
Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes1

Developing Code for Cell - Mailboxes

Course Code: L3T2H1-55
Cell Ecosystem Solutions Enablement

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes2

Course Objectives – Things you will learn

Cell communication mechanisms

mailboxes (this course) and DMA (another course)

Mailbox queues for PPE and SPU

Mailbox features and characteristics

How to read and write mailboxes

SPU outbound mailboxes and example

SPU inbound mailbox and example

PPE mailbox queue – PPE and SPU calls

SPU mailbox queue – PPE and SPU calls

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes3

Course Agenda
Cell Communication Mechanisms

Mailboxes
– How Mailboxes Were Sent

– Mailbox Channels and their Associated MMIO Registers

Reading and Writing Mailboxes

SPU Outbound Mailboxes
– Writing SPU Write Outbound Mailbox Data

– Waiting to Write SPU Write Outbound Mailbox Data

– How to Poll for or Block on an SPU Write Outbound Mailbox Available Event

– How PPE Software can read from the SPU Write Outbound Mailbox of an SPE

– Example shows how PPE software can read from the SPU Write Outbound Mailbox of an SPE

SPU Inbound Mailbox
– SPU Read Inbound Mailbox Channel

– SPU Read Inbound Mailbox vs. SPU Write Outbound Mailboxes

– How to write four 32-bit Messages to the PPU Read Inbound Mailbox of a Particular SPU from the PPE

PPE Mailbox Queue – PPE Calls, SPU Calls
– PPE Interrupting Mailbox Queue – PPE Calls

SPU Mailbox Queue – PPE Calls, SPU Calls

Using mailboxes with macros defined in libspe.h and spu_mfcio.h

Trademarks - Cell Broadband Engine ™ is a trademark of Sony Computer Entertainment, Inc.

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes4

Overview Cell Communication Mechanisms
Mailboxes
– between PPE and SPEs

DMA
– between PPE and SPEs

– between one SPE and another

Used for
– Synchronization

– Error reporting

– Communication

– Monitor SPU status

Some aspects of what is described are architecture and some aspects are
implementation; e.g.:
– queues are architecture

– queue sizes are implementation

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes5

Mailboxes

Each MFC provides three mailbox queues of 32 bit each:

1. PPE (“SPU outbound”) mailbox queue
– SPE writes, PPE reads

– 1 deep

– SPE stalls writing to full mailbox

2. PPE (“SPU outbound”) interrupt mailbox queue
– like PPE mailbox queue, but an interrupt is posted to the PPE when the

mailbox is written

3. SPU (“SPU inbound”) mailbox queue
– PPE writes, SPE reads

– 4 deep

– can be overwritten

Each mailbox entry is a fullword

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes6

Mailboxes Overview

MFC

PPE mbox

SPE out_mbox

dataflow

PPE intr mbox
SPE out_intr_mbox

dataflow

SPE mbox

in_mbox

dataflow

PPU SPU

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes7

Mailbox Architecture

PPE SPU
MFC
Register

MMIO
Registers

Channel
Interface

SPE

Find problem state address and

offsets to memory mapped registers

Write directly into memory

Channel Instructions

spu_writech(<channel>, <value>)

spu_readch(<channel>)

spu_readchcnt(<channel>)

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes8

How Mails Are Sent

SPE (outgoing)
– write the 32-bit message value to either its two outbound mailbox

channels
SPE (incoming)
– reads a message in the inbound mailbox
PPE and other devices (incoming)
– read message in outbound mailbox by reading the MMIO register in

the SPE’s MFC
PPE and other devices (outgoing)
– send by writing the associated MMIO register
For interrupts associated with the SPU Write Outbound Interrupt
Mailbox,
– no ordering of the interrupt and previously issued MFC

commands

C
ha

nn
el

M
M

IO
 R

eg

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes9

Mailbox Channels and their Associated MMIO Registers

Functions of Mailbox Channels (SPU)

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes10

Functions of Mailbox MMIO Registers (PPU)

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes11

Reading and Writing Mailboxes

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes12

SPU Outbound Mailboxes

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes13

SPU Outbound Mailboxes

SPU Write Outbound Mailbox Channel
– The value written to the SPU Write Outbound Mailbox channel SPU_WrOutMbox is

entered into the outbound mailbox in the MFC if the mailbox has capacity to accept
the value.

– If the mailbox can accept the value, the channel count for SPU_WrOutMbox is
decremented by ‘1’.

– If the outbound mailbox is full, the channel count will read as ‘0’.

– If SPE software writes a value to SPU_WrOutMbox when the channel count is ‘0’, the
SPU will stall on the write.

– The SPU remains stalled until the PPE or other device reads a message from the
outbound mailbox by reading the MMIO address of the mailbox.

– When the mailbox is read through the MMIO address, the channel count is
incremented by ‘1’.

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes14

SPU Outbound Mailboxes (Cont’d)

SPU Write Outbound Interrupt Mailbox Channel
– The value written to the SPU Write Outbound Interrupt Mailbox channel

(SPU_WrOutIntrMbox) is entered into the outbound interrupt mailbox if the mailbox
has capacity to accept the value.

– If the mailbox can accept the message, the channel count for SPU_WrOutIntrMbox is
decremented by ‘1’, and an interrupt is raised in the PPE or other device, depending
on interrupt enabling and routing.

– There is no ordering of the interrupt and previously issued MFC commands.

– If the outbound interrupt mailbox is full, the channel count will read as ‘0’.

– If SPE software writes a value to SPU_WrOutIntrMbox when the channel count is ‘0’,
the SPU will stall on the write.

– The SPU remains stalled until the PPE or other device reads a mailbox message
from the outbound interrupt mailbox by reading the MMIO address of the mailbox.

– When this is done, the channel count is incremented by ‘1’.

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes15

Writing SPU Write Outbound Mailbox Data

SPE software can write to the SPU Write Outbound Mailbox channel to put a
mailbox message in the SPU Write Outbound Mailbox.

Sufficient space

– Yes : immediate return
– No: SPU will stall until the PPE reads from this mailbox

How to write to the SPU Write Outbound Mailbox.
unsigned int mb_value;
spu_writech(SPU_WrOutMbox, mb_value);

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes16

Waiting to Write SPU Write Outbound Mailbox Data

To avoid SPU stall, SPU can use the read-channel-count instruction on the SPU
Write Outbound Mailbox channel to determine if the queue is empty before writing
to the channel.
If the read-channel-count instruction returns ‘0’, the SPU Write Outbound Mailbox
Queue is full.
If the read channel-count instruction returns a non-zero value, the value indicates
the number of free entries in the SPU Write Outbound Mailbox Queue.
When the queue has free entries, the SPU can write to this channel without stalling
the SPU.
How to poll SPU Write Outbound Mailbox or SPU Write Outbound Interrupt
Mailbox.

/*
* To write the value 1 to the SPU Write Outbound Interrupt Mailbox instead
* of the SPU Write Outbound Mailbox, simply replace SPU_WrOutMbox
* with SPU_WrOutIntrMbox in the following example.
*/
unsigned int mb_value;
do {
/*
* Do other useful work while waiting.
*/
} while (!spu_readchcnt(SPU_WrOutMbox)); // 0 full, so something useful
spu_writech(SPU_WrOutMbox, mb_value);

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes17

How to Poll for or Block on an SPU Write Outbound Mailbox
Available Event

#define MBOX_AVAILABLE_EVENT 0x00000080
unsigned int event_status;
unsigned int mb_value;
spu_writech(SPU_WrEventMask, MBOX_AVAILABLE_EVENT);
do {

/*
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdEventStat));
event_status = spu_readch(SPU_RdEventStat); /* read status */
spu_writech(SPU_WrEventAck, MBOX_AVAILABLE_EVENT); /* acknowledge event */
spu_writech(SPU_WrOutMbox, mb_value); /* send mailbox message */

NOTES: To block, instead of poll, simply delete the do-loop above.

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes18

PPU reads SPU Outbound Mailboxes

PPU must check Mailbox Status Register first

– check that unread data is available in the SPU Outbound Mailbox or
SPU Outbound Interrupt Mailbox

– otherwise, stale or undefined data may be returned

To determine that unread data is available

– PPE reads the Mailbox Status register

– extracts the count value from the SPU_Out_Mbox_Count field

count is

– non-zero at least one unread value is present

– zero PPE should not read but poll the Mailbox Status register

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes19

Example: PPE reads from the SPU Outbound Mailbox

void *ps = spe_get_ps(speid); // system call assumed to return base address of problem state are
// might vary, depneding on libspe version

unsigned int mb_status;
unsigned int new;
unsigned int mb_value;
do {

mb_status = *((volatile unsigned int *)(ps + SPU_Mbox_Stat));
new = mb_status & 0x000000FF;

} while (new == 0);
/*
* Issue an eieio instruction to ensure that the last
* Mailbox Status Register read is performed prior to the first
* SPU Write Outbound Mailbox Register read.
*/
__asm__(“eieio”);
mb_value = *((volatile unsigned int *)(ps + SPU_Out_Mbox));

Offsets into problem

state area

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes20

SPU Inbound Mailbox

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes21

SPU Inbound Mailbox

The MFC provides one mailbox for a PPE to send
information to an SPU
– the SPU Read Inbound Mailbox.

This mailbox has four entries
– i.e. PPE can have up to four 32-bit messages pending at

a time in the SPU Read Inbound Mailbox

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes22

SPU Read Inbound Mailbox Channel
Mailbox is FIFO queue
– If the SPU Read Inbound Mailbox channel (SPU_RdInMbox) has a

message, the value read from the mailbox is the oldest message
written to the mailbox.

Mailbox Status (empty: channel count =0)
– If the inbound mailbox is empty, the SPU_RdInMbox channel count

will read as ‘0’.

SPU stalls on reading empty mailbox
– If SPE software reads from SPU_RdInMbox when the channel count

is ‘0’, the SPU will stall on the read. The SPU remains stalled until the
PPE or other device writes a message to the mailbox by writing to the
MMIO address of the mailbox.

When the mailbox is written through the MMIO address, the channel
count is incremented by ‘1’.

When the mailbox is read by the SPU, the channel count is decremented
by '1'.

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes23

SPU Read Inbound Mailbox vs. SPU Write Outbound
Mailboxes

The SPU Read Inbound Mailbox can be overrun by a
PPE.

A PPE writing to the SPU Read Inbound Mailbox will not
stall when this mailbox is full.

When a PPE overruns the SPU Read Inbound Mailbox,
mailbox message data will be lost.

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes24

How to write four 32-bit Messages to the PPU Read
Inbound Mailbox of a Particular SPU from the PPE

void *ps = spe_get_ps(speid); // see previous example !!
unsigned int j,k = 0;
unsigned int mb_status;
unsigned int slots;
unsigned int mb_value[4] = {0x1, 0x2, 0x3, 0x4};
do {

/*
* Poll the Mailbox Status Register until the
* SPU_In_Mbox_Count field indicates there is at
* least one slot available in the SPU Read Inbound
* Mailbox.
*/
do {

mb_status = *((volatile unsigned int *)(ps +
SPU_Mbox_Stat));
slots = (mb_status & 0x0000FF00) >> 8;

} while (slots == 0); // as long as full

/* Issue an eieio instruction to ensure
that the last Mailbox Status Register
read is performed prior to the first
SPU Read Inbound Mailbox Register
write.

*/
__asm__(“eieio”);
for (j=0; j<slots && k < 4; j++) {
*((volatile unsigned int *)(ps +
SPU_In_Mbox)) = mb_value[k++];

}
} while (k < 4);

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes25

How SPU Reads From the Incoming Mailbox

unsigned int mb_value;
do {

/*
* Do other useful work while waiting.
*/

} while (!spu_readchcnt(SPU_RdInMbox));
mb_value = spu_readch(SPU_RdInMbox);

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes26

Access to Mailboxes using macros defined in
libspe.h (PPU) and spu_mfcio.h (SPU)

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes27

Mailbox Architecture

PPE SPU
MFC
Register

MMIO
Registers

Channel
Interface

SPE

Find problem state address and

offsets to memory mapped registers

Write directly into memory

Channel Instructions

spu_writech(<channel>, <value>)

spu_readch(<channel>)

spu_readchcnt(<channel>)

Macros defined in cbe_mfcio.hMacros defines in libspe.h

(requiring system calls)

easier, but slower

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes28

Mailboxes Overview

MFC

PPE mbox

out_mbox

dataflow

spu_stat_out_mbox

spu_write_out_mbox
spe_stat_out_mbox(speid)

spe_read_out_mbox(speid)

PPE intr mbox

out_intr_mbox

spu_stat_out_intr_mbox

spu_write_out_intr_mbox
spe_stat_out_intr_mbox(speid)

spe_get_event

dataflow

SPE mbox

in_mbox

spu_stat_in_mbox

spu_read_in_mbox
spe_stat_in_mbox(speid)

spe_write_in_mbox(speid)

dataflow

PPU (libspe.h) SPU (spu_mfcio.h)

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes29

PPE Access to Mailboxes

PPE can derive “addresses” of mailboxes from spe thread id

First, create SPU thread, e.g.:
speid_t spe_id;
spe_id = spe_create_thread(0,spu_load_image,NULL,NULL,-1,0);

– spe_id has type speid_t (normally an int)

PPE mailbox calls use spe_id to identify desired SPE’s mailbox

Functions are in libspe.a

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes30

PPE Mailbox Queue – PPE Calls (libspe.h)

“SPU outbound” mailbox

Check mailbox status:
unsigned int count;
count = spe_stat_out_mbox(spe_id);

– count = 0 no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox

Get mailbox data:
unsigned int data;
data = spe_read_out_inbox(spe_id);

– data contains next 32-bit word from mailbox

– routine is non-blocking

– routine returns MFC_ERROR (0xFFFFFFFF) if no data in mailbox

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes31

PPE Mailbox Queues – SPU Calls (spu_mfcio.h)

“SPU outbound” mailbox
Check mailbox status:

unsigned int count;
count = spu_stat_out_mbox();

– count = 0 mailbox is full
– otherwise, count = number of available 32-bit entries in the

mailbox

Put mailbox data:
unsigned int data;
spu_write_out_mbox(data);

– data written to mailbox
– routine blocks if mailbox contains unread data

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes32

PPE Interrupting Mailbox Queue – PPE Calls

“SPU outbound” interrupting mailbox

Check mailbox status:
unsigned int count;
count = spe_stat_out_intr_mbox(spe_id);

– count = 0 no data in the mailbox

– otherwise, count = number of incoming 32-bit words in the mailbox

Get mailbox data:
– interrupting mailbox is a privileged register

– user PPE applications read mailbox data via spe_get_event

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes33

PPE Interrupting Mailbox Queues – SPU Calls

“SPU outbound” interrupting mailbox

Put mailbox data:
unsigned int data;

spe_write_out_intr_mbox(data);

– data written to interrupting mailbox

– routine blocks if mailbox contains unread data

defined in spu_mfcio.h

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes34

SPU Mailbox Queue – PPE Calls (libspe.h)

“SPU inbound” mailbox

Check mailbox status:
unsigned int count;
count = spe_stat_in_mbox(spe_id);

– count = 0 mailbox is full

– otherwise, count = number of available 32-bit entries in the mailbox

Put mailbox data:
unsigned int data, result;
result = spe_write_in_mbox(spe_id,data);

– data written to next 32-bit word in mailbox

– mailbox can overflow

– routine returns 0xFFFFFFFF on failure

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes35

SPU Mailbox Queue – SPU Calls (spu_mfcio.h)

“SPU inbound” mailbox
Check mailbox status:

unsigned int count;
count = spu_stat_in_mbox();

– count = 0 no data in the mailbox
– otherwise, count = number of incoming 32-bit words in the mailbox

Get mailbox data:
unsigned int data;
data = spu_read_in_mbox();

– data contains next 32-bit word from mailbox
– routine blocks if no data in mailbox

Systems and Technology Group

06/27/06Course Code: L3T2H1-40 Developing Code for Cell - Mailboxes36

(c) Copyright International Business Machines Corporation 2005.
All Rights Reserved. Printed in the United Sates September 2005.

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or both.
IBM IBM Logo Power Architecture

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are
NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result
in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change
IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity
under the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable
for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division The IBM home page is http://www.ibm.com
1580 Route 52, Bldg. 504 The IBM Microelectronics Division home page is
Hopewell Junction, NY 12533-6351 http://www.chips.ibm.com

