events
the appropriate function should be used (e.g. functions for reading the
mailbox when mailbox related event occurred).

The spu_mfcio.h functions are described in SPU Event chapter in C/C++
Language Extensions for Cell BE Architecture document. The 1ibspe2.h
functions are described in SPE event handling chapter in SPE Runtime
Management library document.

The programer may take either blocking or nonblocking approach when reading
events from the local SPU. The programming methods to do so are similar to
those discussed for the mailboxes in chapter Chapter, “Blocking versus
non-blocking access to the mailboxes” on page 180. However, reading events
form the PPE side is a semi-blocking function which is stalled till the input timeout
parameter expired.

There is not specific mechanism to allow on SPE to trace the events of another,
but it may be possible to implement such mechanism in software. However, we
don’t see such mechanism as practical in most cases.

Practical scenarios and code example for using events

Similar to the mailboxes mechanism, local SPU access to the event channels is
internal to the SPE and has very small latency (<=6 cycles for non blocking
access). PPE or other SPE access to the event registers has higher latency.

Regarding blocking behavior, local SPU reading the events register when no bits
are set is blocking. To avoid blocking, the program may first read the counter as
explained below.

Based on the event that is monitored, the events may be used for the following
scenarios:

» DMA list dynamic updates: Monitor stall-notify-event to update the DMA list
according to the data that was transferred to local store from the main
storage. A code example for such scenario is in Example 4-20 on page 129.

» Profiling or watchdog of SPU program: Use the decrementer to periodically
profile the program or implement a watchdog about the program execution.

Another example scenario for using the SPE events is in Example 4-41 on
page 204, which provide a code example for implementing an event handler on
the PPU.

202 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

SPU as computation server

SPE event may be used to implements mechanism in which the SPU act as a
computation server who execute commands that are generated and forward to it
by the PPU code.

One option to implement it as asynchronous computation server. SPU program
implements asynchronous events handler mechanism for handling incoming
mailboxes from the PPE:

1. SPU code asynchronously wait for inbound mailbox event.

2. PPU code forward to the SPU which commands should be executed (and
maybe some other information) by writing commands to the inbound mailbox.

3. SPU code monitor the pending mailbox event and understand which
command should be executed.

4. Additional information may be forward from the PPU to the SPU using more
mailboxes messages or DMA transfer.

5. SPU process the command.

The SPU side for such mechanism can be implemented as an interrupt (events)
handler as described in Developing a Basic Interrupt Handler chapter in Cell
Broadband Engine Programming Handbook document.

Another option is to implement synchronous computation server on the SPU side
and implement the event handler on the PPU side:

» SPU code synchronously poll and execute the command that are defined in
its inbound mailbox.

» PPU code implement event handler for the SPU events. Whenever PPU
monitors that SPU has read the mailbox it write the next command to the SPU
mailbox.

“PPU code example for implementing SPE events handler’ suggest how to
implement such event handler on the PPU.

The second synchronous computation server may have advantages when
compared to the asynchronous version since it allows overlapping between
different commands as PPU can write to SPU the next command in the same
time SPU is working on the current command.

Please notice that there is a large latency between he generation of the SPE
event till the execution of corresponding PPU event handler (which involves
running some kernel functions). For the reason, only if the delay between one
command to another is large, then using the second synchronous computation
server make since and provides good performance results.

Chapter 4. Cell BE programming 203



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

PPU code example for implementing SPE events handler

This chapter demonstrates how a PPU code may implement handler for SPE
events. The code contains a simplified version of the PPU program for
implementing the synchronous computation server that is described in Chapter ,
“SPU as computation server” on page 203.

Please notice that there is a large latency between he generation of the SPE
event till the execution of corresponding PPU event handler (roughly 100K
cycles) since it involves running some kernel functions.

Example 4-41 contains the corresponding PPU code that creates and registers
an event handler for monitoring whenever the inbound mailbox is not full
anymore. Any time the mailbox is not full, which indicates that the SPU has read
a command from it, the PPU puts new commands in this mailbox.

Please notice that the example aims only to demonstrate how to implement PPE
handler for SPE events and uses the event of SPE read from inbound mailbox
only as an example. While supporting only this type of event may not always be
practical, it can be easily extended to support few different types of other events.
For example, it can support also event indicating that an SPE has stopped
execution, PPE-initiated DMA operations have completed, or SPE has written to
the outbound mailbox. a callback to the PPE-side of the SPE thread (stop and
signal mechanism) as described in PPE-assisted library facilities chapter in SPE
Runtime Management library document.

The SPU code is not shown, but at generally it should include a simple loop that
reads coming message from the mailbox and process them.

Source code: The code of Example 4-41 is included in the additional material
that is provided with this book. See “PPE event handler” on page 616 for more
information.

Example 4-41 Event handler on the PPU

// include files....
#include <com print.h> // the code from Example 4-40

#define NUM_EVENTS 1
#define NUM_MBX 30

// take ‘spu_data_t® structure and ‘spu_pthread® function from
// Example 4-5 on page 90

int main()

{

204 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

int i, ret, num_events, cnt;

spe_event_handler_ptr_t event_hand;

spe_event_unit_t event_uni, pend_events[NUM_EVENTS];
uint32_t mbx=1;

data.argp = NULL;

// SPE_EVENTS_ENABLE flag should be set when creating SPE thread
// to enable events tracing
if ((data.spe_ctx = spe_context_create(SPE_EVENTS_ENABLE,NULL))
==NULL) {
perror("Failed creating context"); exit(1);

}

// create and register handle event handler

event_hand = spe_event_handler_create();

event_uni.events = SPE_EVENT_IN_MBOX;

event_uni.spe = data.spe_ctx;

ret = spe_event_handler_register(event_hand, &event_uni);

// more types of events may be registered here

// load the program to the local stores, and run the SPE threads.
if (!(program = spe_image_open("spu/spu"))) {
perror("Fail opening image"); exit(1);

}

if (spe_program_load (data.spe_ctx, program)) {
perror("Failed loading program"); exit(1);

}

if (pthread_create (&data.pthread, NULL, &spu_pthread, &data)) {
perror("Failed creating thread"); exit(1);

}

// write 4 first messages to make the mailbox queue full
for (mbx=1; mbx<5; mbx++) {

prn_p_mbx_m2s (mbx,0,mbx) ;

spe_in_mbox_write(data.spe_ctx, &mbx,1,SPE_MBOX_ANY_BLOCKING);
}

// loop on all pending events
for ( ; mbx<NUM_MBX; ) {
// wait for events to be set
num_events =spe_event_wait(event_hand,pend_events,NUM_EVENTS,-1);

Chapter 4. Cell BE programming 205



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// few events were set - handle them
for (i = 0; i < num_events; i++) {
if (pend_events[i].events & SPE_EVENT_IN_MBOX) {

// SPE read from mailbox- write to mailbox till it is full
for (cnt=spe_in_mbox_status(pend_events[i].spe);cnt>0;
cnt--){
mbx++;
prn_p_mbx_m2s (mbx,0,mbx) ;
ret = spe_in_mbox_write(pend_events[i].spe, &mbx,1,
SPE_MBOX_ANY_BLOCKING) ;

}

//if we register more types of events- we can handle them here

}
}

// wait for all the SPE pthread to complete
if (pthread_join (data.pthread, NULL)) {
perror("Failed joining thread"); exit (1);

}

spe_event_handler_destroy(event_hand); //destroy event handle

// destroy the SPE contexts
if (spe_context_destroy( data.spe_ctx )) {
perror("Failed spe_context_destroy"); exit(l);

}

return (0);

4.4.4 Using atomic unit and the atomic cache
This chapter discuss how to implement a fast shared data structure for
inter-processor communication using the Atomic Unit and the Atomic Cache
hardware mechanism.

The following chapters discuss the following topics:

206 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» “Atomic unit and the atomic cache overview” on page 207 provides an
overview on this mechanism.

» “Programing interface for accessing atomic unit and cache” on page 207
describes the main software interfaces for a SPU or PPU program to use the
atomic unit and cache mechanism.

» “Code example for using atomic unit and cache” on page 209 provides a code
example for using the atomic unit and cache.

Atomic unit and the atomic cache overview

All the atomic operations supported by the SPE are implemented by a specific
Atomic Unit inside each MFC, which contains a dedicated local cache for cache
line reservations. This cache is called the Atomic Cache.

The Atomic Cache has a total capacity of six 128-byte cache lines, of which four
are dedicated to atomic operations.

When all the SPEs and the PPE perform atomic operations on a cache line with
identical Effective Address, and therefore a reservation for that cache line is
present in at least one of the MFC units, the cache snooping and update
processes are performed by transferring that cache line contents to the
requesting SPE or PPE over the Element Interconnect Bus, without requiring a
read/write to main system memory.

This constitutes effectively a hardware support for very efficient atomic
operations on shared data structures consisting of up to 512 bytes divided in four
128-bytes blocks mapped on a 128-bytes aligned data structure in the SPES'
Local Store, which can be effectively used as a fast broadcast inter-processor
communication system.

The approach to exploiting this facility is to extend the principles behind the
handling of a mutex lock or an atomic addition, ensuring that the operations
involved affect always the same four cache lines.

Programing interface for accessing atomic unit and cache
Two programing methods are available to exploit this functionality:

1. The simplest method involves using two procedures on both SPU and PPU:
atomic_read and atomic_set. These procedures provide access to individual
shared 32 bits variables, which can be atomically set to specific values, or
atomically modified by simple arithmetic operations using atomic_add,
atomic_inc, and atomic_dec.

Those atomic procedures are part of ‘sync’ library that is delivered with
SDK3.0 and is implemented using more basic reservation related

Chapter 4. Cell BE programming 207



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

instructions. This library is further dicussed in Chapter 4.5.3, “Using sync
library facilities” on page 234.

. The more powerful method is to allow multiple simultaneous atomic updates

to a shared structure, also using more complex update logic. The size of the
shared variable can be up to the four lines of 128 bytes atomic cache
(aasuming no other mechanism uses this cache).

In order to use this facility the same sequence of operations required to
handle a shared lock is performed using atomic instructions as described
below.

The sequence of operations to be performed in the SPU program in order to set a
lock on a shared variable is:

1.

Perform the reservation for the cache line designated to contain the part of
the shared data structure to be updated using mfc_get1Tar. This operation
triggers the data transfer from the Atomic Unit containing the most recent
reservation or from the PPU cache to the requesting SPE's Atomic Unit over
the Element Interconnect Bus.

. The data structure mapped in the SPU Local Store now contains the most

up-to-date values, thus the code can copy the values to a temporary buffer
and update the structure with modified values according with the program
logic.

Attempt the conditional update for the updated cache line using mfc_putlic,
and if unsuccessful repeat the process from step 1.

Upon successful update of the cache line the program can continue having
both the previous structure values contained in the temporary buffer, and the
modified values in the Local Store mapped structure.

The sequence of operations to be performed in the PPU program in order to set a
lock on a shared variable is:

1.

3.

Perform the reservation for the cache line designated to contain the part of
the shared data structure to be updated using __ Twarx or __Tdarx. This
operation triggers the data transfer from the Atomic Unit containing the most
recent reservation to the PPU cache over the Element Interconnect Bus.

The data structure contained at the specified Effective Address, which resides
in the PPU cache, now contains the most up-to-date values, thus the code
can copy the values to a temporary buffer and update the structure with
modified values according with the program logic.

Attempt the conditional update for the updated cache line using __stwcx or
__stdcx, and if unsuccessful repeat the process from step 1.

208 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4. Upon successful update of the cache line the program can continue having
both the previous structure values contained in the temporary buffer, and the
modified values in the structure at the specified Effective Address.

A fundamental difference between the PPE and SPE behavior in managing
atomic operations is worth noting: while both use the cache line size (128 bytes)
as the reservation granularity, the PPU instructions operate on a maximum of 4
bytes (__Twarx and __ stwcx) or 8 bytes (__1darx and __stdcx) at once, whereas
the SPE atomic functions update the entire cache line contents.

More details on how to use the atomic instructions on the SPE (mfc_get1lar and
mfc_putllc) and on the PPE (__Twarx, _ ldarx, _ stwcx, and __stdcx) is in
Chapter 4.5.2, “Atomic synchronization” on page 229.

Provided the Atomic Cache in one of the MFC units or the PPE cache always
holds the desired cache lines before another SPE or the PPE requests a
reservation on those lines, the data refresh relies entirely on the internal data
bus, which offers a very high performance.

Because the libsync synchronization primitives also use the cache line
reservation facility in the SPE's MFC, special care must be used to avoid conflicts
that may occur when simultaneously exploiting manual usage of the Atomic Unit
and other atomic operations provided by libsync.

Code example for using atomic unit and cache

This chapter provides a code example which demonstrates how to use the
atomic unit and atomic cache to communicate between the SPEs. The code
example shows how to use the atomic instructions on the SPEs (nfc_getllar
and mfc_put11c) to synchronize the access some shred structure.

Example 4-42 shows a PPU code which intiates the shared structure, runs the
SPE threads and when the threads complete it reads the shared variable. No
atomic access ot this structure is done by the PPE.

Example 4-43 show the SPU code which make use of the atomic instructions to
synchronize the access to the shared variables between the SPEs.

Example 4-42 PPU code for using atomic unit and cache

// add the ordinary SDK and C libraries header files...
// take ‘spu_data_t’ structure and ‘spu_pthread® function from
// Example 4-5 on page 90

#define SPU_NUM 8

Chapter 4. Cell BE programming 209



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

spu_data_t data[SPU_NUM];

typedef struct {

int processingStep; // contains the overall workload processing step
int exitSignal; // variable to signal end of processing step
uint64_t accumulatedTime[8]; // contains workload dynamic execution
// statistics (max. 8 SPE)
int accumulatedSteps[8];
char _dummyAlignment[24]; // dummy variables to set the structure
// size equal to cache line (128 bytes)

} SharedData_s;

// Main memory version of the shared structure
// size of this structure is a single cache line
static volatile SharedData_s SharedData _ attribute__ ((aligned(128)));

int main(int argc, char *argv[])

{

int i;
spe_program_handle_t *program;

// Initialize the shared data structure
SharedData.exitSignal = 0;
SharedData.processingStep = 0;

for( i =0 ; i < SPUNUM ; ++i ) {
SharedData.accumulatedTime[i] = 0;
SharedData.accumulatedSteps[i] = 0;
data[i].argp = (void*)&SharedData;
data[i].spu_id = (void*)i;

}

// ... Omitted section:

// creates SPE contexts, load the program to the local stores,

// run the SPE threads, and waits for SPE threads to complete.

// (the entire source code for this example is part of the book’s
// additional material).

// This subject of is also described in TBD_REF: Chapter 4.1.2 Task

parallelism and managing SPE threads

// Output the statistics
for( i = 0; i < SPU_NUM ; ++i) {

210 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

printf("SPE %d - Avg. processing time (decrementer steps):
%11d\n", i, SharedData.accumulatedTime[i] /
SharedData.accumulatedSteps[i]);

}

return (0);

Example 4-43 SPU code for using atomic unit and cache

// add the ordinary SDK and C libraries header files...
Same ‘SharedData_s’ structure definition as in Example 4-42

// local version of the shared structure
// size of this structure is a single cache line
static volatile SharedData s SharedData _ attribute  ((aligned(128)));

// effective address of the shared sturture
uint64_t SharedData ea;

// argp - effective address pointer to shared structure in main memory
// envp - spu id of the spu
int main( uint64 t spuid , uint64 t argp, uint64 t envp )
{
unsigned int status, t start, t_spu;
int exitFlag = 0, spuNum = envp, i;
SharedData ea = argp;

// Initialize random number generator for fake workload example
srand( spu_read_decrementer() );

do{
exitFlag = 0;

// Start performace profile information collection
spu_write_decrementer(Ox7fffffff);
t start = spu_read decrementer();

// Data processing here

/...

// Fake example workload:

Chapter 4. Cell BE programming 211



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// 1) The first random number < 100 ends first step of the

// process

// 2) The first number < 10 ends the second step of the process
// Different SPEs process a different amount of data to generate
// different execution time statistics.

// The processingStep variable is shared, so all the SPEs will
// process the same step until one encounters the desired result
// Multiple SPEs can reach the desired result, but the first one
// to reach it will trigger the advancement of processing step

switch( SharedData.processingStep ) {
case 0:
for( i =0 ; i < (spuNum * 10) + 10 ; ++i ){
if( rand() <= 100 ){ //found the first result
exitFlag = 1;
break;
}
}

break;

case 1:
for( i =0 ; i < (spuNum * 10) + 10 ; ++i ){
if( rand() <= 10 ){ // found the second result
exitFlag = 1;
break;

}

break;

}

// End performance profile information collection
t_spu = t_start - spu_read_decrementer();

/...

// Because we have statistics on all the SPEs average workload
// time we can have some inter-SPE dynamic load balancing,

// especially for workloads that operate in pipelined fashion
// using multiple SPEs

do{
// get and lock the cache 1ine of the shared structure
mfc_getllar((void*)&SharedData, SharedData ea, 0, 0);
(void)mfc_read_atomic_status();

// Update shared structure
SharedData.accumulatedTime[spuNum] += (uint64_t) t_spu;

212 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

SharedData.accumulatedSteps [spuNum]++;

if( exitFlag ){
SharedData.processingStep++;
if(SharedData.processingStep > 1)
SharedData.exitSignal = 1;

}

mfc_putllc((void*)&SharedData, SharedData ea, 0, 0);
status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

}while (status);
}while (SharedData.exitSignal == 0);

return 0;

4.5 Shared storage synchronizing and data ordering

While the Cell BE processor executes instructions in program order, it loads and
stores data using a “weakly” consistent storage model. This storage model
allows storage accesses to be reordered dynamically, which provides an
opportunity for improved overall performance and reduced effect of memory
latency on instruction throughput.

This model puts a lot of responsibility on the programmer which needs to
explicitly order accesses to storage using special synchronization instruction,
whenever it is needed that stores occur in the program order. Lack of doing so
correctly may result in difficult to debug real time bugs. Program may run
correctly on one system and fail on another, or run correctly on one execution
and fail on another on the same system.

On the other hand, over usage of those synchronization instruction may
significantly reduce the performance as they mostly take a lot of time to
complete.

In this chapter we discuss the Cell BE storage model as well as software utilities
to control the data transfer ordering. From the reasons mentioned above it is
important to understand this topic in order to get efficient and correct results.
Further reading on this topic is on Shared-Storage Synchronization chapter in
Cell Broadband Engine Programming Handbook document.

Chapter 4. Cell BE programming 213



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The following chapters discuss the following issues:

»

“Shared Storage model” on page 216 discuss the Cell BE shared storage
model and how the different components on the system may force ordering
between their data transfers using special ordering instructions. The chapter
contains three different sections:

— “PPE ordering instructions” discuss how a code that runs the PPU may
order the PPE data transfers on the main storage with respects to all other
elements in the system (e.g. other SPEs).

— “SPU ordering instructions” discuss how the code that runs the SPU to
order SPU data access to the LS with respects to all other elements that
may access it, such as the MFC and other elements in the system that
access the LS through the MFC (e.g. PPE, other SPESs). Also synchronize
the access to the MFC channels.

— “MFC ordering mechanisms” discuss the MFC ordering mechanism Those
instructions are similar to PPU ordering instructions but from the SPU side
as they enables the SPU code to order SPE data transfers on the main
storage (done by the MFC) with respects to all other elements in the
system (e.g. PPE and other SPEs).

“Atomic synchronization” on page 229 discuss instructions that enables the
different components on the Cell BE chip to synchronization atomic access to
some shared data structures.

“Using sync library facilities” on page 234 describe the sync library which
provide more high level synchronization functions (based on the instructions
mentioned above). The supported C functions closely match those found in
current traditional operating systems such as mutex, atomic increment and
decrements of variables and conditional variables.

“Practical examples using ordering and synchronization mechanisms” on
page 235 describe some specific useful real-life scenarios for using the
ordering and synchronization instructions that are discussed in previous
chapters.

Table 4-11 on page 215 summarizes the effects of the different ordering and
synchronization instructions, that are discussed on all other chapters, on three
storage domains - main storage, local store and channels interface.

It shows effects of instructions issued by different components - the PPU code,
the SPU code, and the MFC. Regarding the MFC, the intention here is for data
transfers are executed by the MFC following commands that were issued toward
the MFC by either the SPU code (using the channel interface) or PPU code
(using MMIOQ interface).

214 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

Table 4-11 Effects of Synchronization on Address and Communication Domains

7575CH_CHIPPGM.fm

1

Issuer| Instruction, Main-Storage Domain LS Domain? Channel
Command, Domain®
Fagiliit Accesses by PPE | Accesses ||Accesses|Accesses|Accesses||Accesses
y
- by All by by by All by
Issuing Both Other Issuing | Issuing Other Issuing
Thread | Threads Processor|| SPU SPU’s |Processo|| SPU
Elements MFC r
and Elements
Devices and
Devices
PPU sync4 all accesses Unreliable. Use MFC
Multisource
Synchronization
Facility®
Iwsync® accesses to
memory-coherence-
required locations
eieio accesses accesses Unreliable. Use MFC
to to Multisource
caching-i caching-in Synchronization
nhibited hibited Facility5
and and
guarded guarded
locations locations
isync instruction fetches
SPU |sync all accesses all
accesses
dsync load and |all accesses
store
accesses
syncc all accesses

1. Gray shading in a table cell means that the instruction, command, or facility has no effect on
the referenced domain.

2. The LS of the issuing SPE.

3. The channels of the issuing SPE.

4. This is the PowerPC sync instruction with L = ‘0’.

5. These accesses can exist only if the LS is mapped by the PPE operating system to the
main-storage space. This can only be done if the LS is assigned caching-inhibited and guarded
attributes.

6. This is the PowerPC sync instruction with L = “1’.

Chapter 4. Cell BE programming 215



7575CH_CHIPPGM.fm

Table 4-11 Effects of Synchronization on Address and Communication Domains

Draft Document for Review February 15, 2008 4:59 pm

1

Issuer| Instruction, Main-Storage Domain LS Domain? Channel
Command, Domain®
Fa(c:)i:ity Accesses by PPE | Accesses ||Accesses|Accesses|Accesses||Accesses
- by All by by by All by
Issuing | Both Other || Issuing | Issuing | Other || Issuing
Thread | Threads Processor|| SPU SPU’s |Processo|| SPU
Elements MFC r
and Elements
Devices and
Devices
MFC |mfcsync all Unreliable. Use MFC
accesses Multisource
— Synchronization
mfceieio accesses Facility
to
caching-in
hibited
and
guarded
locations
barrier all
accesses
<f>, <b> all
accesses
for the tag
group
MFC all all accesses
Multisource accesses
Synchronizati
on Facility

ok wn

1. Gray shading in a table cell means that the instruction, command, or facility has no effect on
the referenced domain.

The LS of the issuing SPE.

The channels of the issuing SPE.
This is the PowerPC sync instruction with L = ‘0’.
These accesses can exist only if the LS is mapped by the PPE operating system to the
main-storage space. This can only be done if the LS is assigned caching-inhibited and guarded
attributes.
6. This is the PowerPC sync instruction with L = ‘1’

4.5.1 Shared Storage model

Unlike the in-order execution of instructions in Cell BE, the processor loads and
stores data using a weakly consistent storage model. This means that the order
in which any following three are executed might be different from each other:

216

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» Order of any processor element (PPE or SPE) perform storage accesses.

» Order in which those accesses are performed with respect to another
processor element.

» Order in which those accesses are performed in main storage.

In order to ensure that accesses to shared storage are performed in program
order, software must place memory-barrier instructions between storage
accesses.

The term storage access means an access to main storage caused by a load, a
store, a direct memory access (DMA) read, or a DMA write. There are two orders
to consider:

» Order of instructions execution. Cell BE is in-order machine, which means
that from the programmer viewpoint it appears that the instructions are
executed in the order specified by the program.

» Order shared-storage accesses. The order in which shared-storage accesses
are performed might be different from both program order and the order in
which the instructions that caused the accesses are executed.

PPE ordering instructions

PPU ordering instructions enable the code that runs the PPU to order the PPE
data transfers on the main storage with respects to all other elements in the
system (e.g. other SPEs). Ordering of storage accesses and instruction
execution may be explicitly controlled by the PPE program using barrier
instructions. These instructions can be used between storage-access
instructions to define a memory barrier that divides the instructions into those
that precede the barrier instruction and those that follow it.

PPE supported barrier instructions are defined as intrinsics in ppu_intrinsics.h
header file so the programmer can easily use them in any C code application.
There are two types of such instruction - storage barriers and instruction barriers
as described in Table 4-12.

Table 4-12 PPE batrrier intrinsics

Intrinsic Description Usage

Storage Barriers

Chapter 4. Cell BE programming 217




7575CH_CHIPPGM.fm

218

Draft Document for Review February 15, 2008 4:59 pm

that all main-storage accesses caused by
instructions proceeding the ‘eieio’ have
completed, with respect to main storage,
before any main-storage accesses caused
by instructions following the ‘eieio’. The
eieio instruction does not order accesses
with differing storage attributes. For
example, if an eieio is placed between a
caching-enabled store and a
caching-inhibited

Intrinsic Description Usage

__sync() Known as the heavyweight sync, ensures | To ensure that the results
that all instructions preceding the sync of all stores into a data
appear to have completed before the sync | structure, caused by store
instruction completes, and that no instructions executed in a
subsequent instructions are initiated until critical section of a
after the sync instruction completes. This | program, are seen by other
does not mean that the previous storage processor elements before
accesses have completed before the the data structure is seen
‘sync’ instruction completes. as unlocked.

__lwsync() Also known as light weight sync, creates When ordering is required
the same barrier as the sync instruction for | only for coherent memory,
storage accesses that is memory because it executes faster
coherence. than ‘sync’.

Therefore, unlike ‘sync’ instruction, it
orders only PPE’s main-storage accesses
and has no effect on the main-storage
accesses of other processor elements.
__eieio() Enforce in-order execution of /O means Managing shared data

structures, accessing
memory-mapped I/O
(such as SPEs MMIO
interface), and preventing
load or store combining.

Instruction Barrier

__isync()

ensures that all PPE instructions
proceeding the isync are completed
before isync is completed. causes issue
stall and blocks all other instructions from
both PPE threads until the isync
instruction completes.

In conjunction with
self-modifying PPU code,
executed after an
instruction is modified and
before it is executed. Also
may be used during
context switching when the
MMU translation rules are
being changed.

Table 4-13 summarizes the use of the storage barrier instructions for two
common types of main-storage memory:

Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» System memory: The coherence main memory of the system. The XDR main
memory falls into this category and so are the local stores when they are
accessed from the EIB bus (by the PPE or SPEs other then theirs).

» Device memory: Memory that is caching-inhibited and guarded. In Cell a BE
system it is typical of memory-mapped I/O devices such as the DDR that is
attached to the south bridge. Mapping of SPEs’ LS to main storage is
caching-inhibited but not guarded.

In these tables, “yes” (and “no”) mean that the instruction performs (or does not
perform) a barrier function on the related storage sequence, “rec” (stands for
“recommended”) means that the instruction is the preferred one, “not rec” means
that the instruction will work but is not the preferred one, and “not req” (stands for
“not required”) and “no effect” mean the instruction has no effect.

Table 4-13 Storage-barrier ordering of accesses to system memory and device memory

Storage-Access System memory Device memory
Instruction — —
Sequence sync | lwsync eieio sync lwsync eieio

load-barrier-load yes rec no affect yes no affect yes

load-barrier-store yes rec no affect yes no affect yes
store-barrier-load yes no no affect yes no affect yes
store-barrier-store yes rec notrec | notreq? | no affect | not req®

a. Two stores to caching-inhibited storage are performed in the order specified by
the program, regardless if they are separated by a barrier instruction or not

SPU ordering instructions

SPU ordering instructions enable the code that runs the SPU to order SPU data
access to the LS with respects to all other elements that may access it, such as
the MFC and other elements in the system that access the LS through the MFC
(e.g. PPE, other SPEs). They also synchronize the access to the MFC channels.
An LS can experience asynchronous interaction from the following streams that
access it:

» Instruction fetches by the local SPU

» Data loads and stores by the local SPU

» DMA transfers by the local MFC or another SPE’s MFC

» Loads and stores in the main-storage space by other processor elements.

With regard to an SPU, the Cell BE’s in-order execution model guarantees only
that SPU instructions that access that SPU’s LS appear to be performed in

Chapter 4. Cell BE programming 219



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

220

program order with respect to that SPU but not necessarily with respect to
external accesses to that LS or with respect to the SPU’s instruction fetch.

Hence, from architecture point of view, in case an SPE write some data to the LS
and immediately later generate MFC ‘put’ command that read this data (and
transfer it to the main storage), then without synchronization instructions it is not
guaranteed that the MFC will read the latest data (since it is not guaranteed that
MFC reading the data is perform after the SPU writing the data). However, from
practical point of view there is no need to add the synchronization command to
guarantee this ordering since executing the six commands for issuing the DMA
always takes more then executing the former write to the LS.

From the programmer point of view, it means that in the absence of external LS
writes, an SPU load from an address in its LS returns the data written by that
SPU’s most-recent store to that address. However, this statement is not
necessarily true for an instruction fetch from that address which may not
guaranteed to return that recent data. The following statement regarding
instruction fetch effect only cases in of self-modifying code.

Please notice that in case the LS and MFC resources of some SPE (which are
mapped to the system-storage address space) are accessed by software running
on the PPE or other SPEs, it is not guaranteed that two accesses that are made
to two different are ordered, unless some synchronization command (e.g. ‘eieio’
or ‘sync’ are explicitly executed by the PPE or other SPEs, as explained in “PPE
ordering instructions” on page 217.

In the descriptions bellow, we use the terms “SPU load” and “SPU store” to
described accesses by the same SPU that executes the synchronization
instruction.

Several practical example for using the SPU ordering instructions are discussed
in Synchronization and Ordering chapter of Synergistic Processor Unit
Instruction Set Architecture Version 1.2 document. In specific sub-chapter
External Local Storage Access which demonstrates how those instructions may
be used when processor which is external to the SPE (e.g. PPE) access the LS
for example in order to write some data to this LS and later notify the code that
runs on the associated SPU that the writing the data is completed by writing to
another address in this same LS.

The SPU instruction set provides three synchronization instructions. The easiest
way to use those instructions is through intrinsics and in order to do so the
programmer should include the spu_internals.h header file. A brief description
of these intrinsics and their main usage is summarized in Table 4-14.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm

Table 4-14 SPU ordering instructions

7575CH_CHIPPGM.fm

Intrinsic

Description

Usage

spu_sync

‘sync’ (synchronize) instruction
causes the SPU to waits until all
pending instructions of loads and
stores to LS and channel
accesses have been completed
before fetching the next
instruction.

This instruction is most often used in
conjunction with self-modifying SPU code.
It must be used before attempting to
execute new code that either arrives
through DMA transfers or is written with
store instructions.

spu_dsync

‘dsync’ (synchronize data)
instruction ensures that data has
been stored in the LS before the
data becomes visible to the local
MFC or other external devices.

Architecturally, Cell BE DMA transfers may
interfere with store instructions and the
store buffer, so ‘dsync’ meant to ensure that
all DMA store buffers are flushed to the LS
(i.e., all previous stores to LS will be seen by
subsequent LS accesses.

However, current Cell implementation does
not require ‘dsync’ instruction for doing so
as it handle it by HW.

spu_sync_c

‘syncc’ (synchronize channel)
ensures channel synchronization
followed by the same
synchronization provided by the
‘sync’ instruction.

To ensure that the effects on SPU state
caused by prior write to some nonblocking
channel are propagated and influence the
execution of the following instructions.

The instructions have both coherency and instruction-serializing effects which
are summarized Table 4-15.

Table 4-15 Effects of the SPU ordering instructions

Intrinsic

Ensures these coherency
effects

Forces this instruction serialization
effects

spu_dsync

1. Subsequent external read
access data written by
prior SPU stores.

2. Subsequent SPU loads
access data written by
external writes.

» Forces SPU load and SPU store access

of LS due to instructions before the
’dsync’ to be completed before
completion of "dsync’.

» Forces read channel operations due to

instructions before the ’dsync’ to be
completed before completion of the
’dsync’.

» Forces SPU load and SPU store access

of LS due to instructions after the 'dsync’
to occur after completion of the ’dsync’.

» Forces read-channel and write-channel

operations due to instructions after the
’dsync’ to occur after completion of the
’dsync’.

Chapter 4. Cell BE programming 221




7575CH_CHIPPGM.fm

Draft Document for Review February 15, 2008 4:59 pm

3.

spu_dsync

Subsequent instruction
fetches access data
written by prior SPU
stores and external writes.

Intrinsic Ensures these coherency | Forces this instruction serialization
effects effects
spu_sync » Effects 1 and 2 of » All access of LS and channels due to

instructions before the 'sync’ to be
completed before completion of 'sync’.
All access of LS and channels due to
instructions after the ’sync’ to occur after
completion of the ’sync’.

spu_sync_c >

Effects 1 and 2 of
spu_dsync

Effects 3 of spu_sync
Subsequent instruction
processing is influenced
by all internal execution
states modified by
previous write instructions
to some channel.

All access of LS and channels due to
instructions before the ‘syncc’ to be
completed before completion of ‘syncc’.
All access of LS and channels due to
instructions after the ‘syncc’ to occur
after completion of the ‘syncc’.

Table 4-16 shows which SPU synchronization instructions are required between
LS writes and LS reads to ensure that reads access data written by prior writes
as it highlights the differences between different initiators:

Table 4-16 Synchronization instructions for accesses to an LS

Reader
Writer
SPU instruction fetch SPU load External read®
SPU Store ‘sync’ nothing required ‘dsync’
External Write? ‘sync’ ‘dsync’ NA

a. By any DMA transfer (from the local MFC or a non-local MFC), the PPE, or other
device—other than the SPU that executes the synchronization instruction

MFC ordering mechanisms
SPU may use the MFC channel interface to issue commands to the associated
MFC. The PPU or other SPUs outside this SPE may similarly use the MFC’s
MMIQ interface in order to send commands to a particular MFC. For each of
those interfaces independently, the MFC accepts only queueable commands
which are entered into one of the MFC SPU command queue (one queue for the
channels interfaces and another for the MMIO). The MFC then processes these
commands, possibly out of order to improve efficiency.

However, MFC supports ordering mechanism that may be activated through
each of those two main interfaces:

222

Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» Channel interface: allows an SPU code to control the order in which the MFC
execute the commands that have been previously issued by this SPU using
the channel interface.

» MMIO interface: similarly but independently, PPU or other SPUs may use the
MMIQ interface to control the order in which MFC issue command that have
been previously queued on its MMIO interface.

It is important to mention that the effect of those commands, regardless if they
are issued through either of the two interfaces, actually controls the order of the
MFC data transfers on the main storage with respects to all other elements in the
system (e.g. PPE and other SPEs).

There are two types of ordering commands:

» Fence or barrier command options: tag specific mechanism that is activated
by appending a ‘fence’, or ‘barrier’ options to either data transfer or signaling
commands.

» Barrier commands: a separate barrier command can be issued to order the
command against all preceding and all succeeding commands in the queue,
regardless of tag group.

The following section describes more about those two types of commands.

Fence or barrier command options

The fence or barrier command options ensure local ordering of storage accesses
made through the MFC with respect to other devices in the system. The ‘local
ordering ensures ordering of the MFC commands with respect to that particular
MFC tag group (commands that have similar tag ID) and command queue (i.e.
MFC proxy command queue and MFC SPU command queue). Both ordinary
DMA and list DMA commands are supported and well as signalling commands.

Programmers can enforce ordering among DMA commands in a tag group with a
fence or barrier option by appending an ‘f’ for ‘fence’, or a ‘b’, for ‘barrier’, to the
signaling commands (e.g. ‘sndsig’) or data transfer commands (e.g. ‘getb’ and
‘putf’). The simplest way to do so is using the supported MFC functions:

» SPU code may use the functions call defined by spu_mfcio.h header file. For
example use mfc_getf and mfc_putb functions to issue ‘fenced get’ command
and ‘barrier put’ command respectively.

» PPU code may use the functions call defined by 1ibspe2.h header file. For
example use spe_mfcio_getf and spe mfcio_putb functions to issue ‘fenced
get’ command and ‘barrier put’ command respectively.

Table 4-17 lists the supported tag-specific ordering commands:

Chapter 4. Cell BE programming 223



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

224

Table 4-17 MFC tag-specific ordering commands

Option Commands
barrier getb, getbs, getlb, putb, putbs, putrb, putlb, putrlb, sndsigb
fence getf, getfs, getlf, putf, putfs, putrf, putlf, putrlf, sndsigf

The ‘fence’ and ‘barrier’ option has different effects:

» Fenced command is not executed until all previously issued commands within
the same tag group have been performed; commands issued after the fenced
command might be executed before the fenced command.

» Barrier command and all the commands issued after the barrier command
are not executed until all previously issued commands in the same tag group
have been performed.

Once those data transfers were issues, the storage system may complete
requests in an order different then the order in which they are issued, depending
on the storage attributes. However, in specific it is guaranteed that accesses to
the main memory (which has caching-inhibited storage) and other SPE’s LS and
problem state are completed in the same order in which they are issued.

The different effects of the fenced’ and ‘barrier command are illustrated in
Figure 4-4. The row of white boxes represents command-execution slots, in
real-time, in which the DMA commands (red and green boxes) might execute.
Each DMA command is assumed to transfer the same amount of data, thus, all
boxes are the same size. The arrows show how the DMA hardware, using
out-of-order execution, might execute the DMA commands over time.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Earlier Instructions ¥ Later Instructions
Time

Synchronizing command
- MNon-synchronizing command

| Execution slot

Figure 4-4 Barrier and fence effect

Those commands are very useful and efficient in synchronizing SPU code data
access to the shared storage with access of other elements in the system. One
of the common use of those command is in double buffering mechanism, as
explained in Chapter, “Double buffering” on page 157 and illustrated through the
code of Example 4-29 on page 159. For more scenarios examples see

Chapter 4.5.4, “Practical examples using ordering and synchronization
mechanisms” on page 235.

Barrier commands

The barrier commands order storage accesses made through the MFC with
respect to all other MFCs, processor elements, and other devices in the system.
While the CBEA specifies those commands as having tag-specific effects
(controls only the order in which transfers related to one tag-ID group are
executed compare to each other), the current Cell BE implementation have no
tag-specific effects.

Those commands may activated only by the SPU that is associated with the MFC
using the channel interface. There is no support from the MMIO interface.
However, the PPU may achieve similar effects by using the not-MFC-specific
ordering instructions that described in Chapter, “PPE ordering instructions” on
page 217.

Chapter 4. Cell BE programming 225




7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The easiest way to use those instructions from the SPU side is through intrinsics.
In order to do so the programmer should include the spu_mfcio.h header file. A

brief description of these intrinsics and their main usage is summarized in

Table 4-18.
Table 4-18 MFC ordering commands
Intrinsic Description Usage
mfc_sync ‘mfcsync’ command is similar to PPE ‘sync’ Designed to be used
instruction and controls the order in which MFC inter-processor/device
commands are executed with respect to synchronization. Since it
storage accesses by all other elements and in creates a large load on the
the system. memory system, should be
used only between
commands involving storage
with different storage
attributes - otherwise other
synchronization commands
should be preferred.
mfc_eieio ‘mfceieio’ command controls the order in which | Managing shared data
DMA commands are executed with respect to structures, performing
storage accesses by all other system elements, | memory-mapped I/O, and
only when the storage being accessed has the | preventing load and store
attributes of caching-inhibited and guarded combining in main storage.
(typical for I/O devices). The command is The “fence’ and ‘barrier’
similar to PPE ‘eieio’ instruction - for more options of other commands
details regarding the effects on accessing are preferred from
different types of memories - seeTable 4-13 on performance point of view so
page 219. should be use in case they
are sufficient.
mfc_barrier ‘barrier command orders all subsequent MFC Managing data structures
commands with respect to all MFC commands | which are located in main
preceding the barrier command in the DMA storage and are shared by
command queue, independent of tag groups. other elements in the system.
The barrier command will not complete until all
preceding commands in the queue have
completed. After the command completes,
subsequent commands in the queue may be
started.

MFC multisource synchronization facility

The Cell BE processor contains multiple address and communication domains -
the main-storage domain, eight local LS-address domains, and eight local
channel domains. MFC multisource synchronization facility ensure cumulative
ordering of storage accesses performed by multiple sources (e.g PPE and SPEs)
across all those address domains, unlike the PPE ‘sync’ instruction and other

226

Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

similar instructions which provides such cumulative ordering only with respect to
the main-storage domain.

The MFC multisource synchronization facility addresses this cumulative-ordering
need by providing two independent multisource synchronization-request
methods:

» MMIO interface - allows the PPE or other processor elements or devices to
control synchronization from the main-storage domain.

» Channel interface - allows an SPE to control synchronization from its
LS-address and channel domain.

Each of these two synchronization-request methods ensures that all write
transfers to the associated MFC are sent and received by the MFC before the
MFC synchronization-request is completed. This facility does not ensure that
read data is visible at the destination when the associated MFC is the source.

The two methods operate independently so synchronization request through the
MMIO register has no effect on synchronization requests through the channel,
and vice versa.

MMIO interface of MFC multisource synchronization facility

MFC multisource synchronization facility may be accessed from the main storage
domain by the PPE or other processor elements or devices using the MMIO
MFC_MSSync (MFC multisource synchronization) register. A programmer can
access this facility through two functions that are defined in 1ibspe2.h header file
and are further described in SPE Runtime Management library document.

Example 4-44 illustrates how the PPU programmer may achieve cumulative
ordering using the two corresponding 1ibspe2.h functions:

Example 4-44 MMIO interface of MFC multisource synchronization facility

#include “libspe2.h”

// Do dome MFC DMA operation between memory and LS of some SPE
// PPE/other-SPEs use our MFC to transfer data between memory and LS

int status;

spe_context_ptr_t spe_ctx;

// init one or more SPE threads (also init ‘spe_ctx’ variable)

// Send a request to the MFC of some SPE to start tracking outstanding

// transfers which are sent to this MFC by either te associated SPU or

Chapter 4. Cell BE programming 227



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// PPE or other-SPEs.
status = spe_mssync_start();

if (status==-1)({
// do whatever need to do on ERROR but do not continue to next step

}

// Check if all the transfers that are being tracked are completed.
// Repeat this step till the function returns 0 indicating the
// completions of those transfers

while(1){
status = spe_mssync_status(spe_ctx); // nonblocking function

if (status==0){
break; // synchronization was completed
telsef
if (status==-1)({
// do whatever need to do on ERROR
break; //unless we already exit program because of the error

}

Channel interface of MFC multisource synchronization facility

MFC multisource synchronization facility may be accessed by the local SPU
code form the LS domain using the MFC_WrMSSyncReq (MFC write
multisource synchronization request) channel. A programmer can access this
facility through two functions that are defined in spu_mfcio.h header file and are
further described in C/C++ Language Extensions for Cell BE Architecture
document. Example 4-45 illustrates how the SPU programmer may achieve
cumulative ordering using the two corresponding spu_mfcio.h functions:

Example 4-45 Channel interface of MFC multisource synchronization facility

#include “spu_mfcio.h”

uint32_t status;

// Do dome MFC DMA operation between memory and LS
// PPE/other-SPEs use our MFC to transfer data between memory and LS

228 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// Send a request to the associated MFC to start tracking outstanding
// transfers which are sent to this MFC by either this SPU or PPE or
// other-SPEs

mfc_write_multi_src_sync_request();

// Check if all the transfers that are being tracked are completed.
// Repeat this step till the function returns 1 indicating the
// completions of those transfers

do{
status = mfc_stat_multi_src_sync_request(); // nonblocking function
} while(!staus);

Other alternative is using asynchronous event that may be generated by the MFC
to indicate the completion of the requested data transfer. Chapter MFC
Multisource Synchronization Facility in the Cell Broadband Engine Programming
Handbook describes more about this alternative and other issues related to MFC
multisource synchronization facility.

4.5.2 Atomic synchronization

This section the atomic operations that are supported by Cell BE. Those
operation are implemented on both the SPE and the PPE and enables the
programmer to create synchronization primitives such as semaphores and mutex
locks in order to synchronize storage access or other functions. Those feature
should be use with special care in order to avoid livelocks and deadlocks.

The atomic operation that are implemented in Cell BE are not blocking so this
enables the programmer to implement algorithms that are lock-free and wait-free.

Atomic operations are described in details in PPE Atomic Synchronization
chapter in Cell Broadband Engine Programming Handbook document. the
chapter also contains some usage examples and how those atomic operations
may be used to implement synchronization primitives such as mutex, atomic
addition (part of semaphore implementation), and condition variables. We
recommend to the advanced programmer to read this chapter in order to further
understand this mechanism.

Chapter 4. Cell BE programming 229



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Atomic synchronization instructions

The atomic mechanism enables to set a lock (called ‘reservation’) on some
aligned unit of real storage (called a ‘reservation granule’) containing the address
that we wish to lock. The Cell BE reservation granule is 128 bytes, corresponding
to the size of a PPE cache line, means the programmer may set a lock on block
of 128 bytes which is also aligned to 128 bytes address.

The atomic synchronization mechanism include the following instructions:

» Load-and-reserve instructions: load the addressed value from memory and
then set a reservation on the reservation granule that containing the address.

» Store-conditional instructions: verify that the reservation is still set on the
granule and only if it is set the store operation is carried out. Other wise
(reservation does not exist) the instruction completes without altering storage.
The hardware set indication bit in CRT register to enables the programmer to
determine if the store was successful.

The reservation is cleared by setting another reservation or by executing a
conditional store to any address. Another processor element may also clear the
reservation by accessing the same reservation granule.

A pair of load-and-reserve and store-conditional instructions permits atomic
update of variable in main storage which enables the programmer to implement
various synchronization primitives such as semaphore, mutex lock, test-and-set,
fetch-and-increment, and any atomic update of a single aligned word or
doubleword in memory. Example 4-46 lllustrate how this mechanism may be
used to implement a semaphore:

Example 4-46 implementing semaphore using load-and-reserve and store-conditional

1. read a semaphore using load-and-reserve.
2. compute a result based on the value of the semaphore.

3. use store-conditional to write the new value back into the semaphore
Tocation only if that location has not been modified (i.e. by other
processor) since it was read in step 1.

4. determine if the store was successful;

— if successful: the sequence of instructions from steps 1 to step 3
appears to have been executed atomically.

— otherwise: other processor accessed the semaphore so the software
may repeat this process (back to step 1).

230 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

These instructions also control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory
operations are seen by other processor elements or memory access
mechanisms.

PPE and SPE atomic implementation
The atomic synchronization is implemented on both the PPE and the SPE:

» PPE side: atomic synchronization is implemented through a set of assembly
instructions. A set of specific intrinsics to make those PPU instructions easily
accessible from the C programming language as each of these intrinsics has
a one-to-one assembly language mapping. Programer should include
ppu_intrinsics.h header file to use them.

» SPE side: atomic synchronization is implemented on the SPE with a set of
MFC synchronization commands which are accessible through a set of
functions provided by spu_mfcio.h file.

Table 4-19 summarized both the PPE and SPE atomic instructions. For each
PPE instruction attached an SPE’s MFC commands that implement similar
mechanism. Please notice that for all the PPE instructions, reservation (lock) is
set for the entire cache line in which this word resides.

Table 4-19 Atomic primitives of PPE and SPE
PPE Description SPE (MFC) Description

Load and reserve instructions

__ldarx Load a doubleword mfc_getllar Transfer cache line from LS to
(cache line) and set main storage and created a
reservation. reservation (lock). Not tagged and
is executed immediately (not
queued behind other DMA

commands.
__Iwarx Loadawordandset | - -
reservation@.
Store conditional instructions
__stdex Store a doubleword | mfc_putlic Transfer cache line from LS to
(cache line) only if main storage only if reservation
reservation (lock) (lock) exists.

exists.

__stwex | Store aword only if | - -
reservation exists?.

Chapter 4. Cell BE programming 231



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

PPE Description SPE (MFC) Description

- - mfc_putlluc Put lock-line unconditional
(regardless if reservation exists.
Executed immediately.

- - mfc_putqglluc | Put lock-line unconditional
(regardless if reservation exixts.is
placed into the MFC command
queue, along with other MFC
commands.

a. Reservation (lock) is set for the entire cache line in which this word resides.

There are two pairs of atomic instructions that are implemented on both the PPE
and the SPE. The first pairis __ 1darx/ Twarx and mfc_getllar and the second
pairis _ stdcx/ _stwcx and mfc_putllc for PPE and SPE respectively. This
functions provide atomic read-modify-write operations that may be used to derive
other synchronization primitives between a program that runs on the PPU and a
program code that runs on the SPU (or SPUSs).

PPU code and SPU code examples of implementing a mutex-lock mechanism
using those two pairs of atomic instructions is shown Example 4-47 and
Example 4-48 for PPE and SPE respectively.

Chapter 4.5.3, “Using sync library facilities” on page 234 illustrates how sync
library implement many of the standard synchronization mechanisms, such as
mutex and semaphore, using the atomic instructions. Example 4-47 is actually
based on a ‘sync’ library code from mutex_Tock.h header file.

Note: Programmer should consider using the various synchronization
mechanisms that are implemented in sync library instead of explicitly using the
atomic instructions that are described in this chapter. For more information
see Chapter 4.5.3, “Using sync library facilities” on page 234.

Chapter PPE Atomic Synchronization in Cell Broadband Engine Programming
Handbook document provides more code examples on how synchronization
mechanisms may be implemented on both a PPE program and SPE program.
using those instructions in order to achieve synchronization between the two
programs. Example 4-48 is based on one of those examples.

Example 4-47 PPE implementation of mutex_lock function in sync library

#include “ppu_intrinsics.h”

// assumes 64 bit compelation of the code

232 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

void mutex_lock(uint64_t mutex_ptr) {
uint32_t done = 0;
do{
if (__Twarx((void*)mutex_ptr) == 0)
done = _ stwex((void*)mutex_ptr, (uint32_t)1);

}while (done == 0); // retry if the reservation was lost

__isync(); // synchronize with other data transfers

}

Example 4-48 SPE implementation of mutex lock

#include <spe mfcio.h>
#include <spu_intrinsics.h>

void mutex_Tock(uint64 t mutex ptr) {
uint32_t offset, status, mask;

volatile char buf[256], *buf ptr;
volatile int *lock ptr;

// determine the offset to the mutex word within its cache line.
// align the effective address to a cache Tine boundary.
uint32_t offset = mfc_ea2h(mutex ptr) & Ox7F;

uint32_t mutex lo = mfc_ea2h(mutex ptr) & “~Ox7F;

mutex_ptr = mfc_hl2ea(mfc_ea2h(mutex_ptr), mutex_To);

// cache line align the local stack buffer.
buf _ptr = (char*)(((uint32_t) (buf) + 127) & ~127);
Tock_ptr = (volatile int*)(buf_ptr + offset);

// setup for use possible use of lock line reservation lost events.
// detect and discard phantom events.

mask = spu_read_event_mask();

spu_write_event_mask(0);

if (spu_stat_event_status()) {
spu_write_event_ack( spu_read_event_status());
}

spu_write_event_mask( MFC_LLR_LOST_EVENT );

Chapter 4. Cell BE programming 233



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

do{ //get-and-reservation the cache Tine containing mutex lock word.

mfc_getllar( buf_ptr, mutex_ptr, 128, tag_id,0,0);
mfc_read_atomic_status();

if (*Tock_ptr) {
// The mutex is currently locked. Wait for the lock line
// reservation lost event before checking again.
spu_write_event_ack( spu_read_event_status());

status = MFC_PUTLLC_STATUS;

} else {
// The mutex is not currently locked. Attempt to lock.
*Tock_ptr = 1;

// put-conditionally, the cache line containing the lock word.
mfc_putllc( buf_ptr, mutex_ptr, 128, tag_id,0,0);
status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;

}

} while (status); // retry if the reservation was lost.

spu_write_event_mask(mask); // restore the event mask

}

4.5.3 Using sync library facilities

The ‘sync’ library provides several simple general purpose synchronization
constructs. The supported C functions closely match those found in current
traditional operating systems.

Most of the functions of this library are supported by both the PPE and the SPE,
but small portion of them are supported only by the SPE. The functions are all
based upon the Cell BE load-and-reserve and store-conditional functionality that
is described in Chapter 4.5.2, “Atomic synchronization” on page 229.

In order to use the facilities of the ‘sync’ library, the programmer should refer to
the following files:

» Tibsync.h: the header file that should be included as it contains most of the
definitions.

» libsync.a: the library that contains the implementation and should be linked
to the program.

234 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» function specific header files: each function is defined by a separate header
file so the programmer may include this header file instead of the 1ibsync.h
file. For example the programmer may include mutex_init.h header file when
‘mutex_lock’ operation is needed. In this case an underline should be added
when calling the function (e.g. _mutex_Tock function when including
mutex_init.h file instead of mutex_lock when including 1ibsync.h.

Note: Using the function specific header files is preferred from performance
point of view since those function are defined as inline, unlike the definition of
the corresponding function in libsync.h file. However, similar effect may be
achieved by setting the appropriate compilation flags.

The ‘sync’ library provides five sub-classes of synchronization primitives:

1. atomic operations: atomically adds or subtract a value from some 32 bits
integer variable.

2. mutexes: routines that operate on mutex (mutual exclusion) objects and are
used to ensure exclusivity. Enables the programer to atomically ‘lock’ the
mutex before accessing some shared structure and ‘unlock’ it when done.

3. condition variables: routines that operate on condition variables and have two
main operations. When a thread calls the ‘wait’ operation on some condition it
is suspended and waits on that condition variable signal until another thread
signals (or broadcasts) the condition variable using the ‘signal’ operation.

4. completion variables: enables one thread to notify other threads that are
waiting on the completion variable that the completion is true.

5. reader/writer locks: routines that enables a thread to lock some 32 bits word
variable in memory using two types of locks. A ‘read lock’ is a non-exclusive
mutex which allow multiply simultaneous readers. A ‘writer lock’ is a exclusive
mutex which allows a single writer.

4.5.4 Practical examples using ordering and synchronization
mechanisms

This section includes some practical examples showing how the storage-ordering
and synchronization facilities of the Cell BE processor can be used. Most of
those exampled are mainly based on chapter Shared-Storage Ordering in Cell
Broadband Engine Programming Handbook document.

SPE writing notifications to PPE using fenced-option

The most common use of the fenced DMA is when writing back notifications.
Example 4-49 illustrated such scenario:

Chapter 4. Cell BE programming 235



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Example 4-49 Writing notification using fenced-option

SPU program:

1. Compute some data.

2. Issue several DMA ‘put’ commands to writes the computed data back to
main storage.

3. Use fenced ‘putf’ command to write a notification that the data is
available. This notification might be to any type memory (main
memory, I/0 memory, a signal-notification or MMIO register, or
another SPE’s mailbox).

4, If the program to reuse the LS buffers it waits for the completion
of all the the commands issued in previous steps.

PPU program:

1. Wait for notification (poll the notification flag).

2. Operate on the computed SPE data (it is guaranteed that that the
updated data is available in memory since SPE used fence between
writing the computed data and the notification).

To ensure ordering of the DMA writing of the data (step 2) and of the notification
(step 3) the notification may be sent using a fenced DMA command. This
guarantee that the notification is not sent until all previous DMA commands of the
group are issued.

In this example, the writing of both the data and that notification should have the
same tag ID in order to guarantee that the fence will work.

Ordering reads followed by writes using barrier-option

A barrier option might be useful when a buffer read takes multiple commands
and must be performed before writing the buffer, which also takes multiple
commands. Example 4-50 illustrated such scenario:

Example 4-50 Ordering reads follows by writes using barrier-option

1. Issue several ‘get’ commands to read data into the LS.

2. Issue a single barrier ‘putb’ command to write data to main
storage from LS. The barrier guarantee that the ‘putb’ command and
the subsequent ‘put’ commands issued in step 3 will occur only after
the “get”™ commands of step 1 are complete.

3. Issue a more ordinary (without barrier) ‘put’® command to write
data to main storage.

4, Waits for the completion of all the the command issued in
previous steps.

236 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Using the barrier-form for the first command to write the buffer (step 2) allows the
commands used to put the buffer (step 2 to 3) to be queued without waiting for
the completion of the ‘get’ commands (step 1). The programmer may take
advantage of this mechanism to overlap those data transfers (read and write)
with computation allowing the hardware to manage the ordering.

This scenario may occur on either the SPU or PPU who uses the MFC to initiate
data transfers.

The ‘get’ and ‘put’ commands should have the same tag ID in order to guarantee
that the barrier option (i.e. that comes with the ‘get’ and ‘put’ commands) will
ensure writing the buffer just after data is read. If the ‘get’ and ‘put’ commands
are issued using multiple tag IDs, then a MFC “barrier’ command can be inserted
between the ‘get’ and ‘put’ command instead of using a ‘put’ with barrier option
for the first ‘put’ command.

If multiple commands are used to read and write the buffer, using the barrier
option allows the read commands to be performed in any order and the write
commands to be performed in any order, which provides better performance but
forces all reads to finish before the writes start.

Double buffering using barrier-option

Barrier commands are also useful when performing double-buffered DMA
transfers in which the data buffers used for the input data are the same as the
output data buffers. Example 4-51 illustrated such scenario:

Example 4-51 Ordering SPU reads follows by writes using barrier-option

int i;
i=20;
‘get’ buffer 0
while (more buffers) {
‘getb’ buffer i”1 //‘mfc_getb® function (with barrier)
wait for buffer i //‘mfc_write tag mask’ & ‘mfc_read tag status all’
compute buffer i
‘put’ buffer i //mfc_put’ function

i=inl
}

wait buffer i //*mfc_write_tag_mask’ & ‘mfc_read_tag_status_all’
compute buffer i

‘put’ buffer i //mfc_put® function

Chapter 4. Cell BE programming 237



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

In the ‘put’ command at the end of each loop iteration data is written from the
same local buffer to which data is later read in the beginning of next iteration’s
‘get’ command. It is critical there for to barrier the ‘get’ command to ensure that
the writes complete before the reads are started preventing the wrong data to be
written.

The code of SPU program which implements such double buffering mechanism
is shown in Example 4-29 on page 159.

PPE-to-SPE communications using storage barrier instruction
For some applications the PPE is used as an application controller which
manages and distributes work to the SPEs. Example 4-51 show a typical
scenario for such applications and how a ‘sync’ storage barrier instruction may
be used in this case to guarantee the correct ordering:

Example 4-52 Ordering SPU reads follows by writes using barrier-option

1. PPE write main storage with the data to be processed

2. PPE issue ‘sync’ storage barrier instruction.

3. PPE notifies the SPE by writing to either the inbound mailbox or one
of the SPE’s signal-notification registers.

4. SPE read the notification and understands that data is ready.

5. SPE read the data and process it.

To make this feasible, it is important that the data storage performed in step 1 be
visible to the SPE before receiving the work-request notification (steps 3 and 4).
To ensure guaranteed ordering, a ‘sync’ storage barrier instruction must be
issued by the PPE between the final data store in memory and the PPE write to
the SPE mailbox or signal-natification register. This barrier instruction appears as
step 2 in the example.

SPEs updating shared structures using atomic operation
In some case several SPEs may maintain a shared structure, for example when
using the following programing model:

» Alist of work elements in the memory defines the work that needs to be done.
Each of the element defines one task out of the overall work that may be
executed in parallel to the others.

» A shared structure contains the pointer to the next work element and
potentially other shared information.

» An SPE that available to execute the next work element atomically reads the
shared structure to evaluate the pointer to the next work element and update

238 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

it to point to the next element. Then he can get the relevant information and
process it.

Atomic operations are useful in such cases when several SPE need to atomically
read and update the value of the shared structure. Potentially, the PPE may also
update this shared structure using atomic instructions on the PPU program.

Example 4-53 illustrated such scenario and how the SPEs can manage the work
and access to the shared structure using the atomic operations:

Example 4-53 SPEs updating shared using atomic operation

// Tocal version of the shared structure
// size of this structure is a single cache line
static volatile vector shared var 1s var _attribute  ((aligned

(128)));
// effective address of the shared sturture
uinté64 t ea var;
int main(unsigned Tong long spu_id, unsigned long Tong argv) {
unsigned int status;
ea_var = get from PPE pointer to shared structure’s effective addr.
while (1){
do {
// get and lock the cache line of the shared sahred structure
mfc_getllar((void*)&ls var, ea var, 0, 0);
(void)mfc_read atomic_status();
if (valus in “1s_var’ indicate that the work was complete){
(comment: ¢1s_var® may contain total # of work tasks and #
of complete task - SPE can compare those values)

break;

}

// else - we have a new work to do

1s_var = progress the var to point to the next work to be done

Chapter 4. Cell BE programming 239



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

mfc_putllc((void*)&ls_var, ea_var, 0, 0);
status = mfc_read_atomic_status() & MFC_PUTLLC_STATUS;
} while (status); // loop till the atomic operation succeeds

//get data of current work, process it, and put results in memory

}

4.6 SPU programming

The eight SPEs are optimized for compute-intensive applications in which a
program’s data and instruction needs can be anticipated and transferred into the
local store (LS) by DMA while the SPE computes using previously transferred
data and instructions. However, the SPEs are not optimized for running programs
that have significant branching, such as an operating system.

The following chapters are included in this section:

1.

“Architecture overview and its impact on programming” on page 241 provide
an overview on the main SPE architecture features and how they affect the
SPU programing.

. “SPU instruction set and C/C++ language extensions (intrinsics)” on

page 244 provides an overview of the SPU instruction set and the SPU
intrinsics which are simpler high level programing interface to access the SPE
hardware mechanisms and assembly instructions.

“Compiler directives” on page 251 describes the compiler directive that are
most likely to be use when writing an SPU program.

“SIMD programming” on page 253 discuss how the programer can explicitly
exploit the SIMD instructions to the SPU.

“Auto-SIMDizing by compiler” on page 264 describe how the programer can
use compilers to automatically convert a scalar code into a SIMD code.

“Using scalars and converting between different vector types” on page 271
described how to work with different vector data types and how to convert
between vectors and scalars and vice versus.

240 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

7. “Code transfer using SPU code overlay” on page 276 describe how the
programer can use the SDK3.0 SPU code overlay to face situations in which
the code is too big to fit into the local store.

8. “Eliminating and predicting branches” on page 277 describes how write an
efficient code when branches are required.

This chapter cover mainly issues related to writing a program that runs efficiently
on the SPU while fetching instructions form the attached LS. However, in most
cases an SPU program should also interact with the associated MFC to transfer
data between the main storage and communicate with other processors on the
Cell BE chip. It is therefore very important to understand those issues, which are
covered in other chapters of the book:

» Chapter 4.3, “Data transfer” on page 109 discuss how SPU can transfer data
between the LS and main storage.

» Chapter 4.4, “Inter-processor communication” on page 174 discuss how SPU
communicate with other processors on the chip (PPE and SPEs).

» Chapter 4.5, “Shared storage synchronizing and data ordering” on page 213
discuss how the data transfer of the SPU and other processors are ordered
and who the SPU can synchronize with other processors.

4.6.1 Architecture overview and its impact on programming

This chapter describes the main features of SPE architectures with emphasis on
the impact that those features have on the programming of SPU applications.

The chapter is divided into sections such as that each section discuss specific
component of the SPU architecture. Inside each section, we provide a list of the

Memory and data access
This chapter summarizes the main features related to memory and data access.

Local store (LS)
» From programing point of view this is the storage domain that the program
directly refer to when doing load and store instruction or use pointers.

» Its size is 256KB. This size is relatively compact so usually the programer
should explicitly transfer data between main memory and the LS.

» Holds both the instructions, stack, and data (global and local variables).

» Accessed directly by load and store instructions which are deterministic, have
no address translation and have low latency.

Chapter 4. Cell BE programming 241



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» 16 byte per cycle load and store bandwidth and quadword aligned only. When
the programer store data that is smaller then that (e.g. scalar) the program will
actually perform 16 byte read, shuffle to set alignment, modify the data and 16
byte store. Obviously this is not very efficient.

Main storage and DMA

» Accessing the main storage is done by the programmer explicitly issuing DMA
transfer between the LS and main storage.

» The effective address of the main storage data should be supplied by the
program runs on the PPE.

» DMA transfer are done asynchronously with program execution allowing the
programer to overlap between data transfer and computation.

» 16 bytes of data are transfered per cycle.

Register file

» Large register file of 128 entries of 128-bits each.

» Unified register file such as all types (floating point, integers, vectors, pointers,
etc.) are stored in the same registers.

» The large and unified file allows for instruction-latency hiding using deep
pipeline without speculation.

» Big-endian data ordering (lowest-address byte and lowest-numbered bit are
the most-significant byte and bit, respectively).

LS arbitration

Arbitration to the LS is done according the following priorities (high first):

1.
2. ECC scrub.

3.

4. Inline instruction prefetch.

MMIO, DMA, and DMA list transfer element fetch.

SPU load/store; hint instruction prefetch.

Instruction set and instruction execution

This chapter summarizes the SPE instruction set, the way in which instructions
are executed (pipeline and dual issue).

Instructions set:

>

>

Supports the single-instruction, multiple-data (SIMD) instruction architecture
that works on 128b vectors.

Scalar instructions are also supported.

242 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

>

The programer should try to use SIMD instruction as much as possible as the
have significantly preferred performance. Can be done by using functions that
are defined by SDK’s language extensions for C/C++, or using
auto-vectorization feature of the compiler.

Floating-point operations:

>

Single-precision instructions are performed in 4-way SIMD fashion and are
fully pipelined. Since those instructions have good performance it is
recommended for the programer to try to use them if the application allows to.

Double-precision instructions are performed in 4-way SIMD fashion, are only
partially pipelined, and will stall dual issue of other instructions. The
performance of these instructions makes Cell BE less attractive for
applications that have massive use of double-precision instructions.

Data format follows the IEEE Standard 754 definition, but the single precision
results are not fully compliant with this standard (different overflow and
underflow behavior, support only for truncation rounding mode, different
denormal results).

The programer should be aware that in come cases the computation results
will not be identical to IEEE Standard 754

Branches:

>

No branch prediction cache, branches assume to be not taken so in case a
branch s taken there a stall that have negative effect on the performance.

Special branch hint commands can be used in the code to direct the hardware
that a coming branch will be taken and by that avoid the stall.

There are no hint intrinsics. Instead programmers can improve branch
prediction by either utilizing the __builtin_expect compiler directive or utilize
feedback directed optimization supported by the IBM xI compilers or
FDPRPro.

Pipeline and dual issue:
» Has two pipelines, named even (pipeline 0) and odd (pipeline 1). Whether an

instruction goes to the even or odd pipeline depends on its instruction type.
Issue and complete up to two instructions per cycle, one in each pipeline.

Dual-issue occurs when a fetch group has two issueable instructions with no
dependencies in which the first instruction can be executed on the even
pipeline and the second instruction can be executed on the odd pipeline.

Advances programers can write low level code that fully utilize the two
pipelines by separating between instructions that goes to the same pipeline
(i.e. put instruction that goes to the other pipeline between them) or
separating between instructions that have data dependencies.

Chapter 4. Cell BE programming 243



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» However, in many cases the programer may relies on the compiler or other
performance tools (e.g. FDPRPro) to utilize the two pipelines. However, it is
recommended to analyze the results either statically (e.g. using SPU static
timing tool or Code Analyzer tool) or using profiling (e.g. load FDPRPro
profiming data into Code Analyzer tool).

Features which are not supported by the SPU
The SPU doesn't support many of the features provided in most general purpose
processors:

» No direct (SPU-program addressable) access to main storage. The SPU
accesses main storage only by using the MFC’s DMA transfers.

» No direct access to system control, such as page-table entries. PPE
privileged software provides the SPU with the address-translation information
that its MFC needs.

» With respect to accesses by its SPU, the LS is unprotected and un-translated
storage.

4.6.2 SPU instruction set and C/C++ language extensions (intrinsics)

The SPU Instruction Set Architecture (/SA4) is fully documented in Synergistic
Processor Unit Instruction Set Architecture document. SPU ISA operates
primarily on SIMD vector operands, both fixed-point and floating-point, with
support for some scalar operands.

Another recommended source of information is SPU Instruction Set and
Intrinsics chapter in Cell Broadband Engine Programming Handbook document
which its appendix provides a table of all the supported instructions as well as
their latency.

SDK provided rich set of language extensions for C/C++ which define SIMD data
types and intrinsics that map to one or more assembly-language instructions into
C language functions. This gives the programmer very convenient and productive
control over code performance without the need for assembly-language
programming.

From the programer point of view it is generally highly recommended:

» Use SIMD operations where ever possible as they provide the maximum
performance which can be up to 4 times (for single precision float or 32b
integers) or 16 times (for 8 bit chars) faster then scalar processor.

This important topic is further discussed at Chapter 4.6.4, “SIMD
programming” on page 253.

244 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» Can use any scalar operations on the C/C++ code and the compiler will take
care of mapping them to one or more SIMD operations (e.g.
read-modify-write) if the appropriate scalar assembly instruction does not
exist. The programer should try to minimize those operations (e.g. to use
them only for control) since their performance is not as good as the SIMD
ones or in some cases not as good as executing similar commands on
ordinary scalar machine.

SPU Instruction Set Architecture (ISA)

The SPU Instruction Set Architecture (IS4) operates primarily on SIMD 128 bits
vector operands, both fixed-point and floating-point. the architecture have
support for some scalar operands.

There are 204 instructions in the ISA and they are grouped into several classes
according to their functionality. Most of the instructions are mapped into either
generic intrinsics or specific intrinsics that may be called as C functions from the
program.Full description of the instructions set is in the Synergistic Processor
Unit Instruction Set Architecture document.

ISA provides a reach set of SIMD operations that can be performed on 128 bits
vectors of several fixed point or floating point elements. Instructions are also
available to access any of the MFC channels in order to initiate DMA transfers or
communicate with other processors.

The following chapters provide additional information on some of the main types
of instructions.

Memory access SIMD operations

Load and store instructions are performed on the LS memory and uses 32 bits
LS address. The instruction operates on 16 bytes elements which are quadword
aligned. The SPU can perform a one such instruction in every cycle and their
latency is about 6 cycles.

Channels access

A set of instructions are provided in order to access the MFC channels. Those
instructions can be used to initiate DMA data transfer, communicate with other
processors, access the SPE decrementer and more. The SPU interface with the
MFC channel is further described in the prefix of Chapter 4.6, “SPU
programming” on page 240

SIMD operations

ISA SIMD instructions provides a reach set of operations (logical, arithmetical,
casting, load and store, etc.) that can be performed on 128 bits vectors of either
fixed point or floating point values. The vectors can contain various sizes of

Chapter 4. Cell BE programming 245



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

246

variables - 8, 16, 32 or 64 bits. The performance of the program can be
significantly effected by the way the SIMD instructions are used. For example,
using SIMD instructions on 32 bits variables (single precision floating point or 32
bits integer) can speed up the program by at least four times compare to
equivalent scalar program since in every cycle the instruction works on four
different elements in parallel (since there are four 32 bits variables for one 128
vector).

Figure 4-5 shows one example of such SPU add SIMD instruction of four 32 bits
elements vector. This instruction simultaneously adds four pairs of floating-point
vector elements, stored in registers VA and VB, and produces four floating-point
results, written to register VC.

vector regs add VC,VA,VB
Reg VA A1 A.2 A3
Reg VB B.1 B.2 B.3
k4 ¥ ¥ ¥ ¥ h
+ + +
¥ b 4 h
Reg VC cA c.2 c3

Figure 4-5 SIMD add instruction

Scalar related instructions

ISA also provides instructions to access scalars. A set of store assist instructions
is available in order to help store bytes, halfwords, words, and doublewords in the
128-bit vector registers. Similarly, instructions are provided in order to extract
such scalar from the vector registers. Rotate instructions are also available and
can be used to move data into the appropriate locations in the vector.

Those instructions may be used by the programer whenever there is a need to
operate on specific element from a given vector (e.g. summarize the elements of
one vector).

In addition, those instructions are often used by the compiler. Whenever the high
level C/C++ function operated on scalars, the compiler translate it into a set of 16
bytes read, modify, and 16 bytes write operations. In this process, the compiler
use the store assist and extract instruction to access the appropriate scalar
element.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

ISA provides some instructions that use or produce scalar operands or
addresses. In this case, the values are set into in the preferred slot in the 128-bit
vector registers as illustrated in Figure 4-6. The compiler may use the scalar
store assist and extract instructions when a non aligned scalar are used in order
to shift it into the preferred slot.

In order to eliminate the need for such shift operations, the programer may
explicitly define the alignment of frequently used scalar variables so they will be
located in the preferred slot. The compiler optimization and after link optimization
tools that comes with the SDK (e.g. FDPRPro) will also try to help in this process
by statically align scalar variables into the preferred slot.

msh Isb

byte | byte | byte | byte | byte | byte | byte | byte
8 9 | 10 | 11 |12 | 13 | 14 | 15

doubleword
1

fullword fullword fullword
1 2 3

halfword halfword halfword halfword halfword halfword
2 3 4 5 6 7

char | char | char | char | char | char | char | char | char | char (char | char
4 5 6 7 8 9 10 1 12 13 14 15

halfword
0

char | char | char
] 1

. preferred (scalar) slot

Figure 4-6 Scalar Overlay on SIMD in SPE

SIMD “cross-element” shuffle instructions.

ISA provides a set of shuffle instructions for reorganizing data in given vector
which are very useful in SIMD programming. In one instruction the programmer
can reorder all the vector elements into an output vector. Other less efficient
alternative to do so to perform a series of several scalar based instructions for
extracting the scalar from a vector, and store in the appropriate location in a
vector.

Figure 4-7 shows an example instruction. Bytes are selected from vectors VA
and VB based on byte entries in control vector VC. Control vector entries are
indices of bytes in the 32-byte concatenation of VA and VB. While the shuffle
operation is purely byte oriented it can also be applied to more than byte vectors
(e.g. vectors of floating points or 32 bits integers).

Chapter 4. Cell BE programming 247



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

RegVC‘Cﬂ‘14‘13‘10‘06‘15‘19‘1a‘1c‘1c‘1c‘13‘08“H:I“lh‘@e

Reg VA

Reg VB

Reg VT

Figure 4-7 Shuffle/Permute example: shufb VT, VA,VB,VC instruction

SPU C/C++ language extensions (intrinsics)

A large set of SPU C/C++ language extensions (intrinsics) make the underlying
SPU Instruction Set Architecture and hardware features conveniently available to
C programmers

» Intrinsics are essentially in-line assembly-language instructions in the form of
C-language function calls.

» Intrinsics can be used in place of assembly-language code when writing in the
C or C++ languages.

» A single intrinsics map one or more assembly-language instructions.

» Intrinsics provide the programmer with explicit control of the SPE SIMD
instructions without directly managing registers.

» Intrinsics provide the programmer access to all MFC channels as well as
other system registers (e.g. decrementer, SPU state save/restore register).

Full description of those extensions is in C/C++ Language Extensions for Cell BE
Architecture V2.4 document.

Note: The SPU intrinsics are defined in spu_intrinsics.h system header file

which should be included in case the programer wish to use them.

The directory in which this file is located varies depends on which compiler is

used: /usr/lib/gcc/spu/4.1.1/include/ when using GCC
/opt/ibmemp/x1c/cbe/9.0/include/ when using XLC

The SDK compiler supports these intrinsics will emit efficient code for the SPE
architecture, similar to using the original assembly instructions. The techniques
used by compilers to generate efficient code include register coloring, instruction
scheduling (dual-issue optimization), loop unrolling and auto vectorization,
up-stream placement of branch hints and more.

248 Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

For example, an SPU compiler provides the intrinsic t=spu_add(a,b) as a
substitute for the assembly-language instruction fa rt,ra,rb. The compiler will
generate a floating-point add instruction fa rt, ra, rb for the SPU intrinsic
t=spu_add(a,b), assuming t, a, and b are vector float variables.

The PPU and the SPU instruction sets have similar, but distinct, SIMD intrinsics.
It is important to understand the mapping between the PPU and SPU SIMD
intrinsics when developing applications on the PPE that will eventually be ported
to the SPEs. Chapter 4.1.1, “PPE architecture and PPU programming” on

page 79 discuss this issue.

Intrinsics data types

Many of the intrinsics can accept parameters from different types but the intrinsic
name remain the same. For example, spu_add function can add two signed int
vectors into one output signed int vector, or add two float vectors (single
precision) into one output float vector, and few other types of vectors.

The translation from function to instruction dependent on datatype of arguments.
For example, spu_add(a,b) can translate to a floating add or a signed int add
depends on the input parameters.

Some operations cannot be performed on all data types, for example multiply
using spu_mul can be performed only on floating point data types. A detailed

information about all the intrinsics include the data type that is supported but
each of them, is in C/C++ Language Extensions for Cell BE Architecture .

Note: It is recommended for the programer to be familiar with this issue early
in the development stage while defining the program’s data types in order to
prevent unpleasant surprises during the later development of the algorithm, in
case some crucial operation is not supported on the chosen data types.

Intrinsics classes
SPU intrinsics are grouped into the three classes:

» Specific Intrinsics: intrinsics that have a one-to-one mapping with a single
assembly-language instruction and are provided for all instructions except
some branch and interrupt related ones. All specific intrinsics are named
using the SPU assembly instruction prefixed by the string, si_ (e.g. the
specific intrinsic that implements the ‘stop’ assembly instruction is si_stop).
Programmers rarely need these intrinsics since all of them are mapped into
generic (see next bullet) which are more convenient.

» Generic and Builtin intrinsics: intrinsics that map to one or more
assembly-language instructions as a function of the type of input parameters
and are often implemented as compiler built-ins. Intrinsics of this group are

Chapter 4. Cell BE programming 249



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

very useful and covers almost all the assembly-language instructions
including the SIMD ones. Instructions who are not covered are naturally
accessible through the C/C++ language semantics.

All of the generic intrinsics are prefixed by the string spu_. For example, the
intrinsic that implements the ‘stop’ assembly instruction is named spu_stop.

Composite and MFC related intrinsics — Convenience intrinsics constructed
from a sequence of specific or generic intrinsics. Those intrinsics are further
discussed in other chapters in the document that discuss DMA data transfer
and inter-processor communication using the MFC.

Intrinsics: functional types

SPU generic intrinsics, which construct the main class of intrinsics, are grouped
into the several types according to their functionality:

>

Constant formation (example: spu_splats): replicate a single scalar value
across all elements of a vector of the same type.

Conversion (example: spu_convtf, spu_convts): convert from one type of
vector to another. Using those intrinsics is the correct approach to do cast
between two vectors of different types.

Scalar (example: spu_insert, spu_extract, spu_promote): allow
programmers to efficiently coerce scalars to vectors, or vectors to scalars
which enables to easily perform operations between vectors and scalars.

Shift and rotate (example: spu_rlqwbyte, spu_rlqw): shift and rotate the
elements within a single vector.

Arithmetic (example: spu_add, spu_madd, spu_nmadd) : perform arithmetic
operation on all the elements of the given vectors.

Logical (example: spu_and, spu_or) : logical operation on the entire vectors.

Byte operations (example: spu_absd, spu_avg): operations between bytes of
the same vector.

Compare, branch and halt (example: spu_cmpeq, spu_cmpgt): different
operations to control the flow of the program.

Bits and masks (example: spu_shuffle, spu_sel): bitwise operation like
counting the number of bits equal ‘1’ or the number of leading zeros.

Control (example: spu_stop, spu_ienable, spu_idisable) - several control
operation such as stop and signal the PPE and controlling the interrupts.

Channel Control (example: spu_readch, spu_writech) - read from and write
to MFC’s channels.

Synchronization and Ordering (example: spu_dsync) - synchronize and order
data transfer as related to external components.

250 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

In addition, the composite intrinsics contain intrinsics (spu_mfcdma32,
spu_mfcdmab4, spu_mfcstat) that enable to issue DMA commands to the MFC
and check their status.

In the next chapter we discuss some of the more useful intrinsics.

A list that summarizes all the SPU intrinsics is presented in table 18 in the Cell
Broadband Engine Programming Tutorial document.

4.6.3 Compiler directives

Like compiler intrinsics, compiler directives are crucial programming elements. In
this chapter we summarize some of the more important ones for SPU
programming.

aligned attribute

The aligned attribute is very important in Cell BE programming and is used to
ensure proper alignment of variables in the program.

There are two main cases where this attributes may be used:

» To ensure proper alignment of the DMA source or destination buffer. A 16
bytes alignment is mandatory for data transfer of more then 16 bytes while
128 bytes alignment is optional but provides better performance.

» To ensure proper alignment of the scalar. Whenever a scalar is often used it is
recommended to align it with the preferred slot in order to save shuffle
operations while it is read or modified.

The syntax of this attribute for the SDK gcc and xlc implementations to align a
variable into quadword (16 bytes) is:

float factor _attribute ((aligned (16)));

Please note that the compilers currently do not support alignment of automatic
(stack) variables to an alignment that is stricter then the alignment of the stack
itself (16 bytes).

volatile keyword

The volatile keyword can be set when some variable is defined. It instructs the
compiler that this variable may be changed for some reason that is not related to
the program execution itself (i.e. program instructions). This prevent the compiler
from doing optimizations that assumes that the memory does not change unless
a store instruction wrote new data to it.

Chapter 4. Cell BE programming 251



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Such scenario happens when some hardware component besides the processor
itself may modify this variable.

For a Cell BE program (either SPU or PPE) it is recommended to define buffers
that are written by the DMA as volatile, for example a buffer on the LS to which a
‘get’ command write data. Doing so ensures that buffers are not accessed by
SPU load or store instructions until after DMA transfers have completed.

The syntax of this keyword for the SDK is shown as follows:

volatile float factor;

builtin_expect directive

Since branch mispredicts are relatively expensive, _builtin_expect provides a
way for the programmer to direct branch prediction. This example:

int _ builtin_expect(int exp, int value)

returns the result of evaluating exp , and means that the programmer expects exp
to equal value. The value can be a constant for compile-time prediction, or a
variable used for run-time prediction.

Using this directive is further discussed, including some useful code examples in
Chapter, “Branch hint” on page 281.

align_hint directive

The _align_hint directive helps compilers “auto-vectorize”. Although it looks like
an intrinsic, it is more properly described as a compiler directive, since no code is
generated as a result of using the directive. The example:

_align_hint(ptr, base, offset)

informs the compiler that the pointer ptr points to data with a base alignment of
base, with a byte offset from the base alignment of offset. The base alignment
must be a power of two. Giving 0 as the base alignment implies that the pointer
has no known alignment. The offset must be less than the base, or, zero. The
_align_hint directive should not be used with pointers that are not naturally
aligned.

restrict qualifier

The restrict qualifier is well-known in many C/C++ implementations, and it is
part of the SPU language extension. When the restrict keyword is used to
qualify a pointer, it specifies that all accesses to the object pointed to are done
through the pointer. For example:

void *memcpy(void * restrict sl, void * restrict s2, size_t n);

252 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

By specifying s1 and s2 as pointers that are restricted, the programmer is
specifying that the source and destination objects (for the memory copy) do not
overlap.

4.6.4 SIMD programming

This chapter discuss how to write SIMD operation based programs to be run on
the SPU and in specific how the programer can convert code that is based on
scalar data types and operations to a code that is based on vector data types and
SIMD operations.

algorithm vectorized by the programmer

» “Vector data types” discuss the vector data types that are supported for SIMD
operation.

» “SIMD operations” discuss which SIMD operation are supported in the
different libraries and how to use them

» “Loop unrolling for converting scalar data to SIMD data” discuss the main
technique for converting a scalar code to a SIMD one by unrolling long loops.

» “Data organization - AOS versus SOA” discuss the two main data
organization methods for SIMD programming and also how a scalar code may
be converted to SIMD using the more common data organization method
among the two (SOA).

Another alternative to covert scalar code into SIMD code is to let the compiler
perform automatically conversion of the code. This approach is called
auto-SIMDizing and is further discussed in Chapter 4.6.5, “Auto-SIMDizing by
compiler” on page 264.

Vector data types
SPU SIMD programming operates on vectors data types. Following are few of the
main attributes of those data types:

» 128 bits (16B) long.
» Aligned on quadword (16B) boundaries.

» Different data type are supported: fixed point (e.g. char, short, int, signed or
unsigned) and floating point (e.g. float and double).

» Contain from 1 to 16 elements per vector depends on the corresponding type.

» Stored in memory similar to array of the corresponding data types (e.g. vector
of integer is like array of four 32b integers).

Chapter 4. Cell BE programming 253



7575CH_CHIPPGM.fm

Draft Document for Review February 15, 2008 4:59 pm

In order to use the data types the programer should include spu_intrinsics.h
header file.

As general, the vector data types shared a lot in common with ordinary C
language scalar data types:

>

Pointers to vector types can be defined and so are operations on those
pointers. For example, in case the pointer vector float *p is defined then
p+1 points to the next vector (16B) after that pointed to by p.

Arrays of vectors can be define and so as operations on those arrays. For
example, in case the array vector float p[10] is defined then p[3] is the
third variable in this array.

The vector data types can be used in two different formats:

»

Full names which are combination of the data type of the elements that this
vector consist of, together with vector prefix (e.g. vector signed int).

Single token typedefs (e.g. vec_int4) which are more recommended since
they are shorter and are also compatible with using the same code for PPE
SIMD programming.

Table 4-20 summarizes the different data types that are supported by the SPU
including both the full and the corresponding single token typedefs.

Table 4-20 Vector data types

Vector data type

Single-Token Content

Typedef

vector unsigned char

vec_uchar16 Sixteen 8-bit unsigned chars

vector signed char

vec_char16 Sixteen 8-bit signed chars

vector unsigned short

vec_ushort8 Eight 16-bit unsigned halfwords

vector signed short vec_short8 Eight 16-bit signed halfwords
vector unsigned int vec_uint4 Four 32-bit unsigned words
vector signed int vec_int4 Four 32-bit signed words

vector unsigned long long | vec_ullong2 Two 64-bit unsigned doublewords
vector signed long long vec_llong2 Two 64-bit signed doublewords
vector float vec_float4 Four 32-bit single-precision floats
vector double vec_double2 Two 64-bit double precision floats

qword

quadword (16-byte)

254 Programming the Cell Broadband Engine: Examples and Best Practices




Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

SIMD operations

This chapter discuss how the programer may perform SIMD operations on an
SPU program vectors. There are four main options to perform SIMD operations
as discuss in the following four chapters:

1. “SIMD arithmetic and logical operators” - SDK3.0 compilers support a vector
version of some of the common arithmetic and logical operators. Those
operator work on each element of the vector.

2. “SIMD low level intrinsics” - high level C functions which support almost all the
SPU’s SIMD assembiler instructions. Those intrinsics contains basic logical
and arithmetic operations between 128 bits vectors from different types, and
also some operations between elements of a single vector.

3. “SIMDmath library” - extend the low level intrinsic and provides functions that
implement more complex mathematical operations (e.g. root square and
trigonometric operations) on 128 bit vectors.

4. “MASS and MASSYV libraries”™ MASS library provided similar functions as
SIMDmath library but optimized to have better performance in the price of
having redundant accuracy. MASSV perform similar operations on longer
vectors who has any multiple of 4 length.

SIMD arithmetic and logical operators

SDK compilers support a vector version of some of the common arithmetic and
logical operators. This is the easiest way to program SIMD operations as the
syntax is identical to programing with scalar variables. When those operators are
applied on vector variables, the compiler translate it to operators that work
separately on each element of the vectors.

While the compilers support some basic arithmetic, logical and rational
operators, not all the existing operators are currently supported. In case the
required operator is not supported, the programer should use the other
alternatives that are described in the following chapters.

The operator that are supported are:

» Vector subscripting: [ ]

» Unary operators: ++, --, +, -, ~

» Binary operators: +, -, *, /, unary minus, %, &, |, A, <<, >>

» Relational Operators: ==, =, <, >, <=, >=

More details about this subject are in the Operator Overloading for Vector Data

Types chapter in C/C++ Language Extensions for Cell BE Architecture
document.

Chapter 4. Cell BE programming 255



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Example 4-54 shows a simple code that uses some SIMD operators.

Example 4-54 Simple SIMD operator code

#include <spu_intrinsics.h>

vector float vecl={8.0,8.0,8.0,8.0}, vec2={2.0,4.0,8.0,16.0};

vecl = vecl + vec?2;
vecl -vecl;

SIMD low level intrinsics

SDK 3.0 provides a reach set of low-level specific and generic intrinsics which
support the SIMD instructions that are supported by the SPU assembler
instruction set (e.g. c=spu_add(a,b) intrinsic stands for add vc,va,vb instruction).
Those are C level functions that are implemented either internally within the
compiler or as macros.

The intrinsics are grouped into several types according to their functionality, as
described in Chapter, “Intrinsics: functional types” on page 250. The three
groups which contains the most significant SIMD operations are:

» Arithmetic intrinsics which perform arithmetic operation on all the elements of
the given vectors (e.g. spu_add, spu_madd, spu_nmadd, ...)

» Logical intrinsics which perform logical operation on all the elements of the
given vectors (spu_and, spu_or, ...).

» Byte operations which perform operations between bytes of the same vector
(e.g. spu_absd, spu_avg,...).

The intrinsics support different data types and it is up to the compiler to translate
the intrinsics to the correct assembly instruction depends on the type of the
intrinsic operands.

In order to use those the SIMD intrinsics the programer should include the
spu_intrinsics.h header file.

Example 4-55 shows a simple code that uses low level SIMD intrinsics.

Example 4-55 Simple SIMD intrinsics code

#include <spu_intrinsics.h>

vector float vecl={8.0,8.0,8.0,8.0}, vec2={2.0,4.0,8.0,16.0};

256 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

vecl = spu_sub( (vector float)spu_splats((float)3.5), vecl);
vecl = spu_mul( vecl, vec2);
SIMDmath library

While SIMD intrinsics contains various basic mathematical functions that are
implemented by corresponding SIMD assembly instructions, more complex
mathematical functions are not supported by those intrinsics. The SIMDmath
library is provided with SDK3.0 and address this issue by providing a set of
functions that extend the SIMD intrinsics and support additional common
mathematical functions. The library, like the SIMD intrinsics, operates on short
128 bits vectors from different types (e.qg. single precision float, 32 bit integer) are
supported. It depends on the specific function which vector types are supported.

The SIMDmath library provide functions for the following categories:

1. Absolute value and sign functions: remove or extract the signs from values.

2. Classification and comparison functions: return boolean values from
comparison or classification of elements.

3. Divide, multiply, modulus, remainder and reciprocal functions: standard
arithmetic operations.

4. Exponentiation, root, and logarithmic functions: functions related to
exponentiation or the inverse.

5. Gamma and error functions: probability functions.

6. Minimum and maximum functions: return the larger, smaller or absolute
difference between elements.

7. Rounding and next functions: convert floating point values to integers.

8. Trigonometric functions: sin, cos, tan and their inverses.

9. Hyperbolic functions: sinh, cosh, tanh and their inverses.

The SIMDmath library is an implementation of most of the C99 math library (-Im)
that operates on short SIMD vectors. The library functions conform as closely as
possible to the specifications set out by the scalar standards. However,
fundamental differences between scalar architectures and the Cell BE
architecture require some deviations, including the handling of rounding, error
conditions, floating-point exceptions and special operands such as NaN and
infinities.

The SIMDmath library can be used in two different versions:

» linkable library archive - a static library that contains all the library functions.
Using this version is more convenient to code since it only requires the

Chapter 4. Cell BE programming 257



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

inclusion of a single header file, but it produces slower, and potentially larger
binaries (depends on the frequency of invocation) due to the branching
instructions necessary for function calls. The function calls also reduces the
number of instructions available for scheduling and leveraging the large SPE
register file.

» set of inline function headers - a set of standalone inline functions. This
version require extra header files to be included for each math function used,
but produce faster and smaller (unless inlined multiple times) binaries,
because the compiler is able to reduce branching and often achieves better
dual-issue rates and optimization.

The functions names are prefixed with an underscore character’_’ compare
to the linkable library format (e.g. inline version of fabsf4 is _fabsf4).

To use the SIMDmath library the programer should do the following:

» For the linkable library archive version, include the primary header file
Jusr/spu/include/simdmath.h

» For the linkable library archive version, link the SPU application with the
/ust/spu/lib/1ibsimdmath.a library.

» For the inline functions version include a distinct header file for each function
used. Those header files are in /usr/spu/include/simdmath directory. For
example, add #include <simdmath/fabsf4.h>to use _fabsf4 inline function.

» In addition, some classification functions require inclusion of math.h file.

Additional information about this library exist in the following:

» Code example and additional usage instruction is in Chapter 8, “Case study:
Monte Carlo Simulation” on page 493.

» Function calls format is in SIMDmath Library APl Reference document.
» Function specification is in SIMD Math Library Specification.

MASS and MASSYV libraries
This chapter discuss two libraries that are part of SDK3.0 and implement various
SIMD functions:

» MASS (mathematical acceleration subsystem) library: functions which
operates on short 128 bits vectors. The interface of those functions is similar
to SIMDmath library that is described in Chapter, “SIMDmath library” on
page 257.

» MASSV (MASS vector) library: functions which can operate on longer vectors.
Vector length can be any number which is multiple of 4.

Similar to the SIMDmath library, the MASS libraries can be used in two different
versions - linkable library archive version, and inline functions version.

258 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

However, the implementation of the MASS and MASSYV libraries are different
from SIMDmath library on the following aspects:

» SIMDmath is focused on accuracy while MASS and MASSV are focused on
having better performance. For a performance comparison between the two
see “Performance Information for the MASS Libraries for CBE SPU”
document.

» SIMDmath has support across the entire input domain while MASS and
MASSV may restrict the input domain.

» MASS and MASSYV library support a subset of the SIMDmath library functions

» MASSYV library can work on long vectors whose length is any number which is
multiple of 4.

» The functions of MASSYV library have similar names as SIMDmath and MASS
functions but with “vs” prefix.
In order to use those the MASS library the programer should do the following:

» For both versions above, include the mass_simd.h and simdmath.h header
files in /usr/spu/include/ directory in order to use the MASS functions, and
include massv.h header files for MASSV functions.

» For both versions above, link the SPU application with the libmass_simd. a
header file for MASS functions and with Tibmassv.a file for MASSV functions.
Both files are in /usr/spu/1ib/ directory.

» In addition, for the inline functions version include a distinct header file for
each function used. Those header files are in /usr/spu/include/mass
directory. For example, include acosf4.h header file to use acosf4 inline
function.

Additional information about this library exist in the following:

» Function call format and brief description is in “MASS C/C++ function
prototypes for CBE SPU” document.

» Usage instructions is in “Using the MASS libraries on CBE SPU” document.

Loop unrolling for converting scalar data to SIMD data

This chapter discuss the loop unrolling programming technique which is one of
the most common methods for practicing SIMD programming.

The process of loop unrolling related to SIMD programming involves:

» The programer expand a loop such as each new iteration contains several of
what used to be an old iteration (before the unrolling).

Chapter 4. Cell BE programming 259



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» Few operations on scalar variables on the old iteration are joined to a single
SIMD operation on a vector variable in the new iteration. The vector variable
contains several of the original scalar variables.

The loop unrolling can provide significant performance improvement when
applied on relatively long loops in an SPU program. The improvement is
approximately in the factor which is equal to the number of elements in a unrolled
vector (e.g. unrolling a loop that operated on single precision float provide four
time speedup since four such 32b float exists in the 128b vector).

Example 4-56 shows a code that practice the loop unrolling technique. The code
contains two version of multiply between two inout array of float. The first version
is an ordinary scalar version (mult_ function) and the second is loop-unrolled
SIMD version (vmult_ function).

Source code: The code of Example 4-56 is included in the additional material
that is provided with this book. See “SPE loop unrolling” on page 616 for more
information.

Please notice that in this example we requires that the arrays are quadword
aligned and the array length is divisible by 4 (stands for 4 float elements in a
vector of floats).

Two general comments regarding the alignment and length of the vectors:

» We insure that the quadword alignment using the aligned attribute which is
recommended in most cases. If this is not the case a scalar prefix may be
added to the unrolled loop to handle the first not aligned elements.

» Itis recommended to try to work with arrays whose length are divisible by 4. If
this is not the case, a suffix may be added to the unrolled loop to handle the
last elements.

Example 4-56 SIMD loop unrolling

#include <spu_intrinsics.h>
#define NN 100

// multiply - scalar version
void mult_(float *inl, float *in2, float *out, int N){
int i;
for (i=0; i<N; i++){
out[i] = inl[i] * in2[i];
1

260 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// multiply - SIMD Toop-unrolled version
// assume the arrays are quadword aligned and N is divisible by 4
void vmult_(float *inl, float *in2, float *out, int N){

}

int i, Nv;
Nv = N>>2; //divide by 4;

(vec_floatd*)inl, *vin2 = (vec_floatd*)in2;
(vec_floatd*)out;

vec_floatd *vinl
vec_float4 *vout

for (i=0; i<Nv; i++){
vout[i] = spu_mul( vinl[i], vin2[i]);
}

int main( )

{

float inl[NN] _ attribute_ ((aligned (16)));
float in2[NN] _ attribute_ ((aligned (16)));
float out[NN];

float vout[NN] _ attribute_ ((aligned (16)));

// init inl and in2 vectors

// scalar multiply €inl’ and ‘in2’ into ‘out’ array
mult_(inl, in2, out, (int)NN);

// SIMD multiply “inl”> and ®in2’ into ‘vout’ array
vmult_(inl, in2, vout, (int)NN);

return 0;

Data organization - AOS versus SOA

This section discusses the two main data organization methods for SIMD
programming and also how a scalar code may be converted to SIMD using the
more common data organization method among the two (SOA).

Depending on the programmer’s performance requirements and code size
restraints, advantages can be gained by properly grouping data in an SIMD
vector. There are two main methods to organize the data as presented below.

Chapter 4. Cell BE programming 261



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

The first method organizing data in SIMD vectors is called an array of structures
(40S) as demonstrated in Figure 4-8. This figure shows a natural way of using
SIMD vectors to store the homogenous data values (x, y, z, w) for the three
vertices (a, b, c) of a triangle in a 3D-graphics application. This organization has
the name array of structures because the data values for each vertex are
organized in a single structure, and the set of all such structures (vertices) is an
array.

\ector A
Vector B

Vector C

Mector D

Figure 4-8 AOS (array of structures) organization

The second method is a structure of arrays (SOA) as demonstrated in Figure 4-9
which shows such SOA organization to represent the x, y, z vertices for four
triangles. Not only are the data types the same across the vector, but now their
data interpretation is the same. Each corresponding data value for each vertex is
stored in a corresponding location in a set of vectors. This is different from the
AOS case, where the four values of each vertex are stored in one vector.

Vector A

Vector B

Vector C

Vector D

Figure 4-9 SOA (structure of arrays) organization

The AOS data-packing approach often produces small code sizes, but it typically
executes poorly and generally requires significant loop-unrolling to improve its
efficiency. If the vertices contain fewer components than the SIMD vector can
hold (for example, three components instead of four), SIMD efficiencies are
compromised.

On the other hand, when using SOA it is usually very easy to perform loop
unrolling or other SIMD programing on. The programer can think of the data as if

262 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

it were scalar, and the vectors are populated with independent data across the
vector. The structure of a unrolled loop iteration should be similar to the scalar
case but with one main difference of simply replacing the scalar operations with
identical vectors operation the work simultaneously on few elements which are
gathered in one element.

Example 4-57 illustrate a process of taking a scalar loop in which the elements
are stored in AOS organization and the equivalent unrolled SOA based loop
which has 4 times less iterations. Please notice that the scalar and the unrolled
SOA loop are very similar and uses the same ‘+* operators. The only difference is
how the indexing to the data structure is performed.

Source code: The code of Example 4-57 is included in the additional material
that is provided with this book. See “SPE SOA loop unrolling” on page 616 for
more information.

Example 4-57 SOA loop unrolling

#define NN 20

typedef struct{ // AOS data structure - stores one element
float x;
float y;
float z;
float w;
} vertices;

typedef struct{ // SOA structure - stores entire array
vec_float4 x[NN];
vec_float4 y[NN];
vec_float4 z[NN];
vec_float4 w[NN];
} vvertices;

int main( )
{
int i, Nv=NN>>2;

vertices vers[NN*4];
vvertices vvers _ attribute_ ((aligned (16)));

// init x, y, and z elements

// original scalar loop - work on AOS which is difficult to SIMDized

Chapter 4. Cell BE programming 263



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

for (i=0; i<NN; i++){
vers[i].w = vers[i].x + vers[i].y;
vers[i].w = vers[i].w + vers[i].z;

}

// SOA unrolled SIMDized Toop

for (i=0; i<Nv; i++){
vvers.w[i] = vvers.x[i] + vvers.y[i];
vvers.w[i] = vvers.w[i] + vvers.z[i];

}

return 0;

The subject of different SIMD data organization is further discussed in
Converting Scalar Data to SIMD Data chapter in Cell Broadband Engine
Programming Handbook document.

4.6.5 Auto-SIMDizing by compiler

This chapter discuss the auto-SIMDizing support by Cell Be’s GCC and XLC
compilers. auto-SIMDizing is the process in which a compiler automatically
merges scalar data into a parallel-packed SIMD data structure. The compiler
perform this process by first identifies parallel operations in the scalar code, such
as loops. The compiler then generates SIMD versions of them, for example by
automatically performing loop unrolling. During this process, the compiler
performs all analysis and transformations necessary to fulfill alignment
constraint.

From the programer point of view, it means that in some cases there is not need
to perform explicit translation of scalar code into a SIMD one as described in
chapter “SIMD programming”. Instead, the programer may write ordinary scalar
code and instruct the compiler to perform auto-SIMDizing and translated the high
level scalar code into SIMD data structures and SIMD assembly instructions.

However, at this point, there are limitations on the compilers’ capabilities in
translating a certain scalar code to a SIMD one and not any scalar code that
theoretically can be translated into a SIMD will eventually be translated by the
compilers.

Hence, a programmer knowledge of the compiler limitations is required, and
which will enable the programer to choose in one of the two options:

» Write a code in a way that is supported by the compilers for auto-SIMDizing.

264 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» Recognize the places in the code where auto-SIMDizing is not realistic and
perform explicit SIMD programming in those places.

In addition, the programer should monitor the compiler auto-SIMDizing results in
order to verify in which places the auto-SIMDizing was successful and in which
cases it failed.

The programer may perform an iterative process of compiling with
auto-SIMDizing option enabled, debugging the places where auto-SIMDizing
failed, re-write the code in those cases, and then re-compile.

In order to activate the compilers auto-SIMDization, the programer should do the
following:

» When using XLC: use optimization level -03 -ghot or higher.
» When using GCC: use optimization level -02 —ftree-vectorize or higher.

The next chapters discuss the following issues:

» “Coding for effective auto-SIMDization”- discuss how to wrote code which
enables the compiler to perform effective auto-SIMDization, and what are the
limitation of the compilers in auto-SIMDizing other types of code.

» “Debugging the compiler’'s auto-SIMDization results” - discuss how the
program may debug the compilers’ auto-SIMDization results in order to know
wether is was successful or not. If it was not successful the compiler provide
information of the potential problems which enables the programer to re-write
the code.

Coding for effective auto-SIMDization

This chapter describes how to wrote code which enables the compiler to perform
effective auto-SIMDization. The chapter also discuss the limitations of the
compilers in auto-SIMDization of a scalar code. Knowing those limitation enables
the programer to identify the places where auto-SIMDization is not possible. In
those places the programer should then explicitly translate into a SIMD code.

Organize algorithms and loops

The programer should organize loops so that they can be auto-SIMDized and
also structure algorithms to reduce dependencies:

» The inner-most loops are the ones that may be SIMDized.
» The programer should not manually unroll the loops.

» The programer should use ‘for’ loop construct since they are the only ones
that can be auto-SIMDized. The ‘while’ construct on the other hand can not
be auto-SIMDized.

» The number of iterations should be:

Chapter 4. Cell BE programming 265



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

— aconstant (preferred using #define directive) and not a variable.

— more than three times the number of elements per vector. Shorter loops
might also be SIMDizable but it depends on their alignment and the
number of statements in the loop.

» Using ‘break’ or ’continue’ statement inside a loop should be avoided.

» The programer should avoid function calls within loops since they are not
SIMDizable. Instead, either inline functions or macros may be used, or
instead enable inlining by the compiler and possibly add an inlining directive
to make sure that it happens. Another alternative is distributing the function
calls into a separate loop.

» The programer should try to avoid operations that do not easily mapped onto
vector operations. In general, all operations except branch, hint-for-branch,
and load are capable of being mapped.

» The programer should use the select operation for conditional branches within
the loop. Since loops that contain if-then-else statements might not always be
SIMDizable, the programer should prefer using the C language :? (colon
question-mark) operator which will cause the compiler to SIMDize this section
using the select bits instruction.

» The programer should avoid aliasing problems, for example by using the
restrict qualified pointers (illustrated in Example 4-60 on page 270). This
qualifier when applied to a data pointer indicates that all access to this data
are performed through this pointer an not through other pointer.

» Loops with inherent dependences are not SIMDizable, as illustrated in
Example 4-58 on page 268.

» The programmer should keep the memory access-pattern simple:
— Not using array of structures
For example: for (i=0; i<N; i++) a[i].s = x;

— Should use constant increment.
For example, do not use: for (i=0; i<N; i+=incr) a[i] = x;

Organize data in memory

the programer should lay out data in memory so that operations on it can be
easily SIMDize:

» The programer should use stride-one accesses (memory access patterns in
which each element in a list is accessed sequentially). Non-stride-one
accesses are less efficiently SIMDized, if at all. Random or indirect accesses
are not SIMDizable.

» The programer should use arrays and not pointer arithmetic in the application
to access large data structures.

266 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

» The programer should use global arrays that are statically declared.

» The programer should use global arrays that are aligned to 16B boundaries,
for example using aligned attribute. As general, the programer should lay out
the data to maximize 16B aligned accesses.

» If have more than a single misaligned store — the programer should distribute
into a separate loop (currently the vectorizer peels the loop to align a
misaligned store).

» Ifitis not possible to use aligned data, the programer should use the alignx
directive to indicate to the compiler what the alignment is.
For example: #pragma alignx(16, p[i+n+1]);

» If it is known that arrays are disjoint, the programer should use the disjoint
directive to indicate to the compiler that the arrays specified by the pragma
are not overlapping:

For example: #pragma disjoint(*ptr_a, b)
#pragma disjoint(*ptr_b, a)

Mix of data types

The mix of data types within code sections that may be potentially be SIMDized
(i.e. loops with many iterations) may present problems. While the compiler may
succeed in SIMDizing those sections, the programmer should try to avoid such
mix of data types and try to keep a single data type within those section.

Scatter-gather

Scatter-gather refers to a technique for operating on sparse data, using an index
vector. A gather operation takes an index vector and loads the data that resides
at a base address added to the offsets in the index vector. A scatter operation
stores data back to memory, using the same index vector.

The Cell BE processor’s SIMD architecture does not directly support
scatter-gather in hardware. therefore, the best way to extract SIMD parallelism is
to combine operations on data in adjacent memory addresses into vector
operations. This means that the programer may use scatter-gather to bring the
data into a continuos area in the local store and then sequentially loop on the
elements of this area variable. doing so may enable the compiler to SIMDize this
loop.

Debugging the compiler’s auto-SIMDization results

The XLC enables the programer to debug the compiler’s auto-SIMDization
results using the -greport option. Doing so will produce a list of high level
transformation performed by the compiler which includes everything from
unrolling, loop interchange, and SIMD transformations. A transformed “pseudo
source” will also be presented.

Chapter 4. Cell BE programming 267



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

All loops considered for SIMDization are reported
» Successful candidates are reported

» If SIMDization was not possible, the reasons that prevented it are also
provided

This feature is useful since it enables the programer to quickly identify
opportunities for speedup. It provides feedback to the user explaining why loops
are not vectorized. While those messages are not always trivial to understand,
they may allow the programer to rewrites the relevant sections to allow SIMD
vectorization.

Similarly, the GCC can also provide debug information about the auto-SIMDizing
process using the following options:

» -ftree-vectorizer-verbose=[X] - Dumps information on which loops got
vectorized, and which didn’t and why (X=1 least information, X=6 all
information). the information is dumped to stderr unless following flag is used:

» -fdump-tree-vect - Dumps information into <C file name>.c.t##.vect
» -fdump-tree-vect-details - Equivalent to setting the combination of the two
flags: -fdump-tree-vect -ftree-vectorizer-verbose=6

The rest of the chapter illustrate how to debug a code which may not be
SIMDized as well as another code which can be successfully SIMDized. We
illustrate it using the XLC debug features (-qreport option enabled).

Example 4-58 shows a SPU code of a program named t.c which is hard to be
SIMDized because of dependencies between sequential iterations:

Example 4-58 A non SIMDized loop

extern int *b, *c;

int main(){
for (int i=0; 1<1024; ++i)
b[i+1] = b[i+2] - c[i-1];

The code is then compiled with -qreport option enabled using the command:

spuxlc -c -ghot -qreport t.c”, in t.lIst

268 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Example 4-59 shows the t.1st file that is generated by the XLC compiler and
contains the problems in SIMDizing the loop and also the transformed “pseudo
source”:

Example 4-59 Reporting of SIMDization problems

1586-535 (I) Loop (loop index 1) at t.c <line 5> was not SIMD
vectorized because the aliasing-induced dependence prevents SIMD
vectorization.

1586-536 (I) Loop (loop index 1) at t.c <line 5> was not SIMD
vectorized because it contains memory references with non-vectorizable
alignment.

1586-536 (I) Loop (loop index 1) at t.c <line 6> was not SIMD
vectorized because it contains memory references ((char *)b +
(4)*(($.CIVO + 1))) with non-vectorizable alignment.

1586-543 (I) <SIMD info> Total number of the innermost loops considered
<"1">, Total number of the innermost loops SIMD vectorized <"0">.

3| 1long main()

{
5 | if (!1) goto lab_5;
$.CIVO = 0;
6 | $.ICM.b0 = b;
$.ICM.cl = c;
5] do{ /* id=1 guarded */ /* ~4 */
/* region = 8 */
/* bump-normalized */
6 | $.ICM.bO[$.CIVO + 1] = $.ICM.bO[$.CIVO + 2] -
$.ICM.c1[$.CIVO - 1];
5 | $.CIVO = $.CIVO + 1;
} while ((unsigned) $.CIVO < 1024u); /* ™4/
lab_5:
rstr = 0;

Other examples of messages that report problems with performing
auto-SIMDization:

» Loop was not SIMD vectorized because it contains operation which is
not suitable for SIMD vectorization.

» Loop was not SIMD vectorized because it contains function calls.

» Loop was not SIMD vectorized because it is not profitable to
vectorize.

» Loop was not SIMD vectorized because it contains control flow.

Chapter 4. Cell BE programming 269



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» Loop was not SIMD vectorized because it contains unsupported vector
data types

» Loop was not SIMD vectorized because the floating point operation is
not vectorizable under -gstrict.

» Loop was not SIMD vectorized because it contains volatile reference

Example 4-60 shows a SPU code of which is similar to the previous example but
with correcting SIMD Inhibitors:

Example 4-60 A SIMDized loop

extern int * restrict b, * restrict c;

int main()

{
// __alignx(16, c); Not strictly required since compiler
// __alignx(16, b); inserts runtime alignment check

for (int i=0; 1<1024; ++i)
b[i] = b[i] - c[il;

Example 4-61 shows the output t.1st file after compiling with -qreport option
enabled. The example report a successful auto-SIMDizing and also the
transformed “pseudo source”:

Example 4-61 Reporting of SIMDization problems

1586-542 (I) Loop (loop index 1 with nest-level 0 and iteration count
1024) at t.c <line 9> was SIMD vectorized.
1586-542 (1) Loop (Toop index 2 with nest-level 0 and iteration count
1024) at t.c <line 9> was SIMD vectorized.
1586-543 (I) <SIMD info> Total number of the innermost Toops considered
<"2">. Total number of the innermost loops SIMD vectorized <"2">.
4 | long main()
{

$.ICM.b0 = b;

$.ICM.cl = c;

$.CSE2 = $.ICM.c1 - $.ICM.bO;

$.CSE4 = $.CSE2 & 15;

if (!(! $.CSE4)) goto lab_6;

270 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

4.6.6 Using scalars and converting between different vector types

This chapter discuss how to convert between different types of vectors and how
to work with scalars in the SIMD environment of the SPE. The three sections in
this chapter covers the following issues:

» “Converting between different vector types” - describes how to perform
correct and efficient conversion between vectors of different types.

» “Scalar overlay on SIMD instructions” - describes how to use scalars in SIMD
instructions, include how to format them into vector data type and how to
extract the results scalar from the vectors.

» “Casting between vectors and scalar’ - describes how to cast vectors into
equivalent array of scalars and vice versus.

Converting between different vector types

Casts from one vector type to another vector type has to be explicit and can be
done using normal C-language casts. However, none of these casts performs
any data conversion and the bit pattern of the result is the same as the bit pattern
of the argument that is cast.

Example 4-62 shows an example of how we do not recommended casting
between vectors. This is because the method shown usually does not provide the
result expected by the programer since the integer variable i_vector will be
assigned with a single precision float f_vector variable which has different
format (i.e. the casting will not convert the bit pattern of the float to integer
format).

Example 4-62 Not recommended casting between vectors

// BAD programming example
vector float f_vector;
vector int i_vector;

i_vector = (vector int)f _vector;

Instead, the recommended way to perform casting between vectors is using
special intrinsics that convert between different data types of vectors including
modify the bit pattern to the required type. The conversion intrinsics are:

Chapter 4. Cell BE programming 271



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

» spu_convtf: convert signed or unsigned integer vector to float vector.
» spu_convts: convert float vector to signed integer vector.
» spu_convtu: convert float vector to unsigned integer vector.

» spu_extend: extend input vector to output vector whose elements have two
times larger elements the input vector’s (e.g short vector is extended to int
vector, float vector is extended to double, etc.).

Scalar overlay on SIMD instructions

The SPU loads and stores one quadword at-a-time. When instructions use or
produce scalar (sub quadword) | operands (including addresses), the value is
kept in the preferred scalar slot of a SIMD register. The fact that the scalar should
be located in the specific preferred slots requires extra instructions whenever a
scalar is used as part of a SIMD instruction:

» When a scalar is loaded in order to be a parameter of some SIMD instruction
it should be rotated to the preferred slot before being executed.

» When a scalar should be modified by some SIMD instruction it should be
loaded, rotated to the preferred slot, modified by the SIMD instruction, rotated
back to its original alignment and stored in to memory.

Obviously these extra rotating instructions reduce performance making vector
operations on scalar data are not efficient.

The first technique in order to make such scalar operations more efficient is a
static one:

» Use the aligned attribute and extra padding if needed in order to statically
align the scalar to the preferred slot. Using this attribute is described in
“aligned attribute” on page 251.

» Change the scalars to quadword vectors. This will eliminate the three extra
instructions associated with loading and storing scalars which will reduce the
code size and execution time.

In addition, the programer may use one of the SPU intrinsics to efficiently
promote scalars to vectors, or vectors to scalars:
» spu_insert: Insert a scalar into a specified vector element.

» spu_promote: Promote a scalar to a vector containing the scalar in the
element that is specified by the input parameter. Other elements of the vector
are undefined.

» spu_extract: Extract a vector element from its vector and return the element
as scalar.

272 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

>

spu_splats: Replicate a single scalar value across all elements of a vector of
the same type.

Since those instructions are very efficient, the programer can use them to
eliminate redundant loads and stores. One example for using those instructions
is to cluster several scalars into vectors, load multiple scalars at one instruction
using a quadword memory, and perform SIMD operation that will operate on all
the scalars at once.

There are two possible implementation for such mechanism:

1.

Use extract or insert intrinsics: Cluster several scalars into vector using
spu_insert intrinsics, perform some SIMD operations on them and extract
them back to their scalar shape using spu_extract intrinsic.

Example 4-63 show an SPU program that implements this mechanism. Even
this simple case is more efficient then multiply the scalar vectors one by one
using ordinary scalar operations. Obviously, if more SIMD operations are
performed on the constructed vector, the performance overhead of creating
the vector and extracting the scalars becomes negligible.

. Another possible implementation is using the unions that perform casting

between vectors and scalars arrays and are described in Example 4-64 on
page 275 and the following Example 4-65.

Source code: The code of Example 4-63 is included in the additional material
that is provided with this book. See “SPE scalar to vector conversion using
insert and extract intrinsics” on page 617 for more information.

Example 4-63 Cluster scalars into vectors

#include <spu_intrinsics.h>
int main( )

{

float a=10,b=20,c=30,d=40;
vector float abcd;
vector float efgh = {7.0,7.0,7.0,7.0};

// initiate ‘abcd’ vector with the values of the scalars
abcd = spu_insert(a, abcd, 0);

abcd = spu_insert(b, abcd, 1);
abcd = spu_insert(c, abcd, 2);
abcd )

spu_insert(d, abcd, 3

t

// SIMD multiply the vectors
abcd = spu_mul(abcd, efgh);

Chapter 4. Cell BE programming 273



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

// do many other SIMD operations on ‘abcd’ and ‘efgh® vectors

// extract back the ‘multiplied’ scalar from the computed vector
a = spu_extract(abcd, 0);
spu_extract(abcd, 1);
spu_extract(abcd, 2);
spu_extract(abcd, 3);

b
c
d

printf("a=%f, b=%f, c=%f, d=%f\n",a,b,c,d);
return 0;

Casting between vectors and scalar

The SPU vector data types are kept in the memory in continuos 16 bytes area
whose address is also 16 bytes aligned. Pointers to vector types and non-vector
types may therefore be cast back and forth to each other. For the purpose of
aliasing, a vector type is treated as an array of its corresponding element type.
For example, a vector float can be castto float* and vice versus.

If a pointer is cast to the address of a vector type, it is the programmer’s
responsibility to ensure that the address is 16-byte aligned.

Casts between vector types and scalar types are illegal. On the SPU, the
spu_extract, spu_insert, and spu_promote generic intrinsics or the specific
casting intrinsics may be used to efficiently achieve the same results.

In some cases it is essential to perform SIMD computation on some vectors but
also perform some computations between different elements of the same vector.
From convenient programming approach for that is define casting unions of either
vectors or array of scalars as explained in Example 4-64.

Source code: The code of Example 4-64 and Example 4-65 is included in the
additional material that is provided with this book. See “SPE scalar to vector
conversion using unions” on page 617 for more information.

A SPU program that may uses those casting union is shown in the code of
Example 4-65. The program uses those unions to perform a combination of
SIMD operations on the entire vector and scalar operations between the vector
elements.

It is important to know that while the scalar operation are easy to program that
way they are not very efficient form performance point of view so the programer

274 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

should try to minimize the frequency in which they happen and use them only if

there is not simple SIMD solution.

Example 4-64 Header file for casting between scalars and vectors

#include <spu_intrinsics.h>
typedef union {
vector signed char c_v;

signed char c_s[16];

vector unsigned char uc_v;
unsigned char uc_s[16];

vector signed short s _v;
signed short s s[8];

vector unsigned short us_v;
unsigned short us_s[8];

vector signed int i_v;
signed int i_s[4];

vector unsigned int ui_v;
unsigned int ui_s[4];

vector signed long long 1_v;
signed long long 1 _s[2];

vector unsigned long long ul v;
unsigned Tong long ul _s[2];

vector float f_v;
float f_s[4];

vector double d v;
double d_s[2];

}vecl28;

Chapter 4. Cell BE programming

275



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Example 4-65 Cluster scalars into vectors using casting union

#include <spu_intrinsics.h>
#include "vec_u.h" // code from Example 4-64 show

int main( )

{
vec_float a __attribute ((aligned (16)));
vec_float b __ attribute ((aligned (16)));

t

// do some SIMD operations on ‘a’ and ‘b’ vectors

// perform some operations between scalar of specific vector
a.s[0] = 10;

a.s[1] = a.s[0] + 10;

a.s[2] = a.s[1] + 10;

a.s[3] = a.s[2] + 10;

// initiate all ‘b’ elements to be 7
b.v = spu_splats( (float)7.0 );

// SIMD multiply the two vectors
a.v = spumul(a.v, b.v);

t

// do many other different SIMD operations on ‘a’ and ‘b’ vectors
// extract back the scalar from the computed vector
printf("a0=%f, al=%f, a2=%f, a3=%f\n",a.s[0],a.s[1],a.s[2],a.s[3]);

return 0;

4.6.7 Code transfer using SPU code overlay

276

This section provides a very brief overview on the SPU overlay facility which
handles cases in which the entire SPU code is too big to fit the LS (taking into
account that the 256 KB of LS should also store the data, stack and heap).
Overlays may be used in other circumstances; for example performance might be

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

improved if the size of data areas can be increased by moving rarely used
functions to overlays.

An overlay is a program segment which is not loaded into LS before the main
program begins to execute, but is instead left in main storage until it is required.
When the SPU program calls code in an overlay segment, this segment is
transferred to local storage where it can be executed. This transfer will usually
overwrite another overlay segment which is not immediately required by the
program.

The overlay feature is supported on SDK3.0 for SPU programming but not for
PPU programming.

Here are the main principles on which the overlay is base on:

» The linker generate the overlays as two or more code segments can be
mapped to the same physical address in local storage.

» The linker also generates call stubs and associated tables for overlay
management. Instructions to call functions in overlay segments are replaced
by branches to these call stubs.

» At execution time when a call is made from an executing segment to another
segment the system determines from the overlay tables whether the
requested segment is already in LS. If not this segment is loaded dynamically
using a DMA command, and may overlay another segment which had been
loaded previously.

» XL compilers can assist in the construction of the overlays based upon the
call graph of the application.

A detailed description of this facility including instructions how to use it and usage
example is in SPU code overlays chapter in Programmer's Guide document.

4.6.8 Eliminating and predicting branches

The SPU hardware assumes sequential instruction flow means that unless
explicitly defined otherwise assumes that all branches are not taken. Correctly
predicted branches execute in one cycle, but a mispredicted branch (conditional
or unconditional) incurs a penalty of 18 to 19 cycles, depending on the address of
the branch target. Considering the typical SPU instruction latency of 2 to 7
cycles, mispredicted branches can seriously degrade program performance. The
branch instructions also restrict a compiler’s ability to optimally schedule
instructions by creating a barrier on instruction reordering.

The most effective method of reducing the impact of branches is to eliminate
them using three primary methods that are discuss in the next three chapters:

Chapter 4. Cell BE programming 277



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

278

» “Function-inlining”: define functions as inline and avoid the branch when a
function is called and another branch when it is returned.

» “Loop-unrolling”: remove loops or reduce the number of iterations in loop in
order to reduce the number of branches (that appears in the end of the loop).

» “Branchless control flow statement”: use spu_sel intrinsics to replace simple
control statement.

The second-most effective method of reducing the impact of branches is discuss
on the last chapter:

» “Branch hint”: discuss the hint-for branch instructions. If software speculates
that the instruction branches to a target path, a branch hint is provided. If a
hint is not provided, software speculates that the branch is not taken (that is,
instruction execution continues sequentially).

Function-inlining

Function-inlining technique can be used to increase the size of basic blocks
(sequences of consecutive instructions without branches). This techniques
eliminates the two branches associated with function-call linkage - the branch for
function-call entry and the branch indirect for function-call return.

In order to use function inlining the programer can choose from one of the
following techniques:

» Explicitly add the inline attribute to the declaration of any function that the
programer would like to inline. One case when it is recommended to do so is
for functions that are very short. Another case is for functions that have small
number of instances in the code but are often executed in run time (for
example when they appear inside a loop).

» Use the compiler options for automatic inlining the appropriate functions.
Table 4-21 describes some of those options of the GCC compiler.

Over-aggressive use of inlining can result in larger code which reduces the LS
space available for data storage or, in the extreme case, is too large to fit in the
LS.

Table 4-21 GCC options for functions inlining

Option Description

-finline-small-functions Integrate functions into their callers when their body is
smaller than expected function call code (so overall
size of program gets smaller). The compiler
heuristically decides which functions are simple
enough to be worth integrating in this way.

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

Option Description

-finline-functions Integrate all simple functions into their callers. The
compiler heuristically decides which functions are
simple enough to be worth integrating in this way. If all
calls to a given function are integrated, and the
function is declared static, then the function is
normally not output as assembler code in its own right.

-finline-functions-called-once | Consider all static functions called once for inlining into
their caller even if they are not marked inline. If a call
to a given function is integrated, then the function is
not output as assembler code in its own right.

-finline-limit=n By default, GCC limits the size of functions that can be
inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline.

Loop-unrolling

Loop-unrolling is another techniques that can be used to increase the size of
basic blocks (sequences of consecutive instructions without branches), which
increases scheduling opportunities. It eliminates branches by decreasing the
number of loop iterations.

If the number of loop iterations is a small constant then it is usually
recommended to remove the loop in order to eliminate brances in the code.
Example 4-66 provide a similar code example.

Example 4-66 Remove short loop for eliminating branches

// original Toop
for (i=0;i<3;i++) x[i]=y[i];

// can be removed and replces by
x[0]=y[0];
x[1]=y[1];
x[2]=y[2];

If the number of loops is bigger but the loop iteration are independent of each
other the programer can reduce the number of loops and work on several items
in each iterations as illustrate in Example 4-67 provide a similar code example.
Another advantage of this technique is that it is usually improve the dual issue
utilization. The loop unrolling techniques is often used when move from scalar to
vector instructions.

Chapter 4. Cell BE programming 279



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

Example 4-67 Long loop unrolling for eliminating branches

// original Toop
for (i=0;1<300;i++) x[i]=y[i];

// can be unrolled to

for (i=03;1<300;1+=3){
x[i] =y[il;
x[i+1]=y[i+1];
x[i+2]=y[i+2];

1

An automatic loop unrolling can be performed by the compiler in case the
optimization level is high enough or one of the appropriate options are set (e.qg.
-funroll-Toops, -funroll-all-Toops).

Typically, branches associated with loop with relatively large number of iteration
are inexpensive because they are highly predictable. In this case non-predicted
branch usually occur only in the first and last iterations.

Similar to function inlining, over-aggressive use of loop unrolling can result in
code that reduces the LS space available for data storage or, in the extreme
case, is too large to fit in the LS.

Branchless control flow statement

The select-bits (selb) instruction is the key to eliminating branches for simple
control-flow statements such as if and if-then-else constructs. An if-then-else
statement can be made branchless by computing the results of both the then and
else clauses and using select bits intrinsics (spu_sel) to choose the result as a
function of the conditional.

If computing both results costs less than a mispredicted branch, then a
performance improvement is expected.

Example 4-66 demonstrate the use of spu_sel intrinsics to eliminate branches in
simple if-then-else control block.

Example 4-68 Branchless if-then-else control block

// a,b,c,d are vectors
// original if-else control block

if (a>b) c +=1;
else d = atb;

280 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

// optimized spu_sel based code that eliminates branches but provides
// similar functionality.

select = spu_cmpgt(a,b);

c_plus_1 = spu_add(c,1);

a_plus_b = spu_add(a,b);

c
d

spu_sel(c, c_plus_1, select);
spu_sel(a_plus_b, d, select);

Branch hint

The SPU supports branch prediction through a set of hint-for branch (HBR)
instructions (hbr, hbra, and hbrr) and a branch-target buffer (BTB). These
instructions support efficient branch processing by allowing programs to avoid
the penalty of taken branches.

The hint-for branch instructions provide advance knowledge about future
branches such as address of the branch target, address of the actual branch
instruction, and prefetch schedule (when to initiate prefetching instructions at the
branch target).

Hint-for branch instructions have no program-visible effects. They provide a hint
to the SPU about a future branch instruction, with the intention that the
information be used to improve performance by prefetching the branch target.

If software provides a branch hint, software is speculating that the instruction
branches to the branch target. If a hint is not provided, software speculates that
the branch is not taken. If speculation is incorrect, the speculated branch is
flushed and prefetched. It is possible to sequence multiple hints in advance of
multiple branches.

As with all programmer-provided hints, care must be exercised when using
branch hints because, if the information provided is incorrect, performance might
degrade. There are immediate and indirect forms for this instruction class. The
location of the branch is always specified by an immediate operand in the
instruction.

A common use to branch hint is in the end-of-loop branches when it is expected
to be correct. Such hint will be correct for all loop iterations besides the last one.

A branching hint should be present soon enough in the code. A hint that precede
the branch by at least eleven cycles plus four instruction pairs is minimal. Hints
that are too close to the branch do not affect the speculation after the branch.

Chapter 4. Cell BE programming 281



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

A common approach to generating static branch prediction is to use expert
knowledge that is obtained either by feedback-directed optimization techniques
or using linguistic hints supplied by the programmer.

There are many arguments against profiling large bodies of code, but most SPU
code is not like that. SPU code tends to be well-understood loops. Thus,
obtaining realistic profile data should not be time-consuming. Compilers should
be able to use this information to arrange code so as to increase the number of
fall-through branches (that is, conditional branches not taken). The information
can also be used to select candidates for loop unrolling and other optimizations
that tend to unduly consume LS space.

Programmer-directed hints can also be used effectively to encourage compilers
to insert optimally predicted branches. Even though there is some anecdotal
evidence that programmers do not use them very often, and when they do use
them, the result is wrong, this is likely not the case for SPU programmers. SPU
programmers generally know a great deal about performance and will be highly
motivated to generate optimal code.

The SPU C/C++ Language Extension specification defines a compiler directive
mechanism for branch prediction. The _ builtin_expect directive allows
programmers to predicate conditional program statements. Example 4-69
demonstrates how a programmer can predict that a conditional statement is false
(a is not larger than b).

Example 4-69 Predict false conditional statement

if(__builtin_expect((a>b),0))
c += aj;

else
d += 1;

Not only canthe _ builtin_expect directive be used for static branch prediction,
it can also be used for dynamic branch prediction. The return value of
__builtin_expect is the value of the exp argument, which must be an integral
expression. For dynamic prediction, the value argument can be either a
compile-time constant or a variable. The _ builtin_expect function assumes
that exp equals value. Example 4-70 show a code for a static-prediction.

Example 4-70 Static branch prediction

if (_builtin_expect(x, 0)) {
foo(); /* programmer doesn’t expect foo to be called */

}

282 Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

A dynamic-prediction example might look like Example 4-71:

Example 4-71 Dynamic branch prediction

cond2 = .../* predict a value for condl */

condl = ...

if (_builtin_expect(condl, cond2)) {
foo();

}

cond2 = condl;/* predict that next branch is the same as the previous*/

Compilers may require limiting the complexity of the expression argument
because multiple branches can be generated. When this situation occurs, the
compiler will issue a warning if the program’s branch expectations are ignored.

4.7 Frameworks and domain-specific libraries

This chapter discuss some high level frameworks for development and execution
of parallel applications on Cell BE and also some domain-specific libraries that
are provided by SDK3.0.

The high level frameworks provides an alternative to using the lower level
libraries. The lower level libraries enables the programer full control over the
hardware mechanisms (e.g. DMA, mailbox, SPE thread) and are discussed in
other chapters of “Cell BE programming” section.

The two main purposes of the high level frameworks are reducing the
development time of programing an Cell BE application and creating an abstract
layer which hides from the programer Cell BE’s architecture specific features. In
some cases, the performance of the application using those frameworks is
similar to programing using the lower level libraries. Given the fact that
development time is shorted and the code is more architecture independent
using the framework in those case is preferred. However, as general using the
low lever libraries can provide better performance since the programer can tune
the program to the application specific requirements.

The first two chapters discuss the main frameworks that are provided with
SDK3.0:

1. “DaCS - Data Communication and Synchronization” on page 284 discuss
DaCS which is an API and a library of C callable functions that provides

Chapter 4. Cell BE programming 283



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

communication and synchronization services amongst tasks of a parallel
application running either on a Cell BE system. Another version of DaCS
provides similar functionality for a hybrid system and is discussed in 7.1.1,
“Hybrid DaCS” on page 443.

2. “ALF - Accelerated Library Framework” on page 291 ALF offers a framework
for implementing the function off-load model on a Cell BE system using the
PPE as the program control and SPEs as functions off-load accelerators. As
in the DaCS case, hybrid version is also available and is discussed in 7.1.2,
“Hybrid ALF” on page 456.

In addition to those SDKS3.0 frameworks, a growing number of high level
frameworks for Cell BE programming are being developed by companies other
then IBM or by universities. Discussing those frameworks is out of the scope of
this book. A brief description of some of those frameworks is in 3.1.4, “The Cell
BE programming frameworks” on page 39.

The domain-specific libraries aim to assist Cell BE programmers by providing
reusable functions that implement a set of common a algorithms and
mathematical operators (e.g. FFT, monte carlo, BLAS, matrix and vector
operators). Those libraries are discussed in the third chapter:

3. “Domain-specific libraries” on page 309 provide a brief description of the
some of the main libraries which are provided by SDk3.0.

The functions that these libraries implement are optimized specifically to Cell BE
and can reduce development time in cases where the developed application
uses similar functions. In those cases the programer may use the corresponding
library to implement those functions or use to as a reference and customized it to
the specific requirement of the developed application (the libraries are open
source).

4.7.1 DaCS - Data Communication and Synchronization

284

DaCS is an APl and a library of C callable functions that provides communication
and synchronization services amongst tasks of a parallel application running
either on a Cell BE system or a hybrid system. Hybrid specific issues are
discussed in 7.1.1, “Hybrid DaCS” on page 443. In the rest of this discussion, the
actual implementation, Cell BE or hybrid, is of no importance as we only describe
the concepts and the API calls.

DaCS can be used to implement various types of dialogs between parallel tasks
using common parallel programming mechanisms like message passing,
mailboxes, mutex and remote memory accesses to name a few. The only
assumption is that there is a master task and slave tasks, a host element (HE)
and accelerator elements (AE) in DaCS terminology. This is to be contrasted with

Programming the Cell Broadband Engine: Examples and Best Practices



Draft Document for Review February 15, 2008 4:59 pm 7575CH_CHIPPGM.fm

MPI which treats all tasks as equal. The aim of DaCS is to provide services for
applications using the host/accelerator model, where one task subcontracts
lower level tasks to perform a given piece of work. One model might be an
application written using MPI communication at the global level with each MPI
task connected to accelerators that communicate with DaCS. This is pictured
below.

Figure 4-10 Possible arrangement for a MPI - DaCS application
Here, 5 MPI tasks will exchange MPI messages and use DaCS communication

with their accelerators. No direct communication occurs between accelerators
that report to a different MPI task.

Chapter 4. Cell BE programming 285



7575CH_CHIPPGM.fm Draft Document for Review February 15, 2008 4:59 pm

DaCS also supports a hierarchy of accelerators. A task can be a an accelerator
for a task higher up in the hierarchy and be a host element for lower level
accelerators as shown below.

Figure 4-11 A two lev