

C/C++ Language Extensions for Cell Broadband Engine™ Architecture

Version 2.3

CBEA JSRE Series
Cell Broadband Engine Architecture
Joint Software Reference
Environment Series

© Copyright International Business Machines Corporation, Sony Computer Entertainment Incorporated, Toshiba Corporation 2002 – 20 06

All Rights Reserved

"SONY" and " or registered trademarks of Sony Corporation.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change Sony and SCEI product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Sony and SCEI or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Sony and SCEI be liable for damages arising directly or indirectly from any use of the information contained in this document.

Sony Corporation 6-7-35 Kitashinagawa, Shinagawa-ku, Tokyo, 141-0001 Japan (1-7-1 Konan, Minato-ku, Tokyo, 108-0075 Japan : from February 2007)

Sony Computer Entertainment Inc. 2-6-21 Minami-Aoyama, Minato-ku, Tokyo, 107-0062 Japan

The Sony home page can be found at http://www.sony.net The SCEI home page can be found at http://www.scei.co.jp

The Cell Broadband Engine home page can be found at http://cell.scei.co.jp

December 4, 2006

Table of Contents

About This Document	
Audience	xiii
Version History	xiii
Related Documentation	xvii
Document Structure	xviii
Bit Notation	xviii
Byte Ordering and Element Numbering	xviii
Typographic Conventions	xix
Data Types and Programming Directives	
1.1. Data Types 1.1. Data Types	1
1.1.1. Mapping of PPU Data Types To SPU Data Types	1
1.1.2. Mapping of SPU Data Types To PPU Data Types	2
1.2. Header Files	2
1.2.1. Single Token Typedefs	2
1.3. Alignment	3
1.3.1align_hint (SPU only)	3
1.4. Operating on Vector Types	3
1.4.1. sizeof() Operator	4
1.4.2. Assignment Operator	4
1.4.3. Address Operator	4
1.4.4. Pointer Arithmetic and Pointer Dereferencing	4
1.4.5. Type Casting	5
1.4.6. Vector Literals	5
1.5. Restrict Type Qualifier	7
1.6. SPU Programmer Directed Branch Prediction	7
1.7. Inline Assembly	8
1.8. Target Definitions	8
2. SPU Low-Level Specific and Generic Intrinsics	
2.1. Specific Intrinsics	9
2.1.1. Specific Casting Intrinsics	12
2.2. Generic Intrinsics and Built-ins	13
2.2.1. Mapping Intrinsics with Scalar Operands	13
2.2.2. Implicit Conversion of Arguments of Intrinsics	14
2.2.3. Notations and Conventions	14
2.3. Constant Formation Intrinsics	15 15
spu_splats: Splat Scalar To a Vector	
2.4. Conversion Intrinsics spu_convtf: Convert Vector To Float	16 16
spu_convts: Convert Vector To Ploat spu_convts: Convert Floating-Point Vector To Signed Integer Vector	16
spu_convtu: Convert Floating-Point Vector To Unsigned Integer Vector	16
spu_extend: Sign Extend Vector	16
spu roundtf: Round Vector Double To Vector Float	17
2.5. Arithmetic Intrinsics	17
spu_add: Vector Add	17
spu_addx: Vector Add Extended	18
spu_genb: Vector Generate Borrow	18
spu_genbx: Vector Generate Borrow Extended	18
spu_genc: Vector Generate Carry	18
spu_gencx: Vector Generate Carry Extended	19 19
spu_madd: Vector Multiply and Add spu_mhhadd: Vector Multiply High High and Add	19
spu_msub: Vector Multiply and Subtract	20
spu_mul: Vector Multiply	20
spu_mulh: Vector Multiply High	20
spu_mule: Vector Multiply Even	20
spu mulo: Vector Multiply Odd	21

spu_mulsr: Vector Multiply and Shift Right	21
spu_nmadd: Negative Vector Multiply and Add	21
spu_nmsub: Negative Vector Multiply and Subtract	22
spu_re: Vector Floating-Point Reciprocal Estimate	22
spu_rsqrte: Vector Floating-Point Reciprocal Square Root Estimate	22
spu_sub: Vector Subtract	22
spu_subx: Vector Subtract Extended	23
2.6. Byte Operation Intrinsics	23
spu_absd: Element-Wise Absolute Difference	23
spu_avg: Average of Two Vectors	23
spu_sumb: Sum Bytes into Shorts	24
2.7. Compare, Branch and Halt Intrinsics	24
spu bisled: Branch Indirect and Set Link if External Data	24
spu_cmpabseq: Element-Wise Compare Absolute Equal	24
spu_cmpabsgt: Element-Wise Compare Absolute Greater Than	25
spu_cmpeq: Element-Wise Compare Equal	25
spu_cmpgt: Element-Wise Compare Greater Than	26
spu_hcmpeq: Halt If Compare Equal	27
spu_hcmpgt: Halt If Compare Greater Than	27
2.8. Bits and Mask Intrinsics	27
spu_cntb: Vector Count Ones for Bytes	27
spu_cntlz: Vector Count Leading Zeros	28
spu_gather: Gather Bits From Elements	28
spu_maskb: Form Select Byte Mask	28
spu_maskh: Form Select Halfword Mask	29
spu_maskw: Form Select Word Mask	29
spu_sel: Select Bits	30
spu_shuffle: Shuffle Two Vectors of Bytes	30
2.9. Logical Intrinsics	31
spu and: Vector Bit-Wise AND	31
spu_andc: Vector Bit-Wise AND with Complement	32
spu_eqv: Vector Bit-Wise Equivalent	32
spu_nand: Vector Bit-Wise Complement of AND	33
spu_nor: Vector Bit-Wise Complement of OR	33
spu_or: Vector Bit-Wise OR	34
spu_orc: Vector Bit-Wise OR with Complement	35
spu_orx: OR Word Across	35
spu_xor: Vector Bit-Wise Exclusive OR	35
2.10. Shift and Rotate Intrinsics	36
spu_rl: Element-Wise Rotate Left by Bits	36
spu_rlmask: Element-Wise Rotate Left and Mask by Bits	37
spu_rlmaska: Element-Wise Rotate Left and Mask Algebraic by Bits	37
spu_rlmaskqw: Rotate Left and Mask Quadword by Bits	38
spu_rlmaskqwbyte: Rotate Left and Mask Quadword by Bytes	39
spu_rlmaskqwbytebc: Rotate Left and Mask Quadword by Bytes From Bit Shift Coun	t 40
spu_rlqw: Rotate Left Quadword by Bits	40
spu_rlqwbyte: Rotate Left Quadword by Bytes	41
spu_rlqwbytebc: Rotate Left Quadword by Bytes From Bit Shift Count	42
spu_sl: Element-Wise Shift Left by Bits	42
spu_slqw: Shift Left Quadword by Bits	43
spu_slqwbyte: Shift Left Quadword by Bytes	43
spu_slqwbytebc: Shift Left Quadword by Bytes From Bit Shift Count	44
2.11. Control Intrinsics	45
spu_idisable: Disable Interrupts	45
spu_ienable: Enable Interrupts	45
spu_mffpscr: Move From Floating-Point Status and Control Register	46
spu_mfspr: Move From Special Purpose Register	46
spu_mtfpscr: Move to Floating-Point Status and Control Register	46
spu_mtspr: Move to Special Purpose Register	46
spu_dsync: Synchronize Data	47
spu_stop: Stop and Signal	47
spu_sync: Synchronize	47
2.12 Channel Control Intrinsics	47

spu_readch: Read Word Channel	48
spu_readchqw: Read Quadword Channel	49
spu_readchcnt: Read Channel Count	49
spu_writech: Write Word Channel	49
spu_writechqw: Write Quadword Channel	49
2.13. Scalar Intrinsics	50 50
spu_extract: Extract Vector Element From Vector spu_insert: Insert Scalar into Specified Vector Element	50 51
spu_promote: Promote Scalar to a Vector	52
· -	0_
3. Composite Intrinsics	5 0
spu_mfcdma32: Initiate DMA To/From 32-Bit Effective Address spu_mfcdma64: Initiate DMA To/From 64-Bit Effective Address	53 53
spu_mfcstat: Read MFC Tag Status	54
· -	0.
4. Programming Support for MFC Input and Output	
4.1. Structures	55
mfc_list_element: DMA List Element for MFC List DMA 4.2. Effective Address Utilities	55 55
mfc ea2h: Extract Higher 32 Bits From Effective Address	55 55
mfc_eazh. Extract Figher 32 Bits From Effective Address	55
mfc_hl2ea: Concatenate Higher 32 Bits and Lower 32 Bits	56
mfc ceil128: Round Up Value to Next Multiple of 128	56
4.3. MFC DMA Commands	56
mfc_put: Move Data From Local Storage to Effective Address	56
mfc_putb: Move Data From Local Storage to Effective Address with Barrier	57
mfc_putf: Move Data From Local Storage to Effective Address with Fence	57
mfc_get: Move Data From Effective Address to Local Storage	57
mfc_getf: Move Data From Effective Address to Local Storage with Fence mfc_getb: Move Data From Effective Address to Local Storage with Barrier	57 58
4.4. MFC List DMA Commands	58
mfc putl: Move Data From Local Storage to Effective Address Using MFC List	58
mfc_putlb: Move Data From Local Storage to Effective Address Using MFC List with Barrier	
mfc_putlf: Move Data From Local Storage to Effective Address Using MFC List with Fence	59
mfc_getl: Move Data From Effective Address to Local Storage Using MFC List	59
mfc_getlb: Move Data From Effective Address to Local Storage Using MFC List with Barrier	
mfc_getlf: Move Data From Effective Address to Local Storage Using MFC List with Fence	59
4.5. MFC Atomic Update Commands	60
mfc_getllar: Get Lock Line and Create Reservation mfc_putllc: Put Lock Line if Reservation for Effective Address Exists	60 60
mfc_putlluc: Put Lock Line II Reservation for Effective Address Exists	61
mfc_putqlluc: Put Queued Lock Line Unconditional	61
4.6. MFC Synchronization Commands	61
mfc sndsig: Send Signal	62
mfc_sndsigb: Send Signal with Barrier	62
mfc_sndsigf: Send Signal with Fence	62
mfc_barrier: Enqueue mfc_barrier Command into DMA Queue or Stall When Queue is Full	62
mfc_eieio: Enqueue mfc_eieio Command into DMA Queue or Stall When Queue is Full	63
mfc_sync: Enqueue mfc_sync Command into DMA Queue or Stall When Queue is Full	63
4.7. MFC DMA Status mfc stat cmd queue: Check the Number of Available Entries in the MFC DMA Queue	63 63
mfc write tag mask: Set Tag Mask to Select MFC Tag Groups to be Included in Query	03
Operation	63
mfc_read_tag_mask: Read Tag Mask Indicating MFC Tag Groups to be Included in Query	
Operation	63
mfc_write_tag_update: Request That Tag Status be Updated	64
mfc_write_tag_update_immediate: Request That Tag Status be Immediately Updated	. 64
mfc_write_tag_update_any: Request That Tag Status be Updated for Any Enabled Complet	
with No Outstanding Operation mfc_write_tag_update_all: Request That Tag Status be Updated When All Enabled Tag Gro	64
Have No Outstanding Operation	oups 64
mfc_stat_tag_update: Check Availability of Tag Status Update Request Channel	64
mfc_read_tag_status: Wait for an Updated Tag Status	65

65

mfc_read_tag_status_any: Wait for No Outstanding Operation of Any Enabled Tag Group	65
mfc_read_tag_status_all: Wait for No Outstanding Operation of All Enabled Tag Groups	65
mfc_stat_tag_status: Check Availability of MFC_RdTagStat Channel	65
mfc_read_list_stall_status: Read List DMA Stall-and-Notify Status	66
mfc_stat_list_stall_status: Check Availability of List DMA Stall-and-Notify Status	66
mfc_write_list_stall_ack: Acknowledge Tag Group Containing Stalled DMA List Commands	66
mfc_read_atomic_status: Read Atomic Command Status	66
mfc_stat_atomic_status: Check Availability of Atomic Command Status	66
4.8. MFC Multisource Synchronization Request	67
mfc_write_multi_src_sync_request: Request Multisource Synchronization	67
mfc_stat_multi_src_sync_request: Check the Status of Multisource Synchronization	67
4.9. SPU Signal Notification	67
spu read signal1: Atomically Read and Clear Signal Notification 1 Channel	67
spu stat signal1: Check if Pending Signals Exist on Signal Notification 1 Channel	67
spu read signal2: Atomically Read and Clear Signal Notification 2 Channel	68
spu stat signal2: Check if Any Pending Signals Exist on Signal Notification 2 Channel	68
4.10. SPU Mailboxes	68
spu read in mbox: Read Next Data Entry in SPU Inbound Mailbox	68
spu_stat_in_mbox: Get the Number of Data Entries in SPU Inbound Mailbox	68
spu write out mbox: Send Data to SPU Outbound Mailbox	68
spu stat out mbox: Get Available Capacity of SPU Outbound Mailbox	69
spu_write_out_intr_mbox: Send Data to SPU Outbound Interrupt Mailbox	69
spu_stat_out_intr_mbox: Get Available Capacity of SPU Outbound Interrupt Mailbox	69
4.11. SPU Decrementer	69
spu read decrementer: Read Current Value of Decrementer	69
spu_write_decrementer: Load a Value to Decrementer	69
4.12. SPU Event	70
spu_read_event_status: Read Event Status or Stall Until Status is Available	70
spu stat event status: Check Availability of Event Status	70
spu_write_event_mask: Select Events to be Monitored by Event Status	70
spu write event ack: Acknowledge Events	71
spu_read_event_mask: Read Event Status Mask	71
4.13. SPU State Management	71
spu_read_machine_status: Read Current SPU Machine Status	71
spu write srr0: Write to SPU SRR0	71
spu read srr0: Read SPU SRR0	71
. – –	
5. SPU and Vector Multimedia Extension Intrinsics	
5.1. Mapping of Vector Multimedia Extension Intrinsics to SPU Intrinsics	73
5.1.1. One-to-One Mapped Intrinsics	73
5.1.2. Vector Multimedia Extension Intrinsics That Are Difficult to Map to SPU Intrinsics	74
5.2. Mapping of SPU Intrinsics to Vector Multimedia Extension Intrinsics	74
5.2.1. One-to-One Mapped Intrinsics	74
5.2.2. SPU Intrinsics That Are Difficult to Map to Vector Multimedia Extension Intrinsics	75
6. PPU VMX Intrinsics	
vec extract: Extract Vector Element From Vector	78
vec_extract: Extract vector Element vector vec_insert: Insert Scalar into Specified Vector Element	79
vec_lvlx: Load Vector Left Indexed	80
vec Ivixi: Load Vector Left Indexed Last	81
vec_lvrx: Load Vector Right Indexed	82
vec_lvrxl: Load Vector Right Indexed Last	83
vec_stvlx: Store Vector Left Indexed	84
vec_stvlxl: Store Vector Left Indexed Last	85
vec_ stvrx: Store Vector Right Indexed	86
vec stvrxl: Store Vector Right Indexed Last	87
vec_promote: Promote Scalar to a Vector	88
vec_splats: Splat Scalar to a Vector	88
	55
7. PPU Intrinsics	
cctph: Change Thread Priority to High	89
cctpl: Change Thread Priority to Low	89
cctpm: Change Thread Priority to Medium	89

mfc_read_tag_status_immediate: Wait for the Updated Status of Any Enabled Tag Group

cntlzd: Count Leading Doubleword Zeros	90
cntlzw: Count Leading Word Zeros	90
db10cyc: Delay 10 Cycles at Dispatch	90
db12cyc: Delay 12 Cycles at Dispatch	90
db16cyc: Delay 16 Cycles at Dispatch	90
db8cyc: Delay 8 Cycles at Dispatch	91
dcbf: Data Cache Block Flush	91
dcbst: Data Cache Block Store	91
dcbt: Data Cache Block Touch	91
_	-
dcbt_TH1000: Start Streaming Data	92
dcbt_TH1010: Stop Streaming Data	92
dcbtst: Data Cache Block Touch for Store	93
dcbz: Data Cache Block Set to Zero	93
eieio: Enforce In-Order Execution of I/O	93
fabs: Double Absolute Value	93
fabsf: Float Absolute Value	94
	_
fcfid: Convert Doubleword to Double	94
fctid: Convert Double to Doubleword	94
fctidz: Convert Double to Doubleword with Round Towards Zero	94
fctiw: Convert Double to Word	94
fctiwz: Convert Double to Word with Round Towards Zero	95
fmadd: Double Fused Multiply and Add	95
fmadds: Float Fused Multiply and Add	95
fmsub: Double Fused Multiply and Subtract	95
fmsubs: Float Fused Multiply and Subtract	96
fmul: Double Multiply	96
fmuls: Float Multiply	96
fnabs: Double Negative	96
_	
fnabsf: Float Negative	96
fnmadd: Double Fused Negative Multiply and Add	97
fnmadds: Float Fused Negative Multiply and Add	97
fnmsub: Double Fused Negative Multiply and Subtract	97
fnmsubs: Float Fused Negative Multiply and Subtract	97
fres: Float Reciprocal Estimate	98
frsp: Round to Single Precision	98
frsqrte: Double Reciprocal Square Root Estimate	98
fsel: Floating-Point Select of Double	98
fsels: Floating-Point Select of Float	99
fsqrt: Double Square Root	99
fsqrts: Float Square Root	99
icbi: Instruction Cache Block Invalidate	99
isync: Instruction Sync	99
	
ldarx: Load Doubleword with Reserved	100
Idbrx: Load Reversed Doubleword	100
Ihbrx: Load Reversed Halfword	100
lwarx: Load Word with Reserved	100
lwbrx: Load Reversed Word	101
lwsync: Light Weight Sync	101
mffs: Move From Floating-Point Status and Control Register	101
mfspr: Move From Special Purpose Register	101
mftb: Move From Time Base	102
mtfsb0: Set Field of FPSCR	102
mtfsb1: Unset Field of FPSCR	102
mtfsf: Set Fields in FPSCR	102
mtfsfi: Set Field FPSCR From Other Field	103
mtspr: Move to Special Purpose Register	103
mulhd: Multiply Doubleword, High Part	103
mulhdu: Multiply Double Unsigned Word, High Part	103
mulhw: Multiply Word, High Part	104
mulhwu: Multiply Unsigned Word, High Part	104
nop: No Operation	104
rldcl: Rotate Left Doubleword then Clear Left	104
rldcr: Rotate Left Doubleword then Clear Right	105
	103

rldic: Rotate Left Doubleword Immediate then Clear	105
rldicl: Rotate Left Doubleword Immediate then Clear Left	105
rldicr: Rotate Left Doubleword Immediate then Clear Right	106
rldimi: Rotate Left Doubleword Immediate then Mask Insert	106
rlwimi: Rotate Left Word Immediate then Mask Insert	106
rlwinm: Rotate Left Word Immediate then AND With Mask	107
rlwnm: Rotate Left Word then AND With Mask	107
setflm: Save and Set the FPSCR	107
stdbrx: Store Reversed Doubleword	107
stdcx: Store Doubleword Conditional	108
sthbrx: Store Reversed Halfword	108
stwbrx: Store Reversed Word	108
stwcx: Store Word Conditional	109
sync: Sync	109
8. SPU C and C++ Standard Libraries and Language Support	
8.1. Standard Libraries	111
8.1.1. C Standard Library	111
8.1.2. C++ Standard Library	114
8.2. Non-Supported Language Features	115
9. Floating-Point Arithmetic on the SPU	
9.1. Properties of Floating-Point Data Type Representations	117
9.2. Floating-Point Environment	118
9.2.1. Rounding Modes	118
9.2.2. Floating-Point Exceptions	118
9.2.3. Other Floating-Point Constants in math.h	120
9.3. Floating-Point Operations	120
9.3.1. Floating-Point Conversions	120
9.3.2. Overall Behavior of C Operators and Standard Library Math Functions	121
9.3.3. Floating-Point Expression Special Cases	122
9.3.4. Specific Behavior of Standard Math Functions	123

Index

List of Tables

Table 1-1: Vector Data Types	1
Table 1-2: Non-identical Mapping of VMX Data Types To SPU Data Types	1
Table 1-3: Non-identical Mapping of SPU Data Types To VMX Data Types	2
Table 1-4: Single Token Vector Data Types	2
Table 1-5: Default Data Type Alignments	3
Table 1-6: Vector Pointer Types and Matching Base Element Pointer Types	5
Table 1-7: Vector Literal Format and Description	5
Table 1-8: Alternate Vector Literal Format and Description	6
Table 2-9: Assembly Instructions for Which No Specific Intrinsic Exists	9
Table 2-10: Specific Intrinsics Not Accessible through Generic Intrinsics	9
	13
Table 2-11: Specific Casting Intrinsics	
Table 2-12: Possible Uses of Immediate Load Instructions for Various Values of Constant b	14
Table 2-13: Splat Scalar To a Vector	15
Table 2-14: Convert an Integer Vector To a Vector Float	16
Table 2-15: Convert a Vector Float To a Signed Integer Vector	16
Table 2-16: Convert a Vector Float To an Unsigned Integer Vector	16
Table 2-17: Sign Extend Vector	16
Table 2-18: Round a Vector Double To a Float	17
Table 2-19: Vector Add	17
Table 2-20: Vector Add Extended	18
Table 2-21: Vector Generate Borrow	18
Table 2-22: Vector Generate Borrow Extended	18
Table 2-23: Vector Generate Carry	18
Table 2-24: Vector Generate Carry Extended	19
Table 2-25: Vector Multiply and Add	19
Table 2-26: Vector Multiply High High and Add	19
Table 2-27: Vector Multiply and Subtract	20
Table 2-28: Vector Multiply	20
Table 2-29: Vector Multiply High	20
Table 2-30: Vector Multiply Even	20
Table 2-31: Vector Multiply Odd	21
Table 2-32: Vector Multiply and Shift Right	21
Table 2-33: Negative Vector Multiply and Add	21
Table 2-34: Negative Vector Multiply and Subtract	22
Table 2-35: Vector Floating-Point Reciprocal Estimate	22
Table 2-36: Vector Floating-Point Reciprocal Square Root Estimate	22
Table 2-37: Vector Subtract	22
Table 2-38: Vector Subtract Extended	23
Table 2-39: Element-Wise Absolute Difference	23
Table 2-40: Average of Two Vectors	23
Table 2-41: Sum Bytes into Shorts	24
Table 2-42: Branch Indirect and Set Link If External Data	24
Table 2-43: Element-Wise Compare Absolute Equal	
· · · · · · · · · · · · · · · · · · ·	24 25
Table 2-44: Element-Wise Compare Absolute Greater Than	
Table 2-45: Element-Wise Compare Equal	25
Table 2-46: Element-Wise Compare Greater Than	26
Table 2-47: Halt If Compare Equal	27
Table 2-48: Halt If Compare Greater Than	27
Table 2-49: Vector Count Ones for Bytes	27
Table 2-50: Vector Count Leading Zeros	28
Table 2-51: Gather Bits From Elements	28
Table 2-52: Form Select Byte Mask	28
Table 2-53: Form Select Halfword Mask	29
Table 2-54: Form Select Word Mask	29
Table 2-55: Select Bits	30
Table 2-56: Shuffle Two Vectors of Bytes	31
Table 2-57: Vector Bit-Wise AND	31
Table 2-58: Vector Bit-Wise AND with Complement	32
Table 2-59: Vector Bit-Wise Equivalent	32

Table 2-60: Vector Bit-Wise Complement of AND	33
Table 2-61: Vector Bit-Wise Complement of OR	33
Table 2-62: Vector Bit-Wise OR	34
Table 2-63: Vector Bit-Wise OR with Complement	35
Table 2-64: OR Word Across	35
Table 2-65: Vector Bit-Wise Exclusive OR	35
Table 2-66: Element-Wise Rotate Left by Bits	36
Table 2-67: Element-Wise Rotate Left and Mask by Bits	37
Table 2-68: Element-Wise Rotate Left and Mask Algebraic by Bits	38
Table 2-69: Rotate Left and Mask Quadword by Bits	38
Table 2-70: Rotate Left and Mask Quadword by Bytes	39
Table 2-71: Rotate Left and Mask Quadword by Bytes From Bit Shift Count	40
Table 2-72: Rotate Left Quadword by Bits	40
Table 2-73: Rotate Left Quadword by Bytes	41
Table 2-74: Rotate Left Quadword by Bytes From Bit Shift Count	42
Table 2-75: Element-Wise Shift Left by Bits	42
Table 2-76: Shift Left Quadword by Bits	43
Table 2-77: Shift Left Quadword by Bytes	43
Table 2-78: Shift Left Quadword by Bytes From Bit Shift Count	44
Table 2-79: Disable Interrupts	45
Table 2-80: Enable Interrupts	45
Table 2-81: Move From Floating-Point Status and Control Register	46
Table 2-81: Move From Special Purpose Register	46
Table 2-83: Move to Floating-Point Status and Control Register	46
Table 2-84: Move to Special Purpose Register	46
Table 2-85: Synchronize Data	47
Table 2-86: Stop and Signal	47
Table 2-87: Synchronize	47
Table 2-88: SPU Channel Numbers ¹	48
Table 2-89: MFC Channel Numbers ¹	48
Table 2-90: Read Word Channel	48
Table 2-91: Read Quadword Channel	49
Table 2-92: Read Channel Count	49
Table 2-93: Write Word Channel	49
Table 2-94: Write Quadword Channel	49
Table 2-95: Extract Vector Element From Vector	50
Table 2-96: Insert Scalar into Specified Vector Element	51
Table 2-97: Promote Scalar to a Vector	52
Table 3-98: Initiate DMA To/From 32-Bit Effective Address	53
Table 3-99: Initiate DMA To/From 64-Bit Effective Address	53
Table 3-100: Read MFC Tag Status	54
Table 4-101: MFC DMA Command Mnemonics ¹	56
Table 4-102: MFC List DMA Command Mnemonics ¹	58
Table 4-103: MFC Atomic Update Command Mnemonics ¹	60
Table 4-104: MFC Synchronization Command Mnemonics ¹	61
Table 4-105: MFC Write Tag Update Conditions ¹	64
Table 4-106: Read Atomic Command Status or Stall Until Status Is Available ¹	66
Table 4-107: MFC Event Bit-Fields ¹	70
Table 5-108: Vector Multimedia Extension Single Token Vector Data Types	73
Table 5-109: Vector Multimedia Extension Intrinsics That Map One-to-One with SPU Intrinsics	73
Table 5-110: Vector Multimedia Extension Intrinsics That Are Difficult to Map to SPU Intrinsics	74
Table 5-111: SPU Intrinsics That Map One-to-One with Vector Multimedia Extension Intrinsics	75
Table 5-112: SPU Intrinsics That Are Difficult to Map to Vector Multimedia Extension Intrinsics	75
Table 6-113: Stream Control Operators That Have Been Deprecated on the PPU	77
Table 6-114: Extract Vector Element From Vector	78
Table 6-115: Insert Scalar into Specified Vector Element	79
Table 6-116: Load Vector Left Indexed	80
Table 6-110. Load Vector Left Indexed Table 6-117: Load Vector Left Indexed Last	81
	82
Table 6-118: Load Vector Right Indexed	
Table 6-119: Load Vector Right Indexed Last	83
Table 6-120: Store Vector Left Indexed	84
Table 6-121: Store Vector Left Indexed Last	85

Table 6-122: S	tore Vector Right Indexed	86
	tore Vector Right Indexed Last	87
	romote Scalar to a Vector	88
Table 6-125: S	plat Scalar to a Vector	88
	change Thread Priority to High	89
	Change Thread Priority to Low	89
	change Thread Priority to Medium	89
	Count Leading Doubleword Zeros	90
	Count Leading Word Zeros	90
	elay 10 Cycles At Dispatch	90
	elay 12 Cycles At Dispatch	90
	elay 16 Cycles At Dispatch	90
	elay 8 Cycles At Dispatch	91
	ata Cache Block Flush	91
Table 7-136: D	ata Cache Block Store	91
Table 7-137: D	ata Cache Block Touch	91
Table 7-138: S	tart Streaming Data	92
	top Streaming Data	92
Table 7-140: D	ata Cache Block Touch For Store	93
Table 7-141: D	Pata Cache Block Set to Zero	93
Table 7-142: E	inforce In-Order Execution of I/O	93
Table 7-143: D	Pouble Absolute Value	93
Table 7-144: F	loat Absolute Value	94
Table 7-145: C	Convert Doubleword to Double	94
Table 7-146: C	Convert Double to Doubleword	94
Table 7-147: C	Convert Double to Doubleword with Round Towards Zero	94
Table 7-148: C	Convert Double to Word	94
Table 7-149: C	Convert Double to Word with Round Towards Zero	95
Table 7-150: D	ouble Fused Multiply and Add	95
Table 7-151: F	loat Fused Multiply and Add	95
	ouble Fused Multiply and Subtract	95
	loat Fused Multiply and Subtract	96
Table 7-154: D		96
Table 7-155: F	loat Multiply	96
Table 7-156: D	ouble Negative	96
Table 7-157: F	loat Negative	96
Table 7-158: D	ouble Fused Negative Multiply and Add	97
Table 7-159: F	loat Fused Negative Multiply and Add	97
Table 7-160: D	ouble Fused Negative Multiply and Subtract	97
Table 7-161: F	loat Fused Negative Multiply and Subtract	97
Table 7-162: F	loat Reciprocal Estimate	98
	tound to Single Precision	98
Table 7-164: D	ouble Reciprocal Square Root Estimate	98
Table 7-165: F	loating-Point Select of Double	98
Table 7-166: F	loating-Point Select of Float	99
Table 7-167: D	ouble Square Root	99
Table 7-168: F	loat Square Root	99
Table 7-169: In	nstruction Cache Block Invalidate	99
Table 7-170: In	nstruction Sync	99
Table 7-171: Lo	oad Doubleword with Reserved	100
	oad Reversed Doubleword	100
Table 7-173: Lo	oad Reversed Halfword	100
	oad Word with Reserved	100
Table 7-175: Lo	oad Reversed Word	101
	ight Weight Sync	101
	Nove From Floating-Point Status and Control Register	101
	love From Special Purpose Register	101
	Nove From Time Base	102
	et Field of FPSCR	102
	Inset Field of FPSCR	102
	et Fields in FPSCR	102
Table 7-183: S	et Field FPSCR From Other Field	103

Table 7-184: Move to Special Purpose Register	103
Table 7-185: Multiply Doubleword, High Part	103
Table 7-186: Multiply Double Unsigned Word, High Part	103
Table 7-187: Multiply Word, High Part	104
Table 7-188: Multiply Unsigned Word, High Part	104
Table 7-189: No Operation	104
Table 7-190: Rotate Left Doubleword then Clear Left	104
Table 7-191: Rotate Left Doubleword then Clear Right	105
Table 7-192: Rotate Left Doubleword Immediate then Clear	105
Table 7-193: Rotate Left Doubleword Immediate then Clear Left	105
Table 7-194: Rotate Left Doubleword Immediate then Clear Right	106
Table 7-195: Rotate Left Doubleword Immediate then Mask Insert	106
Table 7-196: Rotate Left Word Immediate then Mask Insert	106
Table 7-197: Rotate Left Word Immediate then AND With Mask	107
Table 7-198: Rotate Left Word then AND With Mask	107
Table 7-199: Save and Set the FPSCR	107
Table 7-200: Store Reversed Doubleword	107
Table 7-201: Store Doubleword Conditional	108
Table 7-202: Store Reversed Halfword	108
Table 7-203: Store Reversed Word	108
Table 7-204: Store Word Conditional	109
Table 7-205: Sync	109
Table 8-206: C Library Header Files	111
Table 8-207: Vector Formats	113
Table 8-208: C++ Library Header Files	114
Table 8-209: New and Traditional C++ Library Header Files	115
Table 9-210: Values for Floating-Point Type Properties	117
Table 9-211: Rounding Mode for Two Bits of FLT ROUNDS	118
Table 9-212: Macros for Double Precision Rounding Modes	118
Table 9-213: Macros for Single Precision Floating-Point Exceptions	119
Table 9-214: Macros for Double Precision Floating-Point Exceptions	119
Table 9-215: Floating-Point Constants	120
f Figures	
Figure 1-1: Big-Endian Byte/Element Ordering for Vector Types	xviii

List of

Figure 1-1: Big-Endian Byte/Element Ordering for Vector Types	xviii
Figure 2-2: Shuffle Pattern	30

About This Document

This document describes language extension specifications that allow software developers to access hardware features that are not easily accessible from a high level language, such as C or C++, in order to obtain the best performance from a Synergistic Processor Unit (SPU) and a Power Processing Unit (PPU) of the Cell Broadband Engine [™] (CBE). This document also includes function specifications to facilitate communication between SPUs and PPU, and it lists a minimal set of standard library functions that must be provided as part of a standard SPU programming environment.

Audience

This document is intended for system and application programmers who want to write SPU and PPU programs for a CBEA-compliant processor.

Version History

This section describes significant changes made to each version of this document.

Version Number & Date	Changes
v. 2.3 December 4, 2006	Corrected the function parameter ordering of the PPUstwbrx instrinsic (TWG_RFC00074-0: CORRECTION NOTICE)
	Corrected the type of element initializers used to initialize a vector of signed/unsigned char (TWG_RFC00075-0: CORRECTION NOTICE)
	Changed to note that the use of double-precision contracted operations is permitted by default unless prohibited by the FP_CONTRACT pragma or the no-fast-double compiler option (TWG_RFC00076-0).
	Added PPU data types and programming directives to Chapter 1, and changed title from "SPU Data Types and Program Directives" to "Data Types and Programming Directives" (TWG_RFC00077-1).
	Removed thefre,frsqrtes, andpopcntb intrinsics, and added thefrsqrte intrinsic (TWG_RFC00078-3).
	Added that support is provided in the floating-point environment for both double-precision elements and all four single-precision elements. Also, updated information for FLT_ROUNDS (TWG_RFC00079-1).
	Added a new chapter, "PPU VMX Intrinsics", that specifies a set of intrinsic functions making the underlying PPU VMX instruction set accessible from the C programming language (TWG_RFC00081-1 and TWG_RFC00092-0).
	Added 32-bit ABI support to the PPU intrinsic functions, changed function arguments to provide a consistent high-level interface, and corrected several typographical errors (TWG_RFC00083-1).
	Changed the return type of thefctiw andfctiwx PPU intrinsic functions, changed the descriptive names of these and other similar conversion intrinsics, and removed thestfiwx intrinsic function (TWG_RFC00089-1).
	Identified deprecated PPU VMX operations and recommendations for suitable PPU intrinsic function alternatives (TWG_RFC00090-0).
	Identified non-supported language features and specified that C++ exception handling is not supported on the SPU (TWG_RFC00091-0).
	Applied corrections: TWG_RFC00086-0 and TWG_RFC00087-0.

Version Number & Date	Changes
v. 2.2 October 11, 2006	Applied the changes made in the following requests: TWG_RFC00056-0, TWG_RFC00057-0, TWG_RFC00058-2, TWG_RFC00061-1, TWG_RFC00060-1, TWG_RFC00062-0, TWG_RFC00066-2, TWG_RFC00067-2, TWG_RFC00068-0, TWG_RFC00070-1, TWG_RFC00072-0, and TWG_RFC00073-0.
	Changed document title because its contents are no longer limited to the SPU. Changed the sections "About this Document" and "Audience" accordingly. Applied TWG_RFC00053-0, TWG_RFC00054-1, and TWG_RFC00055-0.
	Replaced uses of a protected name by references to the document <i>Altivec Technology Programming Interface Manual</i> per TWG_RFC00050-1 and TWG_RFC00052-0.
	Corrected several operand errors related to <code>spu_sub</code> , which is the arithmetic intrinsic for vector subtraction (TWG_RFC00046-0: CORRECTION NOTICE).
	Corrected various documentation errors; for example, changed sample code demonstrating how to restore the Stack Pointer Information register as a result of invoking the longjmp function (TWG_RFC00047-0: CORRECTION NOTICE).
	Specified that alternate vector syntax for vector literals is optional rather than mandatory (TWG_RFC00050).
v. 2.1 October 20, 2005	Added a sub-section called "Malloc Heap" to the C library section of the "C and C++ Standard Libraries" chapter. This section is related to an attempt to define a standard process for memory heap initialization and stack management (TWG_RFC00024-3).
	In the "SPU and Vector Multimedia Extension Intrinsics" chapter, clarified which intrinsic mappings are required according to this specification and which are not because a straightforward mapping does not exist. Provided additional explanations regarding the intrinsics that are difficult to map (TWG_RFC00034-1: CORRECTION NOTICE).
	Corrected the description of the si_stqx instruction (TWG_RFC00035-0: CORRECTION NOTICE).
	Corrected various documentation errors; for example, changed several descriptions in the "Alternate Vector Literal Format and Description" table.
	(TWG_RFC00036-0: CORRECTION NOTICE, TWG_RFC00041-0: CORRECTION NOTICE, TWG_RFC00045-0: CORRECTION NOTICE).
	Changed "Broadband Processor Architecture" to "Cell Broadband Engine [™] Architecture", and changed "BPA" to "CBEA" (TWG_RFC00037-0: CORRECTION NOTICE).
	Deleted several references to BE revisions DD1.0 and DD2.0 (TWG_RFC00040-0: CORRECTION NOTICE).
	Added a new chapter describing MFC I/O intrinsics; these intrinsics facilitate MFC programming by defining a common set of utility functions (TWG_RFC00043-2).
v. 2.0 July 11, 2005	Deleted several sections in the "About This Document" chapter. Changed two entries in the Write Word Channel table from si_wrch(channel, si_to_int(a)) to si_wrch(channel, si_from_int(a)). Clarified that the syntax for vector type specifiers does not allow the use of a typedef name as a type specifier. (All changes per TWG_RFC00032-0: CORRECTION NOTICE.)

Version Number & Date	Changes
v. 1.9 June 10, 2005	Added new chapter describing C and C++ Libraries (TWG_RFC00018-5). Added new chapter describing SPU floating-point arithmetic (TWG_RFC00027-1).
	Changed "Broadband Engine" or "BE" to "a processor compliant with the Broadband Processor Architecture" or "a processor compliant with BPA"; changed VMX to Vector Multimedia Extension; changed Synergistic Processing Element to Synergistic Processor Element; and changed Synergistic Processing Unit to Synergistic Processor Unit. Defined a PPU as a PowerPC Processor Unit on first major instance. Corrected several book references and changed copyright page so that trademark owners were specified. (All changes per TWG_RFC00031-0: CORRECTION NOTICE.)
4.0	Made miscellaneous changes to the "About This Document" section.
v. 1.8 May 12, 2005	Added new channel number for multisource synchronization requests (TWG_RFC00023-1).
	Corrected example describing loading of misaligned vectors. Changed PU to PPU and SPC to SPE; changed "PU-to-SPU" (mailboxes)
	and "SPU-to-PU" to "inbound" and "outbound" respectively (TWG_RFC00028-1: CORRECTION NOTICE).
	Changed the name of spu_mulhh to spu_mule (TWG_RFC00021-0).
	Updated channel names to coincide with BPA channel names (TWG_RFC00029-1).
v. 1.7 July 16, 2004	Clarified that channel intrinsics must not be reordered with respect to other channel commands or volatile local-storage memory accesses (TWG_RFC00007-1).
	Warned that compliant compilers may ignorealign_hint intrinsics (TWG_RFC00008-1).
	Added an additional SPU instruction, orx (TWG_RFC00010-0).
	Added mnemonics for channels that support reading the event mask and tag mask (TWG_RFC00011-0).
	Specified that spu_ienable and spu_idisable intrinsics do not have return values (TWG_RFC00013-0).
	Moved paragraph beginning "This intrinsic is considered volatile" from spu_mfspr intrinsic to spu_mtfpscr (TWG_RFC00014-0).
	Changed the descriptions for si_lqd and si_stqd intrinsics (TWG_RFC00015-1).
	Provided new descriptions of various rotation-and-mask intrinsics, specifically: spu_rlmask, spu_rlmaska, spu_rlmaskqw, spu_rlmaskqwbyte, and spu_rlmaskqwbytebc. These descriptions include pseudo-code examples (TWG_RFC00016-1).
	Made miscellaneous editorial changes.
v. 1.6 March 12, 2004	Made miscellaneous editorial changes.
v. 1.5 February 25, 2004	Changed formatting of document so that it reflects the typographic conventions described on page xviii. Made miscellaneous editorial changes.
	Changed some of the parameter types for <code>spu_mfcdma32</code> and <code>spu_mfcdma64</code> , as requested in TWG_RFC00002.
	Inserted new specifications for the vector literal format, as requested in TWG_RFC00003.
v. 1.4 January 20, 2004	Changed document to new format, including front matter. Made miscellaneous editorial changes.

Version Number & Date	Changes				
v. 1.3 November 4, 2003	Added enable/disable interrupt intrinsics.				
v. 1.2 September 2, 2003	Changed parameter types of spu_sel intrinsic to be compatible with Vector Multimedia Extension's vec_sel.				
	Added si_stopd specific intrinsic.				
	Corrected tables for spu_genb and spu_genc generic intrinsics.				
v. 1.1	Made changes to support RFC 24. Added isolation control channel 64.				
June 15, 2003	Made changes to support RFC 33. Removed spu_addc, spu_addsc, spu_subb, and spu_subsb. Added spu_addx, spu_subx, spu_genc, spu_gencx, spu_genbx and spu_genbx.				
v. 1.0 April 28, 2003	Made minor corrections.				
v. 0.9 March 7, 2003	Added new intrinsics to support new or modified instructions. These include: fscrrd, fscrwr, stop, dfma, mpyhhau, mpyhhu, rotqmbybi, iret, lqr, and stqr. Also added intrinsics to support new feature bits for iret, bisled, bihnz, and sync.				
v. 0.8 January 23, 2003	Improved documentation of specific intrinsics. Completely defined parameter ordering and immediate sizes.				
	Defined new global (spu_intrinsics.h) and compiler specific (spu_internals.h) header files. Specified that single token vector types and channel enumerants are declared in spu_intrinsics.h.				
	Added specific pointer casting intrinsics.				
	Added standardizedSPU conditional compilation control.				
	Changed specific convert intrinsics to unbiased scale parameters, such as generic intrinsics.				
	Specified that the bisled target function does not observe the standard calling convention with respect to volatile registers.				
v. 0.7	Specified that gcc-style inline assembly is required.				
November 18, 2002	Specified thatbuiltin_expect is required.				
	Added bisled specific and generic intrinsics.				
	Addedalign_hint intrinsic.				
	Specified that the restrict type qualifier is required.				
	Specified that out-of-range scale factors on generic conversion intrinsics return an error.				
v. 0.6	Changed document title to include C++.				
September 24, 2002	Made miscellaneous clarifications and typing corrections.				
	Changed spu_eqv to return the same vector type as its inputs.				
	Changed spu_and, spu_or, and spu_xor to accept immediate values of the same type as the elements of parameter <i>a</i> .				
	Added specific casting intrinsics.				
	Changed default action on out-of-range immediate values for specific intrinsics to issuing an error.				
	Added documentation of thebuiltin_expect builtin.				
	Completed SPU-to-Vector Multimedia Extension intrinsic mapping section.				
v. 0.5	Edited discussion of Vector Multimedia Extension-to-SPU intrinsic mapping.				
August 27, 2002	Removed appendices.				
	Added support for 32-bit read and write channel intrinsics. Renamed quadword channel read and write to readchqw and writechqw.				

Version Number & Date	Changes
v. 0.4	Corrected the instruction mapping for spu_promote and spu_extract.
August 5, 2002	Specified that instruction mapping for generic intrinsics <code>spu_re</code> and <code>spu_rsqrte</code> include the <code>FI</code> (floating-point interpolate) instruction.
	Renamed spu_splat to spu_splats (scalar splat) to avoid confusion with vec_splat.
	Added documentation about the size of the immediate intrinsic forms.
	Changed all vector signed long to vector signed long long.
	Changed count to unsigned for spu_sl, spu_slqw, spu_slqwbyte, and spu_slqwbytebc.
	Changed count to signed for spu_rl, spu_rlmask and spu_rlmaska.
	Specified that the return value of spu_cntlz is an unsigned value.
	Corrected description of spu_gather intrinsic.
	Edited mapping documentation of scalars for spu_and, spu_or, and spu_xor.
	Removed vector input forms of spu_hcmpeq and spu_hcmpgt.
v. 0.3 July 16, 2002	Added fsmbi to literal constructor instructions. Added fsmbi (immediate form) to spu_maskb intrinsic.
	Added vector forms to compare and halt (spu_hcmpeq and spu_hcmpgt) intrinsics.
	Added <code>qword</code> data type as the only vector type accepted by specific intrinsics.
	Added typedefs for the vector types as the basic types used for code portability.
	Merged all spu_splat generic intrinsics into a single intrinsic.
	Dropped spu_load, spu_store, and spu_insertctl generic intrinsics.
v. 0.2	Incorporated changes and suggestions from Peng.
July 9, 2002	Changed vector long types to vector long long.
v. 0.1 June 21, 2002	First version of the language extension specification. Initial specification based on the Tobey compiler intrinsics specification.

Related Documentation

The following table provides a list of references and supporting materials for this document:

Document Title	Version	Date
ISO/IEC Standard 9899:1999 (C Standard)		
ISO/IEC Standard 14882:1998 (C++ Standard)		
IEEE-754 (Standard for Binary Floating-Point Arithmetic)		
Synergistic Processor Unit Instruction Set Architecture	1.11	October 2006
Cell Broadband Engine [™] Architecture	1.01	October 2006
Tool Interface Standard (TIS), Executable and Linking Format (ELF) Specification	1.2	May 1995
Tool Interface Standard (TIS), DWARF Debugging Information Format Specification	2.0	May 1995
PowerPC Architecture Book, Book II: PowerPC Virtual Environment Architecture	2.02	January 2005

Document Structure

This document contains the following major sections:

- 1. Data Types and Programming Directives
- 2. SPU Low-Level Specific and Generic Intrinsics
- 3. Composite Intrinsics
- 4. Programming Support for MFC Input and Output
- 5. SPU and Vector Multimedia Extension Intrinsics
- 6. PPU VMX Intrinsics
- 7. PPU Intrinsics
- 8. SPU C and C++ Standard Libraries and Language Support
- 9. Floating-Point Arithmetic on the SPU

Bit Notation

Standard bit notation is used throughout this document. Bits and bytes are numbered in ascending order from left to right. Thus, for a 4-byte word, bit 0 is the most significant bit and bit 31 is the least significant bit, as shown in the following figure:

MSB = Most significant bit

LSB = Least significant bit

Notation for bit encoding is as follows:

- Hexadecimal values are preceded by 0x. For example: 0x0A00.
- Binary values in sentences appear in single quotation marks. For example: '1010'.

Byte Ordering and Element Numbering

As shown in Figure 1-1, byte ordering and element numbering is always displayed in big endian order.

Figure 1-1: Big-Endian Byte/Element Ordering for Vector Types

Byte 0 (MSB)	, ,	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	Byte 9	Byte 10	Byte 11	Byte 12	Byte 13	Byte 14	Byte 15 (LSB)
	doubleword 0								double	word 1					
	word 0 word 1				word 2 word 3										
halfw	ord 0	halfw	ord 1	halfword 2		vord 2 halfword 3		halfw	ord 4	halfw	ord 5	halfw	ord 6	halfw	ord 7
char 0	char 1	char 2	char 3	char4	char 5	char 6	char 7	char 8	char 9	char 10	char 11	char 12	char 13	char 14	char 15

Typographic Conventions

In addition to bit notation, the following typographic conventions are used throughout this document:

Convention	Meaning
courier	Indicates programming code, processing instructions, register names, data types, events, file names, and other literals. Also indicates function and macro names. This convention is only used where it facilitates comprehension, especially in narrative descriptions.
courier + italics	Indicates arguments, parameters and variables, including variables of type const. This convention is only used where it facilitates comprehension, especially in narrative descriptions.
italics (without courier)	Indicates emphasis. Except when hyperlinked, book references are in italics. When a term is first defined, it is often in italics.
blue	Indicates a hyperlink (color printers or online only).

1. Data Types and Programming Directives

This chapter specifies PPU Vector Multimedia eXtension™ (VMX) and SPU vector data types, operations on these data types, programming directives, and predefined macro target definitions.

Any confict between the requirements described here for PPU Vector Multimedia eXtension (VMX) data types and the *Altivec Technology Programming Interface Manual* is unintentional.

1.1. Data Types

A set of fundamental vector data types are introduced to the C language. These data types are shown in Table 1-1 along with whether the type is supported on the PPU, SPU, or both. All of these data types are 128-bits long and contain from 2 to 16 elements, depending on the corresponding element data type.

Table 1-1: Vector Data Types

Vector Data Type	Content	SPU/PPU
vector unsigned char	16 8-bit unsigned chars	Both
vector signed char	16 8-bit signed chars	Both
vector unsigned short	8 16-bit unsigned halfwords	Both
vector signed short	8 16-bit signed halfwords	Both
vector unsigned int	4 32-bit unsigned words	Both
vector signed int	4 32-bit signed words	Both
vector unsigned long long	2 64-bit unsigned doublewords	SPU
vector signed long long	2 64-bit signed doublewords	SPU
vector float	4 32-bit single-precision floats	Both
vector double	2 64-bit double-precision floats	SPU
qword	quadword (16-byte), used exclusively as an input/output to a specific intrinsic function. See section "2.1. Specific Intrinsics"	SPU
vector bool char	16 8-bit bools – 0 (false) 255 (true)	PPU
vector bool short	8 16-bit bools - 0 (false) 65535 (true)	PPU
vector bool int	4 32-bit bools - 0 (false) 2 ³² - 1 (true)	PPU
vector pixel	8 16-bit unsigned halfword, 1/5/5/5 pixel	PPU

The syntax for vector type specifiers does not allow the use of a typedef name as a type specifier. For example, the following declaration is not allowed:

typedef signed short int16;
vector int16 data;

1.1.1. Mapping of PPU Data Types To SPU Data Types

Not all PPU vector data types are supported on the SPU. The PPU vector data types that do not map identically to SPU data types are shown in Table 1-2.

Table 1-2: Non-identical Mapping of VMX Data Types To SPU Data Types

VMX Data Type	Maps to SPU Data Type
vector bool char	vector unsigned char
vector bool short	vector unsigned short

VMX Data Type	Maps to SPU Data Type
vector bool int	vector unsigned int
vector pixel	vector unsigned short ¹

¹ Because vector pixel and vector bool short are mapped to the same base vector type (vector unsigned short), the overloaded functions for vec unpackh and vec unpackl cannot be uniquely resolved.

1.1.2. Mapping of SPU Data Types To PPU Data Types

Not all SPU data types are supported by the PPU VMX. The SPU data types that do not map identically to PPU vector data types are shown in Table 1-3.

Table 1-3: Non-identical Mapping of SPU Data Types To VMX Data Types

SPU Data Type	Maps to VMX Data Type
vector unsigned long long	vector bool char
vector signed long long	vector bool short
vector double	vector bool int

1.2. Header Files

There are separate system header files for the SPU and PPU that include typedefs and other information required by the language extension features defined in this specification.

The SPU system header file, <code>spu_intrinsics.h</code>, defines common enumerations and typedefs. These include the single token vector types and MFC channel mnemonic enumerations (see Table 1-4 on page 2 and Table 2-89 on page 48, respectively). In addition, <code>spu_intrinsics.h</code> will include a compiler specific header file, <code>spu_intrinsics.h</code>, that contains any implementation specific definitions.

The PPU system header file, altivec.h, defines typedefs and keywords and also includes any implementation specific definitions. The PPU system header file, vec_types.h, defines typedefs required by the language extension features defined in this specification.

1.2.1. Single Token Typedefs

To improve code portability, single token typedefs are provided for the vector keyword data types. These typedefs, which are shown in Table 1-4 are defined in <code>spu_intrinsics.h</code> on the SPU and in <code>vec_types.h</code> on the PPU. Besides simplifying type declarations, the single token types serve as class names for extending generic intrinsics or for mapping between PPU VMX intrinsics and/or SPU intrinsics.

Table 1-4: Single Token Vector Data Types

Vector Keyword Data Type	Single Token Typedef	SPU/PPU
vector unsigned char	vec_uchar16	Both
vector signed char	vec_char16	Both
vector unsigned short	vec_ushort8	Both
vector signed short	vec_short8	Both
vector unsigned int	vec_uint4	Both
vector signed int	vec_int4	Both
vector unsigned long long	vec_ullong2	SPU
vector signed long long	vec_llong2	SPU
vector float	vec_float4	Both
vector double	vec_double2	SPU
vector bool char	vec_bchar16	PPU
vector bool short	vec_bshort8	PPU

Vector Keyword Data Type	Single Token Typedef	SPU/PPU
vector bool int	vec_bint4	PPU
vector pixel	vec_pixel8	PPU

1.3. Alignment

Table 1-5 shows the size and default alignment of the various data types.

Table 1-5: Default Data Type Alignments

Data Type	Size	Alignment
char	1	byte
short	2	halfword
int	4	word
long	4	word/doubleword
long long	8	doubleword
float	4	word
double	8	doubleword
pointer	4	word
vector	16	quadword

Additional alignment controls can be achieved on a variable or on a structure/union member using the GCC aligned attribute. For example, in the following declaration statement, the floating-point scalar factor can be aligned on a quadword boundary:

1.3.1. __align_hint (SPU only)

The __align_hint intrinsic is provided to:

- Improve data access through pointers
- · Provide compilers the additional information that is needed to support auto-vectorization

This instrinsic is available only for the SPU. Although it is also useful for the PPU, supporting it is not required.

Although __align_hint is defined as an intrinsic, it behaves like a directive, because no code is ever specifically generated. For example:

```
__align_hint(ptr, base, offset)
```

The $__{align_hint}$ intrinsic informs the compiler that the pointer ptr points to data with a base alignment of base and with an offset from base of offset. The base alignment has to be a power of 2. A base address of zero implies that the pointer has no known alignment. The alignment offset has to be less than base or zero.

The __align_hint intrinsic is not intended to specify pointers that are not naturally aligned. Specifying pointers that are not naturally aligned results in data objects straddling quadword boundaries. If a programmer specifies alignment incorrectly, incorrect programs might result.

Programming Note: Although compliant compiler implementations have to provide the __align_hint intrinsic, compilers may ignore these hints.

1.4. Operating on Vector Types

Most of the C/C++ operators and basic operations have not been extended to operate on vector data types; however, a few have been extended. The operators and operations that have been extended are: the sizeof() operator, the assignment operator (=), the address operator (&), pointer operations, and type casting operations.

1.4.1. sizeof() Operator

The operation <code>sizeof()</code> on a vector type always returns 16.

1.4.2. Assignment Operator

If either the left or right side of an expression has a vector type, both sides of the expression has to be of the same vector type. Thus, the expression a = b is valid and represents assignment if a and b are of the same type or if neither variable is a vector type. Otherwise, the expression is invalid, and the compiler reports the inconsistency as an error.

1.4.3. Address Operator

The operation &a is valid when a is a vector type. The result of the operation is a pointer to vector a.

1.4.4. Pointer Arithmetic and Pointer Dereferencing

The usual pointer arithmetic involving a pointer to a vector type can be performed. For example, assuming p is a pointer to a vector type, p+1 is the pointer to the next vector following p.

Dereferencing the vector pointer p implies a 128-bit vector load from or store to the address obtained by masking the 4 least significant bits of p. When a vector is misaligned, the 4 least significant bits of its address are nonzero. Although vectors are 16-byte aligned (see section "1.3. Alignment"), it nevertheless might be desirable to load or store a vector that is misaligned. A misaligned vector can be loaded in several ways using generic intrinsics (see section "2.2. Generic Intrinsics and Built-ins").

The following code shows one example of how to load a misaligned floating-point vector on the SPU:

Similarly, this next example shows how to store to a misaligned floating-point vector on the SPU.

1.4.5. Type Casting

Pointers to vector types and non-vector types may be cast back and forth to each other. For the purpose of aliasing, a vector type is treated as an array of its corresponding element type, as shown in Table 1-6. If a pointer is cast to the address of a vector type, it is the programmer's responsibility to ensure that the address is 16-byte aligned. Vector types that are applicable only on the PPU do not have an underlying scalar type.

Table 1-6: Vector Pointer Types and Matching Base Element Pointer Types

Vector Pointer Type (vector T*)	Base Element Pointer Type (T*)	SPU/PPU
vector unsigned char*	unsigned char*	Both
vector signed char*	signed char*	Both
vector unsigned short*	unsigned short*	Both
vector signed short*	signed short*	Both
vector unsigned int*	unsigned int*	Both
vector signed int*	signed int*	Both
vector unsigned long long*	unsigned long long*	SPU
vector signed long long*	signed long long*	SPU
vector float*	float*	Both
vector double*	double*	SPU

Casts from one vector type to another vector type has to be explicit and are done using normal C-language casts. None of these casts performs any data conversion. Thus, the bit pattern of the result is the same as the bit pattern of the argument that is cast.

Casts between vector types and scalar types are illegal. On the SPU, the <code>spu_extract</code>, <code>spu_insert</code>, and <code>spu_promote</code> generic intrinsics or the specific casting intrinsics may be used to efficiently achieve the same results (see section "2.1.1. Specific Casting Intrinsics"). On the PPU, the <code>vec_lde</code> and <code>vec_ste</code> intrinsics may be used to copy between scalar and vector types.

1.4.6. Vector Literals

As shown in Table 1-7, a vector literal is written as a parenthesized vector type followed by a curly braced set of constant expressions. If a vector literal is used as an argument to a macro, the literal has to be enclosed in parentheses. In all other cases, the literal can be used without enclosing parentheses. The elements of the vector are initialized to the corresponding expression. Elements for which no expressions are specified default to 0. Vector literals may be used either in initialization statements or as constants in executable statements. The syntax for vector initialization and for vector compound literals is the same as the corresponding array syntax except designators which do not exist for vector elements. The initializer should act as an array of either 2, 4, 8, or 16 elements depending on the size of the underlying type. For example the following two initializations are valid and equivalent:

```
vector signed int v1[] = \{\{0, 1, 2, 3\}, \{4, 5, 6, 7\}\}; vector signed int v2[] = \{0, 1, 2, 3, 4, 5, 6, 7\};
```

The following two struct initializers are also valid and equivalent:

```
struct stypy {
    int i;
    vector signed int t;
} v3 = {1, {0, 1, 2, 3}}, v4 = {1, 0, 1, 2, 3};
```

The following types on both the SPU and PPU cannot be initialized using a vector literal: qword, vector bool char, vector bool short, vector bool int, and vector pixel. They can be created by using the intrinsics or by casting to these vector types.

Table 1-7: Vector Literal Format and Description

Notation	Represents	SPU/PPU
(vector unsigned char) {unsigned char,}	A set of 16 unsigned 8-bit quantities.	Both
(vector signed char) {signed char,}	A set of 16 signed 8-bit quantities.	Both

Notation	Represents	SPU/PPU
(vector unsigned short) {unsigned short,}	A set of 8 unsigned 16-bit quantities.	Both
(vector signed short) {signed short,}	A set of 8 signed 16-bit quantities.	Both
(vector unsigned int) {unsigned int,}	A set of 4 unsigned 32-bit quantities.	Both
(vector signed int) {signed int,}	A set of 4 signed 32-bit quantities.	Both
(vector unsigned long long) {unsigned long long,}	A set of 2 unsigned 64-bit quantities.	SPU
(vector signed long long) {signed long long,}	A set of 2 signed 64-bit quantities.	SPU
(vector float) {float,}	A set of 4 32-bit floating-point quantities.	Both
(vector double) {double,}	A set of 2 64-bit floating-point quantities.	SPU

An alternate format may also be supported which corresponds to the syntax specified in the *Altivec Technology Programming Interface Manual*. This format consists of a parenthesized vector type followed by a parenthesized set of constant expressions. See Table 1-8.

Table 1-8: Alternate Vector Literal Format and Description

Notation	Represents	SPU/PPU
(vector unsigned char)(unsigned int)	A set of 16 unsigned 8-bit quantities that all have the value specified by the integer.	Both
(vector unsigned char)(unsigned int,, unsigned int)	A set of 16 unsigned 8-bit quantities specified by the 16 integers.	Both
(vector signed char)(signed int)	A set of 16 signed 8-bit quantities that all have the value specified by the integer.	Both
(vector signed char)(signed int,, signed int)	A set of 16 signed 8-bit quantities specified by the 16 integers.	Both
(vector unsigned short)(unsigned int)	A set of 8 unsigned 16-bit quantities that all have the value specified by the integer.	Both
(vector unsigned short)(unsigned int,, unsigned int)	A set of 8 unsigned 16-bit quantities specified by the 8 integers.	Both
(vector signed short)(signed int)	A set of 8 signed 16-bit quantities that all have the value specified by the integer.	Both
(vector signed short)(signed int,, signed int)	A set of 8 signed 16-bit quantities specified by the 8 integers.	Both
(vector unsigned int)(unsigned int)	A set of 4 unsigned 32-bit quantities that all have the value specified by the integer.	Both
(vector unsigned int)(unsigned int,, unsigned int)	A set of 4 unsigned 32-bit quantities specified by the 4 integers.	Both
(vector signed int)(signed int)	A set of 4 signed 32-bit quantities that all have the value specified by the integer.	Both
(vector signed int)(signed int,, signed int)	A set of 4 signed 32-bit quantities specified by the 4 integers.	Both
(vector unsigned long long)(unsigned long long)	A set of 2 unsigned 64-bit quantities that all have the value specified by the long integer.	SPU
(vector unsigned long long)(unsigned long long, unsigned long long)	A set of 2 unsigned 64-bit quantities specified by the 2 long integers.	SPU
(vector signed long long)(signed long long)	A set of 2 signed 64-bit quantities that all have the value specified by the long integer.	SPU
(vector signed long long)(signed long long, signed long long)	A set of 2 signed 64-bit quantities specified by the 2 long integers.	SPU
(vector float)(float)	A set of 4 32-bit floating-point quantities that all have the value specified by the float.	Both

Notation	Represents	SPU/PPU
(vector float)(float, float, float, float)	A set of 4 32-bit floating-point quantities specified by the 4 floats.	Both
(vector double)(double)	A set of 2 64-bit double-precision quantities that all have the value specified by the double.	SPU
(vector double)(double, double)	A set of 2 64-bit quantities specified by the 2 doubles.	SPU

1.5. Restrict Type Qualifier

The restrict type qualifier, which is specified in the C99 language specification, is intended to help the compiler generate better code by ensuring that all access to a given object is obtained through a particular pointer. When a pointer uses the restrict type qualifier, the pointer is restrict-qualified. For example:

```
void *memcpy(void * restrict s1, const void * restrict s2, size_t n);
```

In the above prototype, both pointers, s1 and s2, are restrict-qualified. Therefore, the compiler can safely assume that the source and destination objects will not overlap, allowing for a more efficient implementation.

1.6. SPU Programmer Directed Branch Prediction

Branch prediction can be significantly improved by using feedback-directed optimization. However, feedback-directed optimization is not always practical in situations where typical data sets do not exist. Instead, on the SPU, programmer-directed branch prediction is provided using an enhanced version of GCC's __builtin_expect function.

```
int builtin expect(int exp, int value)
```

Programmers can use $_$ builtin_expect to provide the compiler with branch prediction information. The return value of $_$ builtin_expect is the value of the exp argument, which has to be an integral expression. For dynamic prediction, the value argument can be either a compile-time constant or a variable. The $_$ builtin_expect function assumes that exp equals value.

Compilers may require limiting the complexity of the expression argument because multiple branches could be generated. When this situation occurs, the compiler has to issue a warning if the program's branch expectations are ignored.

Programming Note: Implementation of this extension is not required for the PPU because the PPU only supports static prediction for branches

1.7. Inline Assembly

Occasionally, a programmer might not be able to achieve the desired low-level programming result by using only C/C++ language constructs and intrinsic functions. To handle these situations, the use of inline assembly might be necessary, and therefore, it has to be provided. The inline assembly syntax have to match the AT&T assembly syntax implemented by GCC.

The .balignl directive may be used within the inline assembly to ensure the known alignment that is needed to achieve effective dual-issue by the hardware.

1.8. Target Definitions

To support the development of code that can be conditionally compiled for multiple targets, compilers has to define __SPU__, when code is being compiled for the SPU, and __PPU__, when code is being compiled for the PPU. As an example, the following code supports misaligned quadword loads. The __SPU__ and __PPU__ defines are used to conditionally select which code to use. The code that is selected will be different depending on the processor target.

```
vector unsigned char load qword unaligned(vector unsigned char *ptr)
      vector unsigned char qw0, qw1, qw;
#ifdef SPU
      unsigned int shift;
#endif
      qw0 = *ptr;
      qw1 = *(ptr+1);
#ifdef SPU
      shift = (unsigned int) (ptr) & 15;
      gw = spu or(spu slgwbyte(gw0, shift),
                spu rlmaskqwbyte(qw1, (signed)(shift - 16)));
#elif defined( PPU ) /* PPU */
      qw = vec perm(qw0, qw1, vec_lvsl(0, ptr));
#else
# error "This code can only be compiled for PPU or the SPU"
#endif
      return (qw);
```


2. SPU Low-Level Specific and Generic Intrinsics

This chapter describes the minimal set of basic intrinsics and built-ins that make the underlying Instruction Set Architecture (ISA) and Synergistic Processor Element (SPE) hardware accessible from the C programming language. There are three types of intrinsics:

- Specific
- Generic
- Built-ins

Intrinsics may be implemented either internally within the compiler or as macros. However, if an intrinsic is implemented as a macro, restrictions apply with respect to vector literals being passed as arguments. For more details, see section "1.4.6. Vector Literals".

2.1. Specific Intrinsics

Specific intrinsics are *specific* in the sense that they have a one-to-one mapping with a single SPU assembly instruction. All specific intrinsics are named using the SPU assembly instruction prefixed by the string si_. For example, the specific intrinsic that implements the stop assembly instruction is named si stop.

A specific intrinsic exists for nearly every assembly instruction. However, the functionality provided by several of the assembly instructions is better provided by the C/C++ language; therefore, for these instructions no specific intrinsic has been provided. Table 2-9 describes the assembly instructions that have no corresponding specific intrinsic.

Table 2-9: Assembly Instructions for Which No Specific Intrinsic Exists

Instruction Type	SPU Instructions
Branch instructions	br, bra, brsl, brasl, bi, bid, bie, bisl, bisld, bisle, brnz, brz, brhnz, brhz, bizd, bize, binz, binzd, binze, bihz, bihzd, bihze, bihnzd, and bihnze (excluding bisled, bisledd, bislede)
Branch Hint instructions	hbr, hbrp, hbra, and hbrr
Interrupt Return Instructions	iret, iretd, irete

All specific intrinsics are accessible through generic intrinsics, except for the specific intrinsics shown in Table 2-10. The intrinsics that are not accessible fall into three categories:

- Instructions that are generated using basic variable referencing (that is, using vector and scalar loads and stores)
- Instructions that are used for immediate vector construction
- · Instructions that have limited usefulness and are not expected to be used except in rare conditions

Table 2-10: Specific Intrinsics Not Accessible through Generic Intrinsics

Instruction/Description	Usage	Assembly Mapping
Generate Controls for Sub-Quadword Insertion		
si_cbd: Generate Controls for Byte Insertion (d-form)		
An effective address is computed by adding the value in the signed 7-bit immediate imm to word element 0 of a . The rightmost 4 bits of the effective address are used to determine the position of the addressed byte within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a byte (byte element 3) at the indicated position within a quadword. The pattern is returned in quadword a .	d = si_cbd(a, imm)	CBD d, imm(a)

Instruction/Description	Usage	Assembly Mapping
si_cbx: Generate Controls for Byte Insertion (x-form)		
An effective address is computed by adding the value of word element 0 of a to word element 0 of b . The rightmost 4 bits of the effective address are used to determine the position of the addressed byte within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a byte (byte element 3) at the indicated position within a quadword. The pattern is returned in quadword d .	d = si_cbx(a, b)	CBX d, a, b
si_cdd: Generate Controls for Doubleword Insertion (d-form)		
An effective address is computed by adding the value in the signed 7-bit immediate imm to word element 0 of a . The rightmost 4 bits of the effective address are used to determine the position of the addressed doubleword within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a doubleword (doubleword element 0) at the indicated position within a quadword. The pattern is returned in quadword d .	d = si_cdd(a, imm)	CDD d, imm(a)
si_cdx: Generate Controls for Doubleword Insertion (x-form)		
An effective address is computed by adding the value of word element 0 of a to word element 0 of b . The rightmost 4 bits of the effective address are used to determine the position of the addressed doubleword within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a doubleword (doubleword element 3) at the indicated position within a quadword. The pattern is returned in quadword d .	d = si_cdx(a, b)	CDX d, a, b
si_chd: Generate Controls for Halfword Insertion (d-form)		
An effective address is computed by adding the value in the signed 7-bit immediate <i>imm</i> to word element 0 of <i>a</i> . The rightmost 4 bits of the effective address are used to determine the position of the addressed halfword within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a halfword (halfword element 1) at the indicated position within a quadword. The pattern is returned in quadword <i>d</i> .	d = si_chd(a, <i>imm</i>)	CHD d, imm(a)
si_chx: Generate Controls for Halfword Insertion (x-form)		
An effective address is computed by adding the value of word element 0 of a to word element 0 of b . The rightmost 4 bits of the effective address are used to determine the position of the addressed halfword within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a halfword (halfword element 1) at the indicated position within a quadword. The pattern is returned in quadword d .	d = si_chx(a, b)	CHX d, a, b
si_cwd: Generate Controls for Word Insertion (d-form)		
An effective address is computed by adding the value in the signed 7-bit immediate imm to word element 0 of a . The rightmost 4 bits of the effective address are used to determine the position of the addressed word within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a word (word element 0) at the indicated position within a quadword. The pattern is returned in quadword a .	d = si_cwd(a, imm)	CWD d, imm(a)
si_cwx: Generate Controls for Word Insertion (x-form)		
An effective address is computed by adding the value of word element 0 of a to word element 0 of b . The rightmost 4 bits of the effective address are used to determine the position of the addressed word within a quadword. Based on the position, a pattern is generated that can be used with the si_shufb intrinsic to insert a word (element 0) at the indicated position within a quadword. The pattern is returned in quadword d .	$d = si_cwx(a, b)$	CWX d, a, b

Instruction/Description	Usage	Assembly Mapping
Constant Formation Intrinsics		
si_il: Immediate Load Word		
The 16-bit signed immediate value imm is sign extended to 32-bits and placed into each of the 4 word elements of quadword d .	d = Si_il(imm)	IL d, imm
si_ila: Immediate Load Address		
The 18-bit immediate value imm is placed in the rightmost bits of each of the 4 word elements of quadword d . The upper 14 bits of each word is set to 0.	d = si_ila(imm)	ILA d, imm
si_ilh: Immediate Load Halfword		
The 16-bit signed immediate value imm is placed in each of the 8 halfword elements of quadword d .	d = si_ilh(imm)	ILH d, imm
si_ilhu: Immediate Load Halfword Upper		
The 16-bit signed immediate value imm is placed into the left-most 16 bits each of the 4 word elements of quadword d . The rightmost 16 bits are set to 0.	d = si_ilhu(imm)	ILHU d, imm
si_iohl: Immediate Or Halfword Lower		rt < a
The 16-bit immediate value imm is prepended with zeros and ORed with each of the 4 word elements of quadword a . The result is returned in quadword d .	d = si_iohl(a, imm)	IOHL rt, imm d < rt
No Operation Intrinsics		
si_Inop: No Operation (load)	si Inop()	LNOP
A no-operation is performed on the load pipeline.	Si_iriop()	LINOP
si_nop: No Operation (execute)	si_nop()	NOP rt ¹
A no-operation is performed on the execute pipeline.	3i_1iop()	NOI II
Memory Load and Store Intrinsics		
si_lqa: Load Quadword (a-form)		
An effective address is determined by the sign-extended 18-bit value imm , with the 4 least significant bits forced to zero. The quadword at this effective address is returned in quadword d .	d = si_lqa(imm)	LQA d, imm
si_lqd: Load Quadword (d-form)		
An effective address is computed by zeroing the 4 least significant bits of the sign-extended 14-bit immediate value imm , adding imm to word element 0 of quadword a , and forcing the 4 least significant bits of the result to zero. The quadword at this effective address is then returned in quadword d .	d = si_lqd(a, imm)	LQD d, imm(a)
si_lqr: Load Quadword Instruction Relative (a-form)		
An effective address is computed by forcing the 2 least significant bits of the signed 18-bit immediate value imm to zero, adding this value to the address of the instruction, and forcing the 4 least significant bits of the result to zero. The quadword at this effective address is then returned in quadword d .	d = si_lqr(imm)	LQR, d, imm
si_lqx: Load Quadword (x-form)		
An effective address is computed by adding word element 0 of quadword a to word element 0 of quadword b and forcing the 4 least significant bits to zero. The quadword at this effective address is then returned in quadword d .	$d = si_lqx(a, b)$	LQX d, a, b
si_stqa: Store Quadword (a-form)		
An effective address is determined by the sign-extended 18-bit value imm , with the 4 least significant bits forced to zero. The quadword a is stored at this effective address.	si_stqa(a, imm)	STQA a, imm

Instruction/Description	Usage	Assembly Mapping
si_stqd: Store Quadword (d-form) An effective address is computed by zeroing the 4 least significant bits of the sign-extended 14-bit immediate value imm, adding imm to word element 0 of quadword b, and forcing the 4 least significant bits to zero. The quadword a is then stored at this effective address.	si_stqd(a, b, imm)	STQD a, imm(b)
si_stqr : Store Quadword Instruction Relative (a-form) An effective address is computed by forcing the 2 least significant bits of the signed 18-bit immediate value imm to zero, adding this value to the address of the instruction, and forcing the 4 least significant bits of the result to zero. The quadword a is then stored at this effective address.	si_stqr(a, imm)	STQR, a, imm
si_stqx : Store Quadword (x-form) An effective address is computed by adding word element 0 of quadword b to word element 0 of quadword c and forcing the 4 least significant bits to zero. The quadword a is then stored at this effective address.	si_stqx(a, b, c)	STQX a, b, c
Control Intrinsics si_stopd: Stop and Signal with Dependencies Execution of the SPU is stopped and a signal type of 0x3FFF is delivered after all register dependencies are met. This intrinsic is considered volatile with respect to all instructions and will not be reordered with any other	si_stopd(a, b, c)	STOPD a, b, c

¹ The false target parameter rt is optimally chosen depending on the register usage of neighboring instructions.

Specific intrinsics accept only the following types of arguments:

- Immediate literals, as an explicit constant expression or as a symbolic address
- Enumerations
- qword arguments

Arguments of other types must be cast to gword.

For complete details on the specific instructions, see the Synergistic Processor Unit Instruction Set Architecture.

2.1.1. Specific Casting Intrinsics

When using specific intrinsics, it might be necessary to cast from scalar types to the qword data type, or from the qword data type to scalar types. Similar to casting between vector data types, specific cast intrinsics have no effect on an argument that is stored in a register. All specific casting intrinsics are of the following form:

d=casting_intrinsic(a)

See Table 2-11 for additional details about the specific casting intrinsics.

Table 2-11: Specific Casting Intrinsics

Casting Intrinsic	Return/Argument Types		Description	
	d	а		
si_to_char	signed char		Cast byte element 3 of qword a to signed char d.	
si_to_uchar	unsigned char		Cast byte element 3 of qword a to unsigned char d.	
si_to_short	short		Cast halfword element 1 of qword a to short d.	
si_to_ushort	unsigned short		Cast halfword element 1 of qword a to unsigned short d.	
si_to_int	int		Cast word element 0 of qword a to int d.	
si_to_uint	unsigned int	qword	Cast word element 0 of qword a to unsigned int d.	
si_to_ptr	void *		Cast word element 0 of qword a to a void pointer d.	
si_to_llong	long long		Cast doubleword element 0 of qword a to long long d.	
si_to_ullong	unsigned long long		Cast doubleword element 0 of qword a to unsigned long long d.	
si_to_float	float		Cast word element 0 of qword a to float d.	
si_to_double	double		Cast doubleword element 0 of qword a to double d.	
si_from_char		signed char	Cast signed char a to byte element 3 of qword d.	
si_from_uchar		unsigned char	Cast unsigned char a to byte element 3 of qword d.	
si_from_short		short	Cast short a to halfword element 1 of qword d.	
si_from_ushort		unsigned short	Cast unsigned short a to halfword element 1 of qword d.	
si_from_int		int	Cast int a to word element 0 of qword d.	
si_from_uint	qword	unsigned int	Cast unsigned int a to word element 0 of qword d.	
si_from_ptr		void *	Cast void pointer a to word element 0 of qword d.	
si_from_llong		long long	Cast long long a to doubleword element 0 of qword d.	
si_from_ullong		unsigned long long	Cast unsigned long long a to doubleword element 0 of	
si_from_float		float	Cast float a to word element 0 of qword d.	
si_from_double		double	Cast double a to doubleword element 0 of qword d.	

Because the casting intrinsics do not perform data conversion, casting from a scalar type to a qword type results in portions of the quadword being undefined.

2.2. Generic Intrinsics and Built-ins

Generic intrinsics are operations that map to one or more specific intrinsics. The mapping of a generic intrinsic to a specific intrinsic depends on the input arguments to the intrinsic. Built-ins are similar to generic intrinsics; however, unlike generic intrinsics, built-ins map to more than one SPU instruction. All generic intrinsics and built-ins are prefixed by the string <code>spu_</code>. For example, the generic intrinsic that implements the <code>stop</code> assembly instruction is named <code>spu_stop</code>.

2.2.1. Mapping Intrinsics with Scalar Operands

Intrinsics with scalar arguments are introduced for SPU instructions with immediate fields. For example, the intrinsic function vector signed int spu_add(vector signed int, int) will translate to an AI assembly instruction.

Depending on the assembly instruction, immediate values are either 7, 10, 16, or 18 bits in length. The action performed for out-of-range immediate values depends on the type of intrinsic. By default, immediate-form specific intrinsics with an out-of-range immediate value are flagged as an error. Compilers may provide an option to issue a warning for out-of-range immediate values and use only the specified number of least significant bits for the out-of-range argument.

Generic intrinsics support a full range of scalar operands. This support is not dependent on whether the scalar operand can be represented within the instruction's immediate field. Consider the following example:


```
d = spu and (vector unsigned int a, int b);
```

Depending on argument b, different instructions are generated:

- If b is a literal constant within the range supported by one of the immediate forms, the immediate instruction form is generated. For example, if b equals 1, then ANDI d, a, 1 is generated.
- If b is a literal constant and is out-of-range but can be folded and implemented using an alternate immediate instruction form, the alternate immediate instruction is generated. For example, if b equals 0x30003, then ANDHI d, a, 3 is generated. In this context, "alternate immediate instruction form" means an immediate instruction form having a smaller data element size.
- If b is a literal constant that can be constructed using one or two immediate load instructions followed by the non-immediate form of the instruction, the appropriate instructions will be used. Immediate load instructions include IL, ILH, ILHU, ILA, IOHL, and FSMBI. Table 2-12 shows possible uses of the immediate load instructions for various constants b.

Table 2-12: Possible Uses of Immediate Load Instructions for Various Values of Constant b

Constant b	Generates Instructions
-6000	IL b, -6000 AND d, a, b
131074 (0x20002)	ILH b, 2 AND d, a, b
131072 (0x20000)	ILHU b, 2 AND d, a, b
134000 (0x20B70)	ILA b, 134000 AND d, a, b
262780 (0x4027C)	ILHU b, 4 IOHL b, 636 AND d, a, b
(0xFFFFFFF, 0x0, 0x0, 0xFFFFFFF)	FSMBI b, 0xF00F AND d, a, b

• If b is a variable (non-literal) integer, code to splat the integer across the entire vector is generated followed by the non-immediate form of the instruction. For example, if b is an integer of unknown value, the constant area is loaded with the shuffle pattern (0x10203, 0x10203, 0x10203, 0x10203) at "CONST_AREA, offset" and the following instructions are generated:

```
LQD pattern, CONST_AREA, offset SHUFB b, b, b, pattern AND d, a, b
```

2.2.2. Implicit Conversion of Arguments of Intrinsics

There is no implicit conversion of arguments which have a vector type. Arguments of scalar type are converted according to the rules specified in the C/C++ standards. Consider, for example,

```
d = spu insert(a, b, element);
```

Scalar *a* is inserted into the element of vector *b* that is specified by the *element* parameter. When *b* is a vector double, *a* must be converted to double, *element* must be converted to int, and *d* must be a vector double.

2.2.3. Notations and Conventions

The remaining documentation describing the generic intrinsics uses the following rules and naming conventions:

- The table associated with each generic intrinsic specifies the supported input types.
- For intrinsics with scalar operands, only the immediate form of the instruction is shown. The other forms can
 be deduced in accordance with the rules discussed in section "2.2.1. Mapping Intrinsics with Scalar
 Operands".

- Some intrinsics, whether specific or generic, map to assembly instructions that do not uniquely specify all input and output registers. Instead, an input register also serves as the output register. Examples of these assembly instructions include ADDX, DFMS, MPYHHA, and SFX. For these intrinsics, the notation rt <--- c is used to imply that a register-to-register copy (copy c to rt) might be required to satisfy the semantics of the intrinsic, depending on the inputs and outputs. No copies will be generated if input c is the same as output d.
- Generic intrinsics that do not map to specific intrinsics are identified by the acronym "N/A" (not applicable) in the Specific Intrinsics column of the respective table.

2.3. Constant Formation Intrinsics

spu_splats: Splat Scalar To a Vector

d = spu splats(a)

A single scalar value is replicated across all elements of a vector of the same type. The result is returned in vector *d*.

Table 2-13: Splat Scalar To a Vector

Return/Arg	ument Types	Specific Intrinsics	Assembly Mapping	
d	а	opecine munisies	Assembly Mapping	
vector unsigned char	unsigned char			
vector signed char	signed char			
vector unsigned short	unsigned short			
vector signed short	signed short			
vector unsigned int	unsigned int	NI/Λ	SHUFB d, a, a, pattern	
vector signed int	signed int	N/A		
vector unsigned long long	unsigned long long signed long long			
vector signed long long				
vector float	float			
vector double	double			
vector unsigned char	unsigned char (literal)		IL d, a or ILA d, a or ILH d, a&0xFFFF or	
vector signed char	signed char (literal)	N/A		
vector unsigned short	unsigned short (literal)			
vector signed short	signed short (literal)			
vector unsigned int	unsigned int (literal)			
vector signed int	signed int (literal)		ILHU d, a>>16 or	
vector unsigned long long	unsigned long long (literal)	signed long long (literal)		
vector signed long long	signed long long (literal)		ILHU d, a>>16; IOHL d, a or	
vector float	float (literal)			
vector double	double (literal)		FSMBI d, a	

2.4. Conversion Intrinsics

spu_convtf: Convert Vector To Float

d = spu convtf(a, scale)

Each element of vector a is converted to a floating-point value and divided by 2^{scale} . The allowable range for scale is 0 to 127. Values outside this range are flagged as an error and compilation is terminated. The result is returned in vector a.

Table 2-14: Convert an Integer Vector To a Vector Float

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	scale	Specific multisles	Assembly Mapping
vector float	vector unsigned int	unsigned int (7-bit literal)	d = si_cuflt(a, scale)	CUFLT d, a, scale
vector float	vector signed int	unsigned int (7-bit literal)	d = si_csflt(a, scale)	CSFLT d, a, scale

spu_convts: Convert Floating-Point Vector To Signed Integer Vector

d = spu_convts(a, scale)

Each element of vector a is scaled by 2^{scale} , and the result is converted to a signed integer. If the intermediate result is greater than 2^{31} -1, the result saturates to 2^{31} -1. If the intermediate value is less than -2^{31} , the result saturates to -2^{31} . The allowable range for scale is 0 to 127. Values outside this range are flagged as an error and compilation is terminated. The results are returned in the corresponding elements of vector d.

Table 2-15: Convert a Vector Float To a Signed Integer Vector

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	scale	Specific intrinsics	Assembly Mapping
vector signed int	vector float	unsigned int (7-bit literal)	d = si_cflts(a, scale)	CFLTS d, a, scale

spu_convtu: Convert Floating-Point Vector To Unsigned Integer Vector

d = spu_convtu(a, scale)

Each element of vector \underline{a} is scaled by 2^{scale} and the result is converted to an unsigned integer. If the intermediate result is greater than 2^{32} -1, the result saturates to 2^{32} -1. If the intermediate value is negative, the result saturates to zero. The allowable range for scale is 0 to 127. Values outside this range are flagged as an error and compilation is terminated; otherwise, the result is returned in the corresponding element of vector \underline{a} .

Table 2-16: Convert a Vector Float To an Unsigned Integer Vector

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	scale	Specific intrinsics	Assembly Mapping
vector unsigned int	vector float	unsigned int (7-bit literal)	d = si_cfltu(a, scale)	CFLTU d, a, scale

spu_extend: Sign Extend Vector

d = spu_extend(a)

For a fixed-point vector a, each odd element of vector a is sign extended and returned in the corresponding element of vector d. For a floating-point vector, each even element of a is sign extended and returned in the corresponding element of d.

Table 2-17: Sign Extend Vector

Return/Argur	ment Types	Specific Intrinsics	Assembly Mapping
d	а	Opcome municies	
vector signed short	vector signed char	$d = si_xsbh(a)$	XSBH d, a
vector signed int	vector signed short	$d = si_xshw(a)$	XSHW d, a

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	Specific intrinsics	Assembly Mapping	
vector signed long long	vector signed int	$d = si_xswd(a)$	XSWD d, a	
vector double	vector float	$d = si_fesd(a)$	FESD d, a	

spu_roundtf: Round Vector Double To Vector Float

d = spu_roundtf(a)

Each doubleword element of vector a is rounded to a single-precision floating-point value and placed in the even element of vector a. Zeros are placed in the odd elements of a.

Table 2-18: Round a Vector Double To a Float

Return/Argument Types		Specific	Assembly Mapping	
d	а	Intrinsics	Assembly Mapping	
vector float	vector double	d = si_frds(a)	FRDS d, a	

2.5. Arithmetic Intrinsics

spu_add: Vector Add

 $d = spu_add(a, b)$

Each element of vector a is added to the corresponding element of vector b. If b is a scalar, the scalar value is replicated for each element and then added to a. Overflows and carries are not detected, and no saturation is performed. The results are returned in the corresponding elements of vector d.

Table 2-19: Vector Add

	Return/Argument Type	Specific Intrinsics	Accombly Manning		
d	а	b	Specific intrinsics	Assembly Mapping	
vector signed int	vector signed int	vector signed int	d = si_a(a, b)	A d, a, b	
vector unsigned int	vector unsigned int	vector unsigned int	α – si_a (a, b)	A u, a, b	
vector signed short	vector signed short	vector signed short	a = ai ab(a b)	All d a b	
vector unsigned short	vector unsigned short	vector unsigned short	d = si_ah(a, b)	AH d, a, b	
vector signed int	vector signed int	10-bit signed int		Al d, a, b	
vector unsigned int	vector unsigned int	(literal) $d = si_ai(a, b)$		Ai u, a, b	
vector signed int	vector signed int	int	See section "2.2.1. Mapping Intrinsic		
vector unsigned int	vector unsigned int	unsigned int	with Scalar Operand	ds".	
vector signed short	vector signed short	10-bit signed short	al = oi obi(a la)	AHI d, a, b	
vector unsigned short	vector unsigned short	(literal)	d = si_ahi(a, b)		
vector signed short	vector signed short	short	See section "2.2.1.	Mapping Intrinsics	
vector unsigned short	vector unsigned short	unsigned short	with Scalar Operand	ds".	
vector float	vector float	vector float	$d = si_fa(a, b)$	FA d, a, b	
vector double	vector double	vector double	d = si_dfa(a, b)	DFA d, a, b	

spu_addx: Vector Add Extended

$$d = spu_addx(a, b, c)$$

Each element of vector a is added to the corresponding element of vector b and to the least significant bit of the corresponding element of vector c. The result is returned in the corresponding element of vector d.

Table 2-20: Vector Add Extended

	Return/Argu	Specific	Assembly Mapping		
d	а	b	С	Intrinsics	Assembly Mapping
vector signed int	vector signed int	vector signed int	vector signed int	d = si_addx(rt < c
vector unsigned int	vector unsigned int	vector unsigned int	vector unsigned int	a, b, c)	ADDX rt, a, b d < rt

spu_genb: Vector Generate Borrow

$$d = spu genb(a, b)$$

Each element of vector b is subtracted from the corresponding element of vector a. The resulting borrow out is placed in the least significant bit of the corresponding element of vector b. The remaining bits of b are set to b.

Table 2-21: Vector Generate Borrow

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	b	Specific munisics	Assembly Mapping
vector signed int	vector signed int	vector signed int	d = si bg(b, a)	BG rt, b, a
vector unsigned int	vector unsigned int	vector unsigned int	α – $\operatorname{Si_bg}(D, a)$	

spu genbx: Vector Generate Borrow Extended

d = spu genbx(a, b, c)

Each element of vector b is subtracted from the corresponding element of vector b. An additional 1 is subtracted from the result if the least significant bit of the corresponding element of vector c is 0. If the result is less than 0, a 1 is placed in the corresponding element of vector d; otherwise, a 0 is placed in the corresponding element of d.

Table 2-22: Vector Generate Borrow Extended

	Return/Argu	Specific	Assembly Mapping		
d	а	b	С	Assembly Mapping	
vector signed int	vector signed int	vector signed int	vector signed int	d = si_bgx(rt < c
vector unsigned int	vector unsigned int	vector unsigned int	vector unsigned int	b, a, c)	BGX rt, b, a d < rt

spu_genc: Vector Generate Carry

$$d = spu_genc(a, b)$$

Each element of vector a is added to the corresponding element of vector b. The resulting carry out is placed in the least significant bit of the corresponding element of vector d. The remaining bits of d are set to 0.

Table 2-23: Vector Generate Carry

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	b	Specific intrinsics	Assembly Mapping
vector signed int	vector signed int	vector signed int	d = si cg(a, b)	CG rt, a, b
vector unsigned int	vector unsigned int	vector unsigned int	a 009(a, b)	00 II, a, b

spu_gencx: Vector Generate Carry Extended

$$d = spu gencx(a, b, c)$$

Each element of vector a is added to the corresponding element of vector b and the least significant bit of the corresponding element of vector c. The resulting carry out is placed in the least significant bit of the corresponding element of vector d. The remaining bits of d are set to d.

Table 2-24: Vector Generate Carry Extended

	Return/Argu	Specific	Assembly Mapping		
d	а	b	Intrinsics	Assembly Mapping	
vector signed int	vector signed int	vector signed int	vector signed int	d = si_cgx(rt < c CGX rt, a, b
vector unsigned int	vector unsigned int	vector unsigned int	vector unsigned int	a, b, c)	d < rt

spu_madd: Vector Multiply and Add

$$d = spu madd(a, b, c)$$

Each element of vector a is multiplied by vector b and added to the corresponding element of vector c and returned to the corresponding element of vector d. For integer multiply-and-adds, the odd elements of vectors a and b are sign extended to 32-bit integers prior to multiplication.

Table 2-25: Vector Multiply and Add

	Return/Argu	Specific	Assembly Mapping		
d	а	b	С	Intrinsics	Assembly Mapping
vector signed int	vector signed short	vector signed short	vector signed int	d = si_mpya(a, b, c)	MPYA d, a, b, c
vector float	vector float	vector float	vector float	d = si_fma(a, b, c)	FMA d, a, b, c
vector double	vector double	vector double	vector double	d = si_dfma(a, b, c)	rt < c DFMA rt, a, b d < rt

spu_mhhadd: Vector Multiply High High and Add

Each even element of vector a is multiplied by the corresponding even element of vector b, and the 32-bit result is added to the corresponding element of vector c and returned in the corresponding element of vector d.

Table 2-26: Vector Multiply High High and Add

	Return/Arg	Caccific Intrincipa	A a a a mala la a Mananina		
d	а	b	С	Specific intrinsics	Assembly Mapping
vector signed int	vector signed short	vector signed short	vector signed int	d = si_mpyhha(a, b, c)	rt < c MPYHHA rt, a, b d < rt
vector unsigned int	vector unsigned short	vector unsigned short	vector unsigned int	d = si_mpyhhau(a, b, c)	rt < c MPYHHAU rt, a, b d < rt

spu_msub: Vector Multiply and Subtract

$$d = spu_msub(a, b, c)$$

Each element of vector a is multiplied by the corresponding element of vector b, and the corresponding element of vector c is subtracted from the product. The result is returned in the corresponding element of vector d.

Table 2-27: Vector Multiply and Subtract

Return/Argument Types			Specific Intrinsics	Assembly Mapping		
d	а	b	С	opecine munisies	Assembly Mapping	
vector float	vector float	vector float	vector float	$d = si_fms(a, b, c)$	FMS d, a, b, c	
vector double	vector double	vector double	vector double	$d = si_dfms(a, b, c)$	rt < c DFMS rt, a, b d < rt	

spu_mul: Vector Multiply

d = spu mul(a, b)

Each element of vector a is multiplied by the corresponding element of vector b and returned in the corresponding element of vector d.

Table 2-28: Vector Multiply

Return/Argument Types			Specific Intrinsics	Assembly Mapping	
d	а	b	Specific intrinsics	Assembly Mapping	
vector float	vector float	vector float	$d = si_fm(a, b)$	FM d, a, b	
vector double	vector double	vector double	$d = si_dfm(a, b)$	DFM d, a, b	

spu_mulh: Vector Multiply High

d = spu mulh(a, b)

Each even element of vector a is multiplied by the next (odd) element of vector b. The product is shifted left by 16 bits and stored in the corresponding element of vector d. Bits shifted out at the left are discarded. Zeros are shifted in at the right.

Table 2-29: Vector Multiply High

	Return/Argument Type	Specific Intrinsics	Assembly Mapping	
d a		b	Specific intrinsics	Assembly Mapping
vector signed int	vector signed short	vector signed short	d = si_mpyh(a, b)	MPYH d, a, b

spu_mule: Vector Multiply Even

 $d = spu_mule(a, b)$

Each even element of vector a is multiplied by the corresponding even element of vector b, and the 32-bit result is put to the corresponding element of vector d.

Table 2-30: Vector Multiply Even

	Return/Argument Type	Specific Intrinsics	Accombly Manning		
d a		b	Specific intrinsics	Assembly Mapping	
vector signed int	vector signed short	vector signed short	$d = si_mpyhh(a, b)$	MPYHH d, a, b	
vector unsigned int	vector unsigned short	vector unsigned short	$d = si_mpyhhu(a, b)$	MPYHHU d, a, b	

spu_mulo: Vector Multiply Odd

 $d = spu_mulo(a, b)$

Each odd-number element of vector a is multiplied by the corresponding element of vector b. If b is a scalar, the scalar value is replicated for each element and then multiplied by a. The results are returned in vector d.

Table 2-31: Vector Multiply Odd

	Return/Argument Ty	Specific Intrinsics	Assembly Mapping		
d	а	b	Specific intrinsics	Assembly Mapping	
		vector signed short	d = si_mpy (a, b)	MPY d, a, b	
vector signed int	vector signed short	10-bit signed short (literal)	$d = si_mpyi(a, b)$	MPYI d, a, b	
		signed short	See section "2.2.1. Mapping Intrinsics with Scalar Operands".		
vector unsigned int	vector unsigned short	vector unsigned short	d = si_mpyu(a, b)	MPYU d, a, b	
		10-bit signed short (literal)	d = si_mpyui(a, b)	MPYUI d, a, b	
		unsigned short	See section "2.2.1. Mapping Intrinsics with Scalar Operands".		

spu_mulsr: Vector Multiply and Shift Right

d = spu_mulsr(a, b)

Each odd element of vector a is multiplied by the corresponding odd element of vector b. The leftmost 16 bits of the 32-bit resulting product is sign extended and returned in the corresponding 32-bit element of vector a.

Table 2-32: Vector Multiply and Shift Right

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	a b		Specific intrinsics	Assembly Mapping
vector signed int	vector signed short	vector signed short	$d = si_mpys(a, b)$	MPYS d, a, b

spu nmadd: Negative Vector Multiply and Add

d = spu nmadd(a, b, c)

Each element of vector a is multiplied by the corresponding element in vector b and then added to the corresponding element of vector c. The result is negated and returned in the corresponding element of vector d.

Table 2-33: Negative Vector Multiply and Add

Return/Argument Types			Specific Intrincies	Assembly Mapping	
d	а	b	С	Specific Intrinsics Assembly N	
vector double	vector double	vector double	vector double	d = si_dfnma(a, b, c)	rt < c DFNMA rt, a, b d < rt

spu_nmsub: Negative Vector Multiply and Subtract

$$d = spu_nmsub(a, b, c)$$

Each element of vector a is multiplied by the corresponding element in vector b. The result is subtracted from the corresponding element in c and returned in the corresponding element of vector d.

Table 2-34: Negative Vector Multiply and Subtract

	Return/Argument Types			Specific Intrinsics	Assembly Mapping	
d	а	b	С	opcome mumaica	Assembly Mapping	
vector float	vector float	vector float	vector float	$d = si_fnms(a, b, c)$	FNMS d, a, b, c	
vector double	vector double	vector double	vector double	$d = si_dfnms(a, b, c)$	rt < c DFNMS rt, a, b d < rt	

spu_re: Vector Floating-Point Reciprocal Estimate

For each element of vector a, an estimate of its floating-point reciprocal is computed, and the result is returned in the corresponding element of vector a. The resulting estimate is accurate to 12 bits.

Table 2-35: Vector Floating-Point Reciprocal Estimate

Return/Argument Types		Specific Intrinsics	Assembly Mapping
d	а	Specific intrinsics	Assembly Mapping
vector float	vector float	$t = si_frest(a)$ $d = si_fi(a, t)$	FREST d, a Fl d, a, d

spu_rsqrte: Vector Floating-Point Reciprocal Square Root Estimate

For each element of vector a, an estimate of its floating-point reciprocal square root is computed, and the result is returned in the corresponding element of vector d. The resulting estimate is accurate to 12 bits.

Table 2-36: Vector Floating-Point Reciprocal Square Root Estimate

Return/Argument Types		Specific Intrinsics	Assembly Mapping
d	а	Specific intrinsics	Assembly Mapping
vector float	vector float	$t = si_frsqest(a)$ $d = si_fi(a, t)$	FRSQEST d, a FI d, a, d

spu_sub: Vector Subtract

$$d = spu sub(a, b)$$

Each element of vector b is subtracted from the corresponding element of vector a. If a is a scalar, the scalar value is replicated for each element of a, and then b is subtracted from the corresponding element of a. Overflows and carries are not detected. The results are returned in the corresponding elements of vector a.

Table 2-37: Vector Subtract

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d a b			Specific intrinsics	Assembly Mapping
vector signed short	vector signed short	vector signed short	d = si sfh(b, a)	SFH d, b, a
vector unsigned short	vector unsigned short	vector unsigned short	α – Si_Siii(D , α)	SFITU, D, a
vector signed int	vector signed int	vector signed int	d = si sf(b, a)	SF d, b, a
vector unsigned int	vector unsigned int	vector unsigned int	α – $\mathfrak{si}_{-}\mathfrak{si}(\mathcal{D}, a)$	Sr u, b, a

	Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	b	Opecine intrinsics	7 to sembly Mapping	
vector signed int	10-bit signed int (literal)	vector signed int	d = si sfi(b, a)	SFI d, b, a	
vector unsigned int	To bit digited int (interal)	vector unsigned int	α οι_οιι(ε, α)	orra, b, a	
vector signed int	int	vector signed int	See section "2.2.1. Mapping Intrinsic with Scalar Operands".		
vector unsigned int	unsigned int	vector unsigned int			
vector signed short	10-bit signed short (literal)	vector signed short	d = si sfhi(b, a)	SFHI d, b, a	
vector unsigned short	10-bit signed short (literal)	vector unsigned short	α – si_sitii(D , α)		
vector signed short	short	vector signed short		. Mapping Intrinsics	
vector unsigned short	unsigned short	vector unsigned short	with Scalar Operands".		
vector float	vector float	vector float	d = si_fs(a, b)	FS d, a, b	
vector double	vector double	vector double	d = si_dfs(a, b)	DFS d, a, b	

spu_subx: Vector Subtract Extended

$$d = spu subx(a, b, c)$$

Each element of vector b is subtracted from the corresponding element of vector a. An additional 1 is subtracted from the result if the least significant bit of the corresponding element of vector c is 0. The final result is returned in the corresponding element of vector d.

Table 2-38: Vector Subtract Extended

	Return/Argument Types				Assembly
d	а	b	С	Specific Intrinsics	Mapping
vector signed int	vector signed int	vector signed int	vector signed int	1 - c; cf://	rt < c
vector unsigned int	vector unsigned int	vector unsigned int	vector unsigned int	$d = si_sfx(b, a, c)$	d < rt

2.6. Byte Operation Intrinsics

spu_absd: Element-Wise Absolute Difference

 $d = spu_absd(a, b)$

Each element of vector a is subtracted from the corresponding element of vector b, and the absolute value of the result is returned in the corresponding element of vector d.

Table 2-39: Element-Wise Absolute Difference

	Return/Argument Types	Specific Intrinsics	Assembly Mapping	
d	a		Specific intrinsics	Assembly Mapping
vector unsigned char	vector unsigned char	vector unsigned char	$d = si_absdb(a, b)$	ABSDB d, a, b

spu_avg: Average of Two Vectors

 $d = spu_avg(a, b)$

Each element of vector a is added to the corresponding element of vector b plus 1. The result is shifted to the right by 1 bit and placed in the corresponding element of vector d.

Table 2-40: Average of Two Vectors

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	d a b		Specific multisics	Assembly Mapping
vector unsigned char	vector unsigned char	vector unsigned char	d = si_avgb(a, b)	AVGB d, a, b

spu_sumb: Sum Bytes into Shorts

```
d = spu_sumb(a, b)
```

Each four elements of b are summed and returned in the corresponding even elements of vector d. Each four elements of a are summed and returned in the corresponding odd elements of d.

Table 2-41: Sum Bytes into Shorts

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	d a b		Specific murisics	Assembly Mapping
vector unsigned short	vector unsigned char	vector unsigned char	$d = si_sumb(a, b)$	SUMB d, a, b

2.7. Compare, Branch and Halt Intrinsics

spu_bisled: Branch Indirect and Set Link if External Data

```
(void) spu_bisled(func)
(void) spu_bisled_d(func)
(void) spu_bisled_e(func)
```

The count value of channel 0 (event status) is examined. If it is zero, execution continues with the next sequential instruction. If it is nonzero, the function func is called. The parameter func is the name of, or pointer to, a parameter-less function with no return value. If func is called, the spu_bisled_d and spu_bisled_e forms of the intrinsic do one of the following actions:

- Disable interrupts use spu bisled d
- Enable interrupts use spu_bisled_e

Programming Note: Because the bisled instruction is assumed to behave as a synchronous software interrupt, standard calling conventions are not observed because all volatile registers must be considered non-volatile by the bisled target function, func. See the SPU Application Binary Interface Specification for additional details about standard calling conventions.

With respect to branch prediction, it is assumed that func is not called. Therefore, a branch hint instruction will not be inserted as a result of the $spu_bisled()$ intrinsic.

Table 2-42: Branch Indirect and Set Link If External Data

Generic Intrinsic Form	func	Specific Intrinsics	Assembly Mapping
spu_bisled		si_bisled(func)	BISLED \$LR, func
spu_bisled_d	void (*func) ()	<pre>si_bisledd(func)</pre>	BISLEDD \$LR, func
spu_bisled_e		si_bislede(func)	BISLEDE \$LR, func

spu_cmpabseq: Element-Wise Compare Absolute Equal

```
d = spu_cmpabseq(a, b)
```

The absolute value of each element of vector a is compared with the absolute value of the corresponding element of vector b. If the absolute values are equal, the corresponding element of vector d is set to all ones; otherwise, the corresponding element of d is set to all zeros.

Table 2-43: Element-Wise Compare Absolute Equal

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	b	Specific intrinsics	Assembly Mapping
vector unsigned int	vector float	vector float	d = si_fcmeq(a, b)	FCMEQ d, a, b

spu_cmpabsgt: Element-Wise Compare Absolute Greater Than

d = spu_cmpabsgt(a, b)

The absolute value of each element of vector a is compared with the absolute value of the corresponding element of vector b. If the element of a is greater than the element of b, the corresponding element of vector d is set to all ones; otherwise, the corresponding element of d is set to all zeros.

Table 2-44: Element-Wise Compare Absolute Greater Than

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	b	Specific munisics	Assembly Mapping
vector unsigned int	vector float	vector float	$d = si_fcmgt(a, b)$	FCMGT d, a, b

spu_cmpeq: Element-Wise Compare Equal

 $d = spu_cmpeq(a, b)$

Each element of vector a is compared with the corresponding element of vector b. If b is a scalar, the scalar value is first replicated for each element, and then a and b are compared. If the operands are equal, all bits of the corresponding element of vector d are set to one. If they are unequal, all bits of the corresponding element of d are set to zero.

Table 2-45: Element-Wise Compare Equal

Return/Argument Types		Specific Intrinsics Assembly Map		
d	a	b	Specific intrinsics	Assembly Mapping
vector unsigned char	vector signed char	vector signed char	d = si ceqb(a, b)	CEQB d, a, b
vector unsigned chai	vector unsigned char	vector unsigned char		
vector unsigned short	vector signed short	vector signed short	d = si_ceqh(a, b)	CEQH d, a, b
vector unsigned short	vector unsigned short	vector unsigned short	$a - \operatorname{si_ceqn}(a, D)$	CEQH u, a, b
	vector signed int	vector signed int	d = si ceq(a, b)	CEO d a b
vector unsigned int	vector unsigned int	vector unsigned int	α - si_ceq(a, b)	CEQ d, a, b
	vector float	vector float	$d = si_fceq(a, b)$	FCEQ d, a, b
	vector signed char	10 bit signed int (literal)	10-bit signed int (literal) $d = si_ceqbi(a, b)$	CEQBI d, a, b
	vector unsigned char	10-bit signed int (literal)	α – 3i_ccqbi(a, b)	
vector unsigned char	vector signed char	signed char	See section "2.2.1. Mapping Intrinsics	
	vector unsigned char	unsigned char	with Scalar Operands".	
	vector signed short	10-bit signed int (literal)	d = si_ceqhi(a, b)	CEOULd a b
voctor unsigned short	vector unsigned short	10-bit signed int (literal)	α - Si_Ceqrii(a, D)	CEQHI d, a, b
vector unsigned short	vector signed short	signed short	See section "2.2.1. I	Mapping Intrinsics
	vector unsigned short	unsigned short	with Scalar Operand	ds".
	vector signed int	10 hit signed int (literal)	d = si cogi(a b)	CEOLd a b
tanainmadint	vector unsigned int	10-bit signed int (literal)	$d = si_ceqi(a, b)$	CEQI d, a, b
vector unsigned int	vector signed int	signed int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
	vector unsigned int	unsigned int		

spu_cmpgt: Element-Wise Compare Greater Than

d = spu_cmpgt(a, b)

Each element of vector a is compared with the corresponding element of vector b. If b is a scalar, the scalar value is replicated for each element and then a and b are compared. If the element of a is greater than the corresponding element of b, all bits of the corresponding element of vector d are set to one; otherwise, all bits of the corresponding element of d are set to zero.

Table 2-46: Element-Wise Compare Greater Than

	Return/Argument Typ	es	Specific Intrinsics	Assembly Mapping
d	а	b	Specific intrinsics	Assembly Mapping
		vector signed char	$d = si_cgtb(a, b)$	CGTB d, a, b
	vector signed char	10-bit signed int (literal)	d = si_cgtbi(a, b)	CGTBI d, a, b
vector unsigned char	3	signed char	See section "2.2.1. with Scalar Operan	
vector unsigned char		vector unsigned char	$d = si_clgtb(a, b)$	CLGTB d, a, b
	vector unsigned char	10-bit signed int (literal)	$d = si_clgtbi(a, b)$	CLGTBI d, a, b
	3	unsigned char	See section "2.2.1. with Scalar Operan	
		vector signed short	$d = si_cgth(a, b)$	CGTH d, a, b
	vector signed short	10-bit signed int (literal)	d = si_cgthi(a, b)	CGTHI d, a, b
voctor ungigned short		signed short	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
vector unsigned short	vector unsigned short	vector unsigned short	$d = si_clgth(a, b)$	CLGTH d, a, b
		10-bit signed int (literal)	$d = si_clgthi(a, b)$	CLGTHI d, a, b
	3	unsigned short	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
	vector signed int	vector signed int	$d = si_cgt(a, b)$	CGT d, a, b
		10-bit signed int (literal)	$d = si_cgti(a, b)$	CGTI d, a, b
vector unsigned int		signed int	See section "2.2.1. with Scalar Operan	Mapping Intrinsics ds".
		vector unsigned int	d = si_clgt(a, b)	CLGT d, a, b
	vector unsigned int	10-bit signed int (literal)	$d = si_clgti(a, b)$	CLGTI d, a, b
		unsigned int	See section "2.2.1. with Scalar Operan	Mapping Intrinsics ds".
	vector float	vector float	d = si_fcgt(a, b)	FCGT d, a, b

spu_hcmpeq: Halt If Compare Equal

(void) spu_hcmpeq(a, b)

The contents of a and b are compared. If they are equal, execution is halted.

Table 2-47: Halt If Compare Equal

	• •		
Retur a	n/Argument Types b	Specific Intrinsics	Assembly Mapping ^{1,2}
int unsigned int	int (non-literal) unsigned int (non-literal)	si_heq(a, b)	HEQ rt, a, b
int unsigned int	10-bit signed int (literal)	si_heqi(a, b)	HEQI rt, a, b

¹ Immediate values that cannot be represented as a 10-bit signed value are constructed similar to the method described in section "2.2.1. Mapping Intrinsics with Scalar Operands" on page 13.

spu hcmpgt: Halt If Compare Greater Than

(void) spu_hcmpgt(a, b)

The contents of a and b are compared. If a is greater than b, execution is halted.

Table 2-48: Halt If Compare Greater Than

Return/Argument Types		Specific Intrinsics	Assembly Mapping ^{1,2}
а	b	Opcome munisies	Assembly Mapping
int	int (non-literal)	si_hgt(a, b)	HGT rt, a, b
unsigned int	unsigned int (non-literal)	si_hlgt(a, b)	HLGT rt, a, b
int	10-bit signed int (literal)	si_hgti(a, b)	HGTI rt, a, b
unsigned int	10-bit signed int (literal)	si_hlgti(a, b)	HLGTI rt, a, b

¹ Immediate values that cannot be represented as 10-bit signed values are constructed in a way similar to the method described in section "2.2.1. Mapping Intrinsics with Scalar Operands" on page 13.

2.8. Bits and Mask Intrinsics

spu_cntb: Vector Count Ones for Bytes

d = spu cntb(a)

For each element of vector a, the number of ones are counted, and the count is placed in the corresponding element of vector d.

Table 2-49: Vector Count Ones for Bytes

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d a		Specific intrinsics	Assembly Mapping	
vector unsigned char	vector unsigned char	si cntb	CNTB d, a	
vector unsigned chai	vector signed char	31_0110	ONTE d, a	

² The false target parameter *rt* is optimally chosen depending on the register usage of neighboring instructions.

² The false target parameter rt is optimally chosen depending on the register usage of neighboring instructions.

spu_cntlz: Vector Count Leading Zeros

d = spu_cntlz(a)

For each element of vector a, the number of leading zeros is counted, and the resulting count is placed in the corresponding element of vector d.

Table 2-50: Vector Count Leading Zeros

Return/Argument Types		Specific	Assembly Mapping
d a		Intrinsics	Assembly Mapping
	vector signed int		CLZ d, a
vector unsigned int	vector unsigned int	$d = si_clz(a)$	
	vector float		

spu_gather: Gather Bits From Elements

d = spu_gather(a)

The rightmost bit (LSB) of each element of vector a is gathered, concatenated, and returned in the rightmost bits of element 0 of vector a. For a byte vector, 16 bits are gathered; for a halfword vector, 8 bits are gathered; and for a word vector, 4 bits are gathered. The remaining bits of element 0 of a and all other elements of that vector are zeroed.

Table 2-51: Gather Bits From Elements

Return/Argument Types		Specific	Assembly Mapping
d	а	Intrinsics	
	vector unsigned char	d = si gbb(a)	GBB d, a
	vector signed char	a 0g55(a)	ODD u, u
	vector unsigned short	d = si gbh(a)	GBH d, a
vector unsigned int	vector signed short	u – si_gbri(a)	
	vector unsigned int		
	vector signed int	$d = si_gb(a)$	GB d, a
	vector float		

spu_maskb: Form Select Byte Mask

 $d = spu_maskb(a)$

For each of the least significant 16 bits of a, each bit is replicated 8 times, producing a 128-bit vector mask that is returned in vector d.

Table 2-52: Form Select Byte Mask

Return/Argument Types		Specific	Assembly Mapping	
d	а	Intrinsics	7 Goombiy Mapping	
	unsigned short			
	signed short	d = si fsmb(a)	FSMB d, a	
vector unsigned char	unsigned int	u - 3i_13111b(a)		
	signed int			
	16-bit unsigned int (literal)	$d = si_fsmbi(a)$	FSMBI d, a	

spu_maskh: Form Select Halfword Mask

d = spu_maskh(a)

For each of the least significant 8 bits of a, each bit is replicated 16 times, producing a 128-bit vector mask that is returned in vector d.

Table 2-53: Form Select Halfword Mask

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	a		Assembly Mapping	
	unsigned char			
	signed char		FSMH d, a	
vector unsigned short	unsigned short	d = si fsmh(a)		
vector unsigned short	signed short	α – 3i_i3iiii(a)		
	unsigned int			
	signed int			

spu_maskw: Form Select Word Mask

d = spu_maskw(a)

For each of the least significant 4 bits of a, each bit is replicated 32 times, producing a 128-bit vector mask that is returned in vector d.

Table 2-54: Form Select Word Mask

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	Opcome municios	Assembly Mapping	
	unsigned char			
	signed char		FSM d, a	
vector unsigned int	unsigned short	d = si fsm(a)		
vector unsigned int	signed short	α – 3i_i3iii(a)		
	unsigned int			
	signed int			

spu_sel: Select Bits

d = spu_sel(a, b, pattern)

For each bit in the 128-bit vector pattern, the corresponding bit from either vector a or vector b is selected. If the bit is 0, the bit from a is selected; otherwise, the bit from b is selected. The result is returned in vector d.

Table 2-55: Select Bits

	Return/Argument Types				Assembly
d	а	b	pattern	Intrinsics	Mapping
vector unsigned char	vector unsigned char	vector unsigned char	vector unsigned		
vector signed char	vector signed char	vector signed char	char		
vector unsigned short	vector unsigned short	vector unsigned short	vector unsigned		
vector signed short	vector signed short	vector signed short	short		SELB d, a, b, pattern
vector unsigned int	vector unsigned int	vector unsigned int	vector unsigned	int a, b, pattern)	
vector signed int	vector signed int	vector signed int			
vector float	vector float	vector float			
vector unsigned long long	vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	vector signed long long	vector unsigned long long		
vector double	vector double	vector double			

spu_shuffle: Shuffle Two Vectors of Bytes

d = spu_shuffle(a, b, pattern)

For each byte of *pattern*, the byte is examined, and a byte is produced, as shown in Figure 2-2. The result is returned in the corresponding byte of vector *d*.

Figure 2-2: Shuffle Pattern

o .	
Value in the Byte of Pattern (in binary)	Resulting Byte
10xxxxxx	0x00
110xxxxx	0xFF
111xxxxx	0x80
otherwise	the byte of (a b) addressed by the rightmost 5 bits of pattern

Table 2-56: Shuffle Two Vectors of Bytes

	Return/Argument Types			Specific Intrinsics	Assembly	
d	а	b	pattern		Mapping	
vector unsigned char	vector unsigned char	vector unsigned char				
vector signed char	vector signed char	vector signed char	_			
vector unsigned short	vector unsigned short	vector unsigned short		<pre>d = si_shufb(a, b, pattern)</pre>		
vector signed short	vector signed short	vector signed short	_		SHUFB d, a, b, pattern	
vector unsigned int	vector unsigned int	vector unsigned int	vector			
vector signed int	vector signed int	vector signed int	unsigned char			
vector unsigned long long	vector unsigned long long	vector unsigned long long				
vector signed long long	vector signed long long	vector signed long long				
vector float	vector float	vector float				
vector double	vector double	vector double				

2.9. Logical Intrinsics

spu_and: Vector Bit-Wise AND

 $d = spu_and(a, b)$

Each bit of vector a is logically ANDed with the corresponding bit of vector b. If b is a scalar, the scalar value is first replicated for each element, and then a and b are ANDed. The results are returned in the corresponding bit of vector d.

Table 2-57: Vector Bit-Wise AND

Return/Argument Types		Specific Intrinsics	Assembly Mapping		
d	а	b	Specific intrinsics	7.03cmbly Mapping	
vector unsigned char	vector unsigned char	vector unsigned char			
vector signed char	vector signed char	vector signed char			
vector unsigned short	vector unsigned short	vector unsigned short			
vector signed short	vector signed short	vector signed short			
vector unsigned int	vector unsigned int	vector unsigned int		AND d, a, b	
vector signed int	vector signed int	vector signed int	d = si_and(a, b)		
vector unsigned long long	vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	vector signed long long			
vector float	vector float	vector float			
vector double	vector double	vector double			
vector unsigned char	vector unsigned char	10-bit signed int	d = si_andbi(a, b)	ANDRIA a b	
vector signed char	vector signed char	(literal)	a - si_ariubi(a, b)	ANDBI d, a, b	
vector unsigned char	vector unsigned char	unsigned char	See section "2.2.1.	Mapping Intrinsics	
vector signed char	vector signed char	signed char	with Scalar Operands".		
vector unsigned short	vector unsigned short	10-bit signed int	$d = si_andhi(a, b)$		
vector signed short	vector signed short	(literal)	a – si_anuni(a, D)	ANDHI d, a, b	

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	b	Specific intrinsics	Assembly Mapping
vector unsigned short	vector unsigned short	unsigned short	See section "2.2.1.	
vector signed short	vector signed short	signed short	with Scalar Operand	ds".
vector unsigned int	vector unsigned int	10-bit signed int	$d = si \ andi(a, b)$	ANDI d, a, b
vector signed int	vector signed int	(literal)	α – Si_anun(a , D)	ANDI u, a, b
vector unsigned int	vector unsigned int	unsigned int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
vector signed int	vector signed int	signed int		

spu_andc: Vector Bit-Wise AND with Complement

 $d = spu_andc(a, b)$

Each bit of vector a is ANDed with the complement of the corresponding bit of vector b. The result is returned in the corresponding bit of vector d.

Table 2-58: Vector Bit-Wise AND with Complement

Return/Argument Types		Specific	Assembly	
d	а	b	Intrinsics	Mapping
vector unsigned char	vector unsigned char	vector unsigned char		ANDC d, a, b
vector signed char	vector signed char	vector signed char	_	
vector unsigned short	vector unsigned short	vector unsigned short	d = si_andc(a, b)	
vector signed short	vector signed short	vector signed short		
vector unsigned int	vector unsigned int	vector unsigned int		
vector signed int	vector signed int	vector signed int		
vector unsigned long long	vector unsigned long long	vector unsigned long long		
vector signed long long	vector signed long long	vector signed long long		
vector float	vector float	vector float		
vector double	vector double	vector double		

spu_eqv: Vector Bit-Wise Equivalent

 $d = spu_eqv(a, b)$

Each bit of vector a is compared with the corresponding bit of vector b. The corresponding bit of vector d is set to 1 if the bits in a and b are equivalent; otherwise, the bit is set to 0.

Table 2-59: Vector Bit-Wise Equivalent

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	b	opecine munisies	Assembly Mapping
vector unsigned char	vector unsigned char	vector unsigned char		EQV d, a, b
vector signed char	vector signed char	vector signed char		
vector unsigned short	vector unsigned short	vector unsigned short		
vector signed short	vector signed short	vector signed short	d = si_eqv(a, b)	
vector unsigned int	vector unsigned int	vector unsigned int		
vector signed int	vector signed int	vector signed int	α – 3i_cqv(a, b)	
vector unsigned long long	vector unsigned long long	vector unsigned long long		
vector signed long long	vector signed long long	vector signed long long		
vector float	vector float	vector float		
vector double	vector double	vector double		

spu_nand: Vector Bit-Wise Complement of AND

 $d = spu_nand(a, b)$

Each bit of vector a is ANDed with the corresponding bit of vector b. The complement of the result is returned in the corresponding bit of vector d.

Table 2-60: Vector Bit-Wise Complement of AND

Return/Argument Types		Specific Intrinsics	Assembly	
d	a	b		Mapping
vector unsigned char	vector unsigned char	vector unsigned char		NAND d, a, b
vector signed char	vector signed char	vector signed char		
vector unsigned short	vector unsigned short	vector unsigned short	d = si_nand(a_b)	
vector signed short	vector signed short	vector signed short		
vector unsigned int	vector unsigned int	vector unsigned int		
vector signed int	vector signed int	vector signed int	$a = \operatorname{Si_nand}(a, D)$	
vector unsigned long long	vector unsigned long long	vector unsigned long long		
vector signed long long	vector signed long long	vector signed long long		
vector float	vector float	vector float		
vector double	vector double	vector double		

spu_nor: Vector Bit-Wise Complement of OR

d = spu_nor(a, b)

Each bit of vector a is ORed with the corresponding bit of vector b. The complement of the result is returned in the corresponding bit of vector d.

Table 2-61: Vector Bit-Wise Complement of OR

Return/Argument Types		Specific Intrinsics	Assembly	
d	а	b		Mapping
vector unsigned char	vector unsigned char	vector unsigned char		NOR d,a, b
vector signed char	vector signed char	vector signed char		
vector unsigned short	vector unsigned short	vector unsigned short		
vector signed short	vector signed short	vector signed short	_	
vector unsigned int	vector unsigned int	vector unsigned int		
vector signed int	vector signed int	vector signed int	$d = si_nor(a, b)$	
vector unsigned long long	vector unsigned long long	vector unsigned long long	9	
vector signed long long	vector signed long long	vector signed long long		
vector float	vector float	vector float		
vector double	vector double	vector double		

spu_or: Vector Bit-Wise OR

 $d = spu_or(a, b)$

Each bit of vector a is logically ORed with the corresponding bit of vector b. If b is a scalar, the scalar value is first replicated for each element, and then a and b are ORed. The result is returned in the corresponding bit of vector d.

Table 2-62: Vector Bit-Wise OR

Return/Argument Types			Specific	Assembly Mapping	
d	а	b	Intrinsics	7.63cmbly Mapping	
vector unsigned char	vector unsigned char	vector unsigned char			
vector signed char	vector signed char	vector signed char			
vector unsigned short	vector unsigned short	vector unsigned short			
vector signed short	vector signed short	vector signed short			
vector unsigned int	vector unsigned int	vector unsigned int	d = si or(a, b)	OR d. a. b	
vector signed int	vector signed int	vector signed int	$a = 3i_0 i(a, b)$	Ortu, a, b	
vector unsigned long long	vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	vector signed long long			
vector float	vector float	vector float			
vector double	vector double	vector double			
vector unsigned char	vector unsigned char	10-bit signed int (literal)	d = si orbi(a, b)	ORBI d, a, b	
vector signed char	vector signed char	10-bit signed int (interal)		ORBI d, d, b	
vector unsigned char	vector unsigned char	unsigned char	See section "2.2.		
vector signed char	vector signed char	signed char	Intrinsics with Sca		
vector unsigned short	vector unsigned short	10-bit signed int (literal)	d = si orhi(a, b)	ORHI d, a, b	
vector signed short	vector signed short	10-bit signed int (literal)	$\alpha = \operatorname{Si_Offli}(a, \mathcal{D})$	OKHI u, a, b	
vector unsigned short	vector unsigned short	unsigned short	See section "2.2.		
vector signed short	vector signed short	signed short	Intrinsics with Sca	alar Operands".	
vector unsigned int	vector unsigned int	10-bit signed int (literal)	d = si ori(a, b)	ORI d, a, b	
vector signed int	vector signed int	TO-DIL SIGNED IIIL (IILEI AI)	α - Si_OΠ(a, D)	UNI U, a, D	
vector unsigned int	vector unsigned int	unsigned int	See section "2.2.		
vector signed int	vector signed int	signed int	Intrinsics with Sca	alar Operands".	

spu_orc: Vector Bit-Wise OR with Complement

d = spu_orc(a, b)

Each bit of vector a is ORed with the complement of the corresponding bit of vector b. The result is returned in the corresponding bit of vector d.

Table 2-63: Vector Bit-Wise OR with Complement

	Return/Argument Types			Assembly	
d	a	b	Specific Intrinsics	Mapping	
vector unsigned char	vector unsigned char	vector unsigned char			
vector signed char	vector signed char	vector signed char			
vector unsigned short	vector unsigned short	vector unsigned short			
vector signed short	vector signed short	vector signed short			
vector unsigned int	vector unsigned int	vector unsigned int	d = si orc(a, b)	ORC d,a, b	
vector signed int	vector signed int	vector signed int	a - Si_O(C(a, D)	ORC u,a, b	
vector unsigned long long	vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	vector signed long long	1		
vector float	vector float	vector float			
vector double	vector double	vector double			

spu_orx: OR Word Across

 $d = spu_orx(a)$

The four word elements of vector a are logically ORed. The result is returned in word element 0 of vector a. All other elements (1,2,3) of a are assigned a value of zero.

Table 2-64: OR Word Across

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d a		opcomo municios	7.55cmbry Mapping	
vector unsigned int	vector unsigned int	d = si orx(a)	ORX d, a	
vector signed int	vector signed int	a 01_01X(a)	Oroca, a	

spu_xor: Vector Bit-Wise Exclusive OR

 $d = spu_xor(a, b)$

Each element of vector a is exclusive-ORed with the corresponding element of vector b. If b is a scalar, the scalar value is first replicated for each element. The result is returned in the corresponding bit of vector d.

Table 2-65: Vector Bit-Wise Exclusive OR

	Return/Argument Types			Assembly	
d	а	b	Intrinsics	Mapping	
vector unsigned char	vector unsigned char	vector unsigned char			
vector signed char	vector signed char	vector signed char			
vector unsigned short	vector unsigned short	vector unsigned short			
vector signed short	vector signed short	vector signed short	d = si_xor(VOD d a b	
vector unsigned int	vector unsigned int	vector unsigned int			
vector signed int	vector signed int	vector signed int	a, b)	XOR d, a, b	
vector unsigned long long	vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	vector signed long long			
vector float	vector float	vector float			
vector double	vector double	vector double			

	Return/Argument Types			Assembly
d	а	b	Intrinsics	Mapping
vector unsigned char	vector unsigned char	10-bit signed int (literal)	d = si_xorbi(XORBI d, a, b
vector signed char	vector signed char	To bit digitod int (interdi)	a, b)	7,011B1 G, G, B
vector unsigned char	vector unsigned char	unsigned char	See section "2	
vector signed char	vector signed char	signed char	Intrinsics with Operands".	Scalar
vector unsigned short	vector unsigned short	10-bit signed int (literal)	d = si_xorhi(XORHI d, a, b
vector signed short	vector signed short	10-bit signed int (literal)	a, b)	XOIXIII u, a, b
vector unsigned short	vector unsigned short	unsigned short	See section "2	
vector signed short	vector signed short	signed short	Intrinsics with Scalar Operands".	
vector unsigned int	vector unsigned int	10-bit signed int (literal)	d = si_xori(XORI d, a, b
vector signed int	vector signed int	10-bit signed int (literal)	a, b)	AONI u, a, b
vector unsigned int	vector unsigned int	unsigned int	See section "2	
vector signed int	vector signed int	signed int	Intrinsics with Operands".	Scalar

2.10. Shift and Rotate Intrinsics

spu_rl: Element-Wise Rotate Left by Bits

d = spu_rl(a, count)

Each element of vector a is rotated left by the number of bits specified by the corresponding element in vector count. Bits rotated out of the left end of the element are rotated in at the right end. A limited number of count bits are used depending on the size of the element. For halfword elements, the 4 least significant bits of count are used. For word elements, the 5 least significant bits of count are used.

The results are returned in the corresponding elements of vector *d*.

Table 2-66: Element-Wise Rotate Left by Bits

	Return/Argument Types			Assembly Mapping	
d	а	count	Specific Intrinsics	Assembly Mapping	
vector unsigned short	vector unsigned short	vector signed short	vector signed short		
vector signed short	vector signed short	vector signed short	a - si_iotil(a, count)	ROTH d, a, count	
vector unsigned int	vector unsigned int	vector signed int	d = oi rot(a accept)	ROT d, a, count	
vector signed int	vector signed int	vector signed int	d = si_rot(a, count)	ROT u, a, count	
vector unsigned short	vector unsigned short	7-bit signed int (literal)	al = oi rothi(a a at)	ROTHI d, a, count	
vector signed short	vector signed short	7-bit signed int (literal)	$d = si_rothi(a, count)$	ROTHIU, a, Count	
vector unsigned short	vector unsigned short	int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".		
vector signed short	vector signed short	ШЦ			
vector unsigned int	vector unsigned int	7 hit signed int (literal)	al = oi roti/)	DOTI d. a. aquest	
vector signed int	vector signed int	7-bit signed int (literal)	d = si_roti(a, count)	ROTI d, a, count	
vector unsigned int	vector unsigned int	int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".		
vector signed int	vector signed int	ПП			

spu_rlmask: Element-Wise Rotate Left and Mask by Bits

```
d = spu rlmask(a, count)
```

This function uses an element-wise rotate left and mask operation to perform a logical shift right (LSR) by bits of each element of vector a, where count represents the negated value, or values, of the desired corresponding right-shift amounts. (The count parameter can be either a vector or a scalar, as shown in Table 2-67.) For example, if scalar count is -5, each element of a is shifted right by 5 bits. The effect of this function is more precisely shown by the following code:

```
For (each halfword element h in vector a) {
   int bitshift = -count & 0x1F;
   h = (bitshift & 0x10)? 0: LSR(h,bitshift);
}

For (each word element w in vector a) {
   int bitshift = -count & 0x3F;
   w = (bitshift & 0x20)? 0: LSR(w,bitshift);
}
```

The results are returned in the corresponding elements of vector $\emph{d}.$

Table 2-67: Element-Wise Rotate Left and Mask by Bits

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	opecine municies	Assembly Mapping
vector unsigned short	vector unsigned short	vector signed short	d = si_rothm(a, count)	DOTHM d. a. count
vector signed short	vector signed short	vector signed short	a - 3i_10tilli(a, count)	TOTTIWI G, a, Count
vector unsigned int	vector unsigned int	vector signed int	d = si rotm(a, count)	ROTM d, a, count
vector signed int	vector signed int	vector signed int	a - si_louni(a, count)	ROTIVI u, a, count
vector unsigned short	vector unsigned short	7-bit signed int (literal)	d = si rothmi(a, count)	POTHMI d. a. count
vector signed short	vector signed short	7-bit signed int (literal)	a - 51_10(11111(a, count)	KOTTIWITU, a, COUIT
vector unsigned short	vector unsigned short	int	See section "2.2.1. Mapping Intrinsics with	
vector signed short	vector signed short	ШЦ	Scalar Operands".	
vector unsigned int	vector unsigned int	7 hit signed int (literal)	d = si rotmi(a, count)	ROTMI d, a, count
vector signed int	vector signed int	7-bit signed int (interal)	a - Si_iouiii(a, couiic)	ROTIVII u, a, count
vector unsigned int	vector unsigned int	int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
vector signed int	vector signed int	ПЦ		

spu_rlmaska: Element-Wise Rotate Left and Mask Algebraic by Bits

```
d = spu rlmaska(a, count)
```

This function uses an element-wise rotate left and mask operation to perform an arithmetical shift right (ASR) of each element of vector a, where count represents the negated value, or values, of the desired corresponding right-shift amounts. (The count parameter can be either a vector or a scalar, as shown in Table 2-68.) For example, if scalar count is -5, each element of a is shifted right by 5 bits. The effect of this function is more precisely shown by the following code:

```
For (each halfword element h in vector a) {
   int bitshift = -count & 0x1F;
   h = (bitshift & 0x10)? 0: ASR(h,bitshift);
}

For (each word element w in vector a) {
   int bitshift = -count & 0x3F;
   w = (bitshift & 0x20)? 0: ASR(w,bitshift);
}
```

The results are returned in the corresponding elements of vector *d*.

Table 2-68: Element-Wise Rotate Left and Mask Algebraic by Bits

F	Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	Opecine municies	7 Goernbry Mapping	
vector unsigned short	vector unsigned short	vector signed short	d = si rotmah(a, count)	ROTMAH d, a, count	
vector signed short	vector signed short	vector signed short	a - si_rounan(a, count)	ROTIVIALLA, a, COULL	
vector unsigned int	vector unsigned int	vector signed int	d = si_rotma(a, count)	ROTMA d, a, count	
vector signed int	vector signed int	vector signed int	a - si_iotilia(a, count)	ROTIVIA u, a, count	
vector unsigned short	vector unsigned short	7-bit signed int	d = si_rotmahi(a_gount)	ROTMAHI d, a, count	
vector signed short	vector signed short	(literal)	a - si_iotilialii(a, count)		
vector unsigned short	vector unsigned short	int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".		
vector signed short	vector signed short	ПЦ			
vector unsigned int	vector unsigned int	7-bit signed int	d = si rotmai(a, count)	ROTMAI d, a, count	
vector signed int	vector signed int	(literal)	a - si_iotiliai(a, court)	ROTMAI d, a, count	
vector unsigned int	vector unsigned int	int	See section "2.2.1. Mapping	ng Intrinsics with	
vector signed int	vector signed int	ШЦ	Scalar Operands".		

spu_rlmaskqw: Rotate Left and Mask Quadword by Bits

```
d = spu_rlmaskqw(a, count)
```

This function uses a rotate and mask quadword by bits operation to perform a quadword logical shift right (LSR) of up to 7 bits, where <code>count</code> represents the negated value of the desired right-shift amount. For example, if <code>count</code> is – 5, vector <code>a</code> is shifted right by 5 bits. The effect of this function is more precisely shown by the following code:

```
qword spu_rlmaskqw(qword a, int count)
{   int bitshift = -count & 0x7;
   return LSR(a,bitshift);
}
```

The resulting quadword is returned in vector d.

Table 2-69: Rotate Left and Mask Quadword by Bits

Retu	Return/Argument Types			Assembly Mapping
d	a	count	Specific Intrinsics	Assembly Mapping
vector unsigned char	vector unsigned char			
vector signed char	vector signed char			
vector unsigned short	vector unsigned short		int $d = si_rotqmbii(a, count)$	POTOMPII d. a. count
vector signed short	vector signed short			
vector unsigned int	vector unsigned int	int		
vector signed int	vector signed int	(literal) (count = 7	(count = 7-bit immediate)	ROTQMBII d, a, count
vector unsigned long long	vector unsigned long long		,	
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	count	opcome munisies	Assembly Mapping
vector unsigned char	vector unsigned char			
vector signed char	vector signed char	int (non-literal)		ROTQMBI d, a, count
vector unsigned short	vector unsigned short		d = si_rotqmbi(a, count)	
vector signed short	vector signed short			
vector unsigned int	vector unsigned int			
vector signed int	vector signed int			
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	-		
vector float	vector float			
vector double	vector double			

spu_rlmaskqwbyte: Rotate Left and Mask Quadword by Bytes

```
d = spu rlmaskqwbyte(a, count)
```

This function uses a rotate and mask quadword by bytes operation to perform a quadword logical shift right (LSR) by bytes, where <code>count</code> represents the negated value of the desired byte right-shift amount. For example, if <code>count</code> is –5, vector <code>a</code> is shifted right by 5 bytes. The effect of this function is more precisely shown by the following code:

```
qword spu_rlmaskqwbyte(qword a, int count)
{   int bitshift = (-count << 3) & 0xF8;
   return LSR(a,bitshift);
}</pre>
```

The resulting quadword is returned in vector *d*.

Table 2-70: Rotate Left and Mask Quadword by Bytes

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	opecine munisies	Assembly Mapping
vector unsigned char	vector unsigned char			
vector signed char	vector signed char	IIIL		
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int		d = si_rotqmbyi(a, count)	ROTQMBYI d, a, count
vector signed int	vector signed int	(literal)	(count = 7-bit immediate)	ROTQIVIBTTU, a, COUIT
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			
vector unsigned char	vector unsigned char			
vector signed char	vector signed char			
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int	int	d = si_rotqmby(a, count)	POTOMBY d. a. count
vector signed int	vector signed int	(non-literal)	a - si_rolqinby(a, count)	ROTQIVIBT u, a, count
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

spu_rlmaskqwbytebc: Rotate Left and Mask Quadword by Bytes From Bit Shift Count

```
d = spu rlmaskqwbytebc(a, count)
```

This function uses a rotate and mask quadword by bytes from bit shift count operation to perform a quadword logical shift right (LSR) by bytes, where bits 24-28 of count represent the negated value of the desired byte right-shift amount. For example, if the bit shift count is -10, vector a is shifted right by 2 bytes. The effect of this function is more precisely shown by the following code:

```
qword spu_rlmaskqwbytebc(qword a, int count)
{  int bitshift = -(count & 0xF8) & 0xF8;
  return LSR(a,bitshift);
}
```

The resulting quadword is returned in vector d.

Programming Note: The following example code shows typical usage of this function; it computes a vector a that is the value of vector a logically shifted right by n bits:

```
d = spu_rlmaskqwbytebc(a,7-n);
d = spu_rlmaskqw(d,-n);
```

Table 2-71: Rotate Left and Mask Quadword by Bytes From Bit Shift Count

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	count	Specific intrinsics	Assembly Mapping
vector unsigned char	vector unsigned char			
vector signed char	vector signed char			
vector unsigned short	vector unsigned short	int d =		
vector signed short	vector signed short		d = si_rotqmbybi(a, count)	ROTQMBYBI d, a, count
vector unsigned int	vector unsigned int			
vector signed int	vector signed int	1111		
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

spu_rlqw: Rotate Left Quadword by Bits

```
d = spu_rlqw(a, count)
```

Vector *a* is rotated to the left by the number of bits specified by the 3 least significant bits of *count*. Bits rotated out of the left end of the vector are rotated in on the right. The result is returned in vector *d*.

Table 2-72: Rotate Left Quadword by Bits

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	Specific intrinsics	Assembly Mapping
vector unsigned char	vector unsigned char	int (literal)	d = si_rotqbii(a, count) (count = 7-bit immediate)	ROTQBII d, a, count
vector signed char	vector signed char			
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int			
vector signed int	vector signed int			
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	a	count	opecine munisies	Assembly Mapping
vector unsigned char	vector unsigned char			
vector signed char	vector signed char vector unsigned short			
vector unsigned short				
vector signed short	vector signed short	int	d = si rotqbi(a, count)	ROTQBI d, a, count
vector unsigned int	vector unsigned int			
vector signed int	vector signed int (non-literal)		INOTODI u, a, count	
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double	-		

spu_rlqwbyte: Rotate Left Quadword by Bytes

d = spu_rlqwbyte(a, count)

Vector a is rotated to the left by the number of bytes specified by the 4 least significant bits of count. Bytes rotated out of the left end of the vector are rotated in on the right. The result is returned in vector d.

Table 2-73: Rotate Left Quadword by Bytes

Return/Argument Types		Specific Intrinsics	Assembly Mapping		
d	а	count	Specific munisics	Assembly Mapping	
vector unsigned char	vector unsigned char				
vector signed char	vector signed char				
vector unsigned short	vector unsigned short				
vector signed short	vector signed short				
vector unsigned int	vector unsigned int	int	d = si_rotqbyi(a, count)	POTORVI d. a. count	
vector signed int	vector signed int	(literal)	(count = 7-bit immediate)	ROTQBYI d, a, count	
vector unsigned long long	vector unsigned long long		,		
vector signed long long	vector signed long long				
vector float	vector float				
vector double	vector double				
vector unsigned char	vector unsigned char			DOTODY 4	
vector signed char	vector signed char				
vector unsigned short	vector unsigned short				
vector signed short	vector signed short				
vector unsigned int	vector unsigned int	int			
vector signed int	vector signed int	(non-literal)	d = si_rotqby(a, count)	ROTQBY d, a, count	
vector unsigned long long	vector unsigned long long	_			
vector signed long long	vector signed long long				
vector float	vector float				
vector double	vector double				

spu_rlqwbytebc: Rotate Left Quadword by Bytes From Bit Shift Count

d = spu rlqwbytebc(a, count)

Vector *a* is rotated to the left by the number of bytes specified by bits 24-28 of *count*. Bytes rotated out of the left end of the vector are rotated in at the right. The result is returned in vector *d*.

Table 2-74: Rotate Left Quadword by Bytes From Bit Shift Count

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	opecine munisies	Assembly Mapping
vector unsigned char	vector unsigned char			ROTQBYBI d, a, count
vector signed char	vector signed char			
vector unsigned short	vector unsigned short	int	d = si_rotqbybi(a, count)	
vector signed short	vector signed short			
vector unsigned int	vector unsigned int			
vector signed int	vector signed int			
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

spu_sl: Element-Wise Shift Left by Bits

d = spu sl(a, count)

Each element of vector a is shifted left by the number of bits specified by the corresponding element in vector count. If count is a scalar, the scalar value is first replicated for each element, and then a is shifted.

Bits shifted out of the left end of the element are discarded, and zeros are shifted in at the right. A limited number of <code>count</code> bits are used depending on the size of the element. For halfword elements, the 5 least significant bits of <code>count</code> are used, and for word elements, the 6 least significant bits are used. The result is returned in the corresponding bit of vector <code>d</code>.

Table 2-75: Element-Wise Shift Left by Bits

Return/Argument Types			Specific Intrinsics	Assembly Mapping
d	а	count	Specific intrinsics	Assembly Mapping
vector unsigned short	vector unsigned short	vector unsigned short	$d = si_shlh(a, count)$	SHLH d, a, count
vector signed short	vector signed short	vector unsigned short	a - 3i_3iiii(a, count)	Official a, a, count
vector unsigned int	vector unsigned int	vector unsigned int	d = si_shl(a, count)	SHL d, a, count
vector signed int	vector signed int	vector unsigned int	a - Si_Sili(a, Count)	Si iL u, a, couiit
vector unsigned short	vector unsigned short	7-bit unsigned int	d = si shlhi(a, count)	SHLHI d, a, count
vector signed short	vector signed short	(literal)	a - Si_Sillill(a, Count)	
vector unsigned short	vector unsigned short	unsigned int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
vector signed short	vector signed short	unsigned int		
vector unsigned int	vector unsigned int	7-bit unsigned int	d = si shli(a, count)	SHLI d, a, count
vector signed int	vector signed int	(literal)	a - Si_Si iii(a, Count)	
vector unsigned int	vector unsigned int	unsigned int	See section "2.2.1. Mapping Intrinsics with Scalar Operands".	
vector signed int	vector signed int	unsigned int		

spu_slqw: Shift Left Quadword by Bits

d = spu_slqw(a, count)

Vector a is shifted left by the number of bits specified by the 3 least significant bits of count. Bits shifted out of the left end of the vector are discarded, and zeros are shifted in at the right. The result is returned in vector d.

Table 2-76: Shift Left Quadword by Bits

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count		Assembly Mapping
vector unsigned char	vector unsigned char			
vector signed char	vector signed char			
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int	unsigned int	d = si_shlqbii(a, count)	SHLQBII d, a, count
vector signed int	vector signed int	(literal)	(count = 7-bit immediate)	oriegon a, a, count
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			
vector unsigned char	vector unsigned char			
vector signed char	vector signed char			
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int	unsigned int	a = oi oblobi(a accest)	CHLODI di a count
vector signed int	vector signed int	(non-literal)	d = si_shlqbi(a, count)	SHLQBI d, a, count
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long	=		
vector float	vector float			
vector double	vector double			

spu_slqwbyte: Shift Left Quadword by Bytes

d = spu slqwbyte(a, count)

Vector a is shifted left by the number of bytes specified by the 5 least significant bits of count. Bytes shifted out of the left end of the vector are discarded, and zeros are shifted in at the right. The result is returned in vector d.

Table 2-77: Shift Left Quadword by Bytes

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	Opecine munisies	Assembly Mapping
vector unsigned char	vector unsigned char	unsigned int (literal)		SHLQBYI d, a, count
vector signed char	vector signed char		<pre>d = si_shlqbyi(a, count) (count = 7-bit immediate)</pre>	
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int			
vector signed int	vector signed int			
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	a	count	opcome munisies	Assembly Mapping
vector unsigned char	vector unsigned char	unsigned int (non-literal)		SHLQBY d, a, count
vector signed char	vector signed char		d = si_shlqby(a, count)	
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int			
vector signed int	vector signed int			
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

spu_slqwbytebc: Shift Left Quadword by Bytes From Bit Shift Count

d = spu_slqwbytebc(a, count)

Vector *a* is shifted left by the number of bytes specified by bits 24-28 of *count*. Bytes shifted out of the left end of the vector are discarded, and zeros are shifted in at the right. The result is returned in vector *d*.

Table 2-78: Shift Left Quadword by Bytes From Bit Shift Count

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
d	а	count	Specific intrinsics	Assembly Mapping
vector unsigned char	vector unsigned char	unsigned int d = si_shlqbybi(a, count) SHLQ	d = ci shlabybi(> count)	SHI ODVDI d. o. count
vector signed char	vector signed char			
vector unsigned short	vector unsigned short			
vector signed short	vector signed short			
vector unsigned int	vector unsigned int			
vector signed int	vector signed int		Sill QB i Bi u, a, count	
vector unsigned long long	vector unsigned long long			
vector signed long long	vector signed long long			
vector float	vector float			
vector double	vector double			

2.11. Control Intrinsics

spu_idisable: Disable Interrupts

(void) spu idisable()

Asynchronous interrupts are disabled.

Programming Note: This intrinsic is considered volatile with respect to all other instructions; thus, the BID instruction will not be reordered with any other instructions.

Table 2-79: Disable Interrupts

Specific Intrinsics	Assembly Mapping
	position dependent:
	ILAt, next_inst BIDt
	next_inst:
N/A	position independent:
	BRSL t, next_inst
	next_inst:
	Al t, t, 8
	BID t

spu_ienable: Enable Interrupts

(void) spu_ienable()

Asynchronous interrupts are enabled.

Programming Note: This intrinsic is considered volatile with respect to all other instructions; thus, the BIE instruction will not be reordered with any other instructions.

Table 2-80: Enable Interrupts

Specific Intrinsics	Assembly Mapping
	position dependent:
	ILA t, next_inst
	BIE t
	next_inst:
N/A	
	position independent:
	BRSL t, next_inst
	next_inst:
	AI t, t, 8
	BIE t

spu_mffpscr: Move From Floating-Point Status and Control Register

d = spu mffpscr()

The floating-point status and control register (FPSCR) Special Purpose Register is read, and the contents are returned in *d*. Unused bits of the FPSCR are forced to zero.

Programming Note: This intrinsic is considered volatile with respect to the floating-point instructions and will not be reordered with respect to these instructions. The floating-point instructions include: cflts, cfltu, csflt, cuflt, dfa, dfm, dfma, dfms, dfnma, dfnms, dfs, fa, fceq, fcgt, fcmeq, fcmgt, fesd, fi, fm, fma, fms, fnms, frds, frest, frsqest, and fscrwr.

Table 2-81: Move From Floating-Point Status and Control Register

Return/Argument Types	Specific Intrinsics	Assembly Mapping	
d	Specific intrinsics	Assembly Mapping	
vector unsigned int	d = si_fscrrd()	FSCRRD d	

spu_mfspr: Move From Special Purpose Register

d = spu mfspr(register)

The Special Purpose Register specified by enumeration constant register is read, and the contents are returned in d.

Table 2-82: Move From Special Purpose Register

Return/Arg	ument Types	Specific Intrinsics	Assembly Mapping
d	register	Specific intrinsics	
unsigned int	enumeration	<pre>d = si_to_uint(si_mfspr(register))</pre>	MFSPR d, register

spu_mtfpscr: Move to Floating-Point Status and Control Register

(void) spu mtfpscr(a)

The argument a is written to the floating-point status and control register (FPSCR).

Programming Note: This intrinsic is considered volatile with respect to the floating-point instructions, and it will not be reordered with respect to these instructions.

Table 2-83: Move to Floating-Point Status and Control Register

Return/Argument Types	Specific Intrinsics	Assembly Mapping	
а	opecine manisies		
vector unsigned int	si_fscrwr(a)	FSCRWR rt ¹ , a	

¹ The false target parameter rt is optimally chosen depending on register usage of neighboring instructions.

spu_mtspr: Move to Special Purpose Register

(void) spu_mtspr(register, a)

The argument a is written to the Special Purpose Register specified by the enumeration constant register.

Table 2-84: Move to Special Purpose Register

Return/Argument Types register a		Specific Intrinsics	Assembly Mapping

spu_dsync: Synchronize Data

```
(void) spu_dsync()
```

All earlier store instructions are forced to complete before proceeding. This function ensures that all stores to local storage are visible to the MFC or PPU.

Programming Note: This intrinsic is considered volatile with respect to the store and MFC write instructions, and it will not be reordered with respect to these instructions. The store and MFC instructions include: stqa, stqd, stqr, stqx, and wrch.

Table 2-85: Synchronize Data

Specific Intrinsics	Assembly Mapping	
si_dsync()	DSYNC	

spu_stop: Stop and Signal

```
(void) spu stop(type)
```

Execution of the SPU program is stopped. The address of the stop instruction is placed into the least significant bits of the SPU NPC register. The signal type is written to the SPU status register, and the PPU is interrupted.

Programming Note: This intrinsic is considered volatile with respect to all instructions, and it will not be reordered with any other instructions.

Table 2-86: Stop and Signal

Specific Intrinsics	type	Assembly Mapping
si_stop(type)	unsigned int (14-bit literal)	STOP type

spu_sync: Synchronize

```
(void) spu_sync()
(void) spu_sync_c()
```

The processor waits until all pending store instructions have been completed before fetching the next sequential instruction. The <code>spu_sync_c</code> form of the intrinsic also performs channel synchronization prior to the instruction synchronization. This operation must be used following a store instruction that modifies the instruction stream.

Programming Note: These synchronization intrinsics are considered volatile with respect to all instructions, and they will not be reordered with any other instructions.

Table 2-87: Synchronize

Generic Intrinsic Form	Specific Intrinsics	Assembly Mapping
spu_sync	si_sync()	SYNC
spu_sync_c	si_syncc()	SYNCC

2.12. Channel Control Intrinsics

The channel control intrinsics each take a *channel* number as an input. Channel numbers are literal unsigned integer values in the range from 0 to 127. Table 2-88 and Table 2-89 show the respective SPU and MFC channel numbers and their associated mnemonics. For additional details on the channels, see the *Cell Broadband Engine* Architecture.

Programming Note: The channel intrinsics must never be reordered with respect to other channel commands or volatile local-storage memory accesses.

Table 2-88: SPU Channel Numbers¹

Channel Number	Mnemonic	Description
0	SPU_RdEventStat	Read event status with mask applied.
1	SPU_WrEventMask	Write event mask.
2	SPU_WrEventAck	Write End of event processing.
3	SPU_RdSigNotify1	Signal notification 1.
4	SPU_RdSigNotify2	Signal notification 2.
7	SPU_WrDec	Write decrementer count.
8	SPU_RdDec	Read decrementer count.
11	SPU_RdEventMask	Read event mask.
13	SPU_RdMachStat	Read SPU run status.
14	SPU_WrSRR0	Write SPU machine state save/restore register 0 (SRR0).
15	SPU_RdSRR0	Read SPU machine state save/restore register 0 (SRR0).
28	SPU_WrOutMbox	Write outbound mailbox contents.
29	SPU_RdInMbox	Read inbound mailbox contents.
30	SPU_WrOutIntrMbox	Write outbound interrupt mailbox contents (interrupting PPU).

¹ Channel enumerants are defined in spu_intrinsics.h.

Table 2-89: MFC Channel Numbers¹

Channel Number	Mnemonic	Description	
9	MFC_WrMSSyncReq	Write multisource synchronization request.	
12	MFC_RdTagMask	Read tag mask.	
16	MFC_LSA	Write local memory address command parameter.	
17	MFC_EAH	Write high order DMA effective address command parameter.	
18	MFC_EAL	Write low order DMA effective address command parameter.	
19	MFC_Size	Write DMA transfer size command parameter.	
20	MFC_TagID	Write tag identifier command parameter.	
21	MFC_Cmd	Write and enqueue DMA command with associated class ID.	
22	MFC_WrTagMask	Write tag mask.	
23	MFC_WrTagUpdate	Write request for conditional/unconditional tag status update.	
24	MFC_RdTagStat	Read tag status with mask applied.	
25	MFC_RdListStallStat	Read DMA list stall-and-notify status.	
26	MFC_WrListStallAck	Write DMA list stall-and-notify acknowledge.	
27	MFC_RdAtomicStat	Read completion status of last completed immediate MFC atomic update command.	

¹ The MFC channels are only valid for SPUs within a CBEA-compliant system. MFC channel enumerants are defined in spu_intrinsics.h.

spu_readch: Read Word Channel

d = spu_readch(channel)

The word channel that is specified by *channel* is read, and the contents are placed in *d*. If the channel does not exist, a value of zero is returned.

Table 2-90: Read Word Channel

Return/Arg	ument Types	Specific Intrinsics	Assembly Mapping
d	channel	Specific intrinsics	
unsigned int	enumeration	<pre>d = si_to_uint(si_rdch(channel))</pre>	RDCH d, channel

spu_readchqw: Read Quadword Channel

d = spu readchqw(channel)

The quadword channel that is specified by *channel* is read, and the contents are placed in vector *d*. If the channel does not exist, a value of zero is returned.

Table 2-91: Read Quadword Channel

Return/Argume	ent Types	Specific Intrinsics	Assembly Mapping
d	channel		Assembly Mapping
vector unsigned int	enumeration	d = si_rdch(channel)	RDCH d, channel

spu_readchcnt: Read Channel Count

d = spu readchcnt(channel)

A Read Count operation is performed on thes channel that is specified by *channel*, and the count is placed in *d*. If the channel does not exist, a value of zero is returned in *d*.

Table 2-92: Read Channel Count

Return/Argument Types		Specific Intrinsics	Assembly Mapping
d	channel	Specific intrinsics	Assembly Mapping
unsigned int	enumeration	d = si_rchcnt(channel)	RCHCNT d, channel

spu_writech: Write Word Channel

(void) spu_writech(channel, a)

The contents of scalar a are written to the channel that is specified by the enumeration constant <code>channel</code>.

Table 2-93: Write Word Channel

Return/Argument Types		Specific Intrinsics	Assembly Mapping
channel	а	Specific intrinsics	Assembly Mapping
enumeration	int	si_wrch(channe1, si_from_int(a))	WRCH channel, a
enumeration	unsigned int	si_wrch(channe1, si_from_uint(a))	vvitori chamilei, a

spu_writechqw: Write Quadword Channel

(void) spu_writechqw(channel, a)

The contents of vector a are written to the channel that is specified by the enumeration constant channel.

Table 2-94: Write Quadword Channel

Return/Argument Types		Specific Intrinsics	Assembly Mapping	
channel	a	Opecine munisies	Assembly Mapping	
enumeration	vector unsigned char		WRCH channel, a	
	vector signed char			
	vector unsigned short			
	vector signed short	oi wroh(- ' 7)		
	vector unsigned int			
	vector signed int	si_wrch(channel, a)		
	vector unsigned long long			
	vector signed long long			
	vector float			
	vector double			

2.13. Scalar Intrinsics

All of the previous intrinsic functions perform operations only on vector data types. This section describes special utility intrinsics that allow programmers to efficiently coerce scalars to vectors, or vectors to scalars. With the aid of these intrinsics, programmers can use intrinsic functions to perform operations between vectors and scalars without having to revert to assembly language. This is especially important when there is a need is to perform an operation that cannot be conveniently expressed in C, such as shuffling bytes.

spu_extract: Extract Vector Element From Vector

d = spu extract(a, element)

The element that is specified by element is extracted from vector a and returned in d. Depending on the size of the element, only a limited number of the least significant bits of the element index are used. For 1-, 2-, 4-, and 8-byte elements, only 4, 3, 2, and 1 of the least significant bits of the element index are used, respectively.

Table 2-95: Extract Vector Element From Vector

Return/Argument Types			Specific	Assembly Mapping ¹	
d	а	element	Intrinsics	Assembly Mapping	
unsigned char	vector unsigned char		N/A	ROTQBY d, a, element ROTMI d, d, -24	
signed char	vector signed char	int (non-literal)	N/A	ROTQBY d, a, element ROTMAI d, d, -24	
unsigned short	vector unsigned short		N/A	SHLI t, element, 1 ROTQBY d, a, t ROTMI d, d, -16	
signed short	vector signed short		N/A	SHLI t, element, 1 ROTQBY d, a, t ROTMAI d, d, -16	
unsigned int	vector unsigned int		N/A	SHLI t, element, 2 ROTQBY d, a, t	
signed int	vector signed int		N/A	SHLI t, element, 2 ROTQBY d, a, t	
unsigned long long	vector unsigned long long		N/A	SHLI t, element, 3 ROTQBY d, a, t	
signed long long	vector signed long long		N/A	SHLI t, element, 3 ROTQBY d, a, t	
float	vector float		N/A	SHLI t, element, 2 ROTQBY d, a, t	
double	vector double		N/A	SHLI t, element, 3 ROTQBY d, a, t	
unsigned char	vector unsigned char		N/A	DOTODVI d. o. olomont 2	
signed char	vector signed char		N/A	ROTQBYI d, a, element-3	
unsigned short	vector unsigned short		N/A	ROTQBYI d, a, 2*(element-1)	
signed short	vector signed short		N/A		
unsigned int	vector unsigned int	int (literal)	N/A	DOTODVI d. a. 4*alamant	
signed int	vector signed int	iii (iilerai)	N/A	ROTQBYI d, a, 4*element	
unsigned long long	vector unsigned long long		N/A	ROTQBYI d, a, 8*element	
signed long long	vector signed long long		N/A	TOTQDITU, a, o element	
float	vector float		N/A	ROTQBYI d, a, 4*element	
double	vector double		N/A	ROTQBYI d, a, 8*element	

¹ If the specified element is a known value (literal) and specifies the preferred (scalar) element, no instructions are produced. For 1 byte elements, the scalar element is 3. For 2 byte elements, the scalar element is 1. For 4 and 8 byte elements, the scalar element is 0. Sign extension may still be performed if a subsequent operation requires the resulting scalar to be cast to a larger data type. This sign extension may be deferred until the subsequent operation.

spu_insert: Insert Scalar into Specified Vector Element

d = spu_insert(a, b, element)

Scalar *a* is inserted into the element of vector *b* that is specified by the *element* parameter, and the modified vector is returned. All other elements of *b* are unmodified. Depending on the size of the element, only a limited number of the least significant bits of the *element* index are used. For 1-, 2-, 4-, and 8-byte elements, only 4, 3, 2, and 1 of the least significant bits of the *element* index are used, respectively.

Table 2-96: Insert Scalar into Specified Vector Element

Return/Argument Types			Specific	Accombly Manning		
d	а	b	element	Intrinsics	Assembly Mapping	
vector unsigned char	unsigned char	vector unsigned char		N/A	CBD t, 0(element) SHUFB d, a, b, t	
vector signed char	signed char	vector signed char	int (non-literal)	N/A		
vector unsigned short	unsigned short	vector unsigned short		N/A	SHLI t, element, 1	
vector signed short	signed short	vector signed short		N/A	CHD t, 0(t) SHUFB d, a, b, t	
vector unsigned int	unsigned int	vector unsigned int		N/A	SHLI t, element, 2	
vector signed int	signed int	vector signed int		N/A	CWD t, 0(t)	
vector float	float	vector float		N/A	SHUFB d, a, b, t	
vector unsigned long long	unsigned long long	vector unsigned long long		N/A	SHLI t, element, 3 CDD t, 0(t) SHUFB d, a, b, t	
vector signed long long	signed long long	vector signed long long		N/A		
vector double	double	vector double		N/A		
vector unsigned char	unsigned char	vector unsigned char		N/A	LQD pat, CONST_AREA SHUFB d, a, b, pat	
vector signed char	signed char	vector signed char		N/A		
vector unsigned short	unsigned short	vector unsigned short		N/A	LQD pat, CONST_AREA SHUFB d, a, b, pat	
vector signed short	signed short	vector signed short		N/A		
vector unsigned int	unsigned int	vector unsigned int	int (literal)	N/A	LQD pat, CONST_AREA SHUFB d, a, b, pat	
vector signed int	signed int	vector signed int		N/A		
vector float	float	vector float		N/A		
vector unsigned long long	unsigned long long	vector unsigned long long		N/A	LQD pat, CONST_AREA SHUFB d, a, b, pat	
vector signed long long	signed long long	vector signed long long		N/A		
vector double	double	vector double		N/A		

¹ If the specified element is a known value (literal), a shuffle pattern can be loaded from the constant area. The contents of the pattern depend on the size of the element and the element being replaced.

spu_promote: Promote Scalar to a Vector

d = spu_promote(a, element)

Scalar *a* is promoted to a vector containing *a* in the element that is specified by the *element* parameter, and the vector is returned in *d*. All other elements of the vector are undefined. Depending on the size of the element/scalar, only a limited number of the least significant bits of the *element* index are used. For 1-, 2-, 4-, and 8-byte elements, only 4, 3, 2, and 1 of the least significant bits of the *element* index are used, respectively.

Table 2-97: Promote Scalar to a Vector

Retu	rn/Argument Types	Specific	Assembly Mapping ¹		
d	a	element	Intrinsics	Assembly Mapping	
vector unsigned char	unsigned char		N/A	SFI t, element, 3	
vector signed char	signed char		N/A	ROTQBY d, a, t	
vector unsigned short	unsigned short		N/A	SFI t, element, 1	
vector signed short	signed short		N/A	SHLI t, t, 1 ROTQBY d, a, t	
vector unsigned int	unsigned int	int (non-literal)	N/A	SFI t, element, 0	
vector signed int	signed int		N/A	SHLI t, t, 2	
vector float	float		N/A	ROTQBY d, a, t	
vector unsigned long long	unsigned long long signed long long		N/A	0.11.1.1.1.0	
vector signed long long			N/A	SHLI t, element, 3 ROTQBY d, a, t	
vector double	double		N/A		
vector unsigned char	unsigned char		N/A	ROTQBYI d, a,	
vector signed char	signed char		N/A	(3-element)	
vector unsigned short	unsigned short		N/A	ROTQBYI d, a, 2*	
vector signed short	signed short	int (literal)	N/A	(1-element)	
vector unsigned int	unsigned int		N/A		
vector signed int	signed int		N/A	ROTQBYI d, a, -4*element	
vector float float vector unsigned long long unsigned long long vector signed long long signed long long			N/A		
			N/A	ROTQBYI d, a, -8*element	
			N/A		
vector double	double		N/A		

¹ If the specified element is of known value (literal) and specifies the preferred (scalar) element, no instructions are produced. For 1 byte elements, the scalar element is 3. For 2 byte elements, the scalar element is 1. For 4 and 8 byte elements, the scalar element is 0.

3. Composite Intrinsics

This chapter describes several composite intrinsics that have practical use for a wide variety of SPU programs. Composite intrinsics are those intrinsics that can be constructed from a series of low-level intrinsics. In this context, "low-level" means generic or specific. Because of the complexity of these operations, frequency of use, and scheduling constraints, the particular services are provided as intrinsics.

Composite intrinsics are DMA intrinsics. The DMA intrinsics rely heavily on the channel control intrinsics.

spu_mfcdma32: Initiate DMA To/From 32-Bit Effective Address

spu mfcdma32(ls, ea, size, tagid, cmd)

A DMA transfer of size bytes is initiated from local storage to system memory or from system memory to local storage. The effective address that is specified by ea is a 32-bit virtual memory address. The local-storage address is specified by the ls parameter. The DMA request is issued using the specified tagid. The type and direction of DMA, bandwidth reservation, and class ID are encoded in the cmd parameter. For additional details about the commands and restrictions on the size of supported DMA operations, see the *Cell Broadband Engine* Architecture.

Table 3-98: Initiate DMA To/From 32-Bit Effective Address

Return/Argument Types				Assembly Mapping	
ls	ea	size	tagid	cmd	Assembly Mapping
volatile void *	unsigned int	unsigned int	unsigned int	unsigned int	spu_writech(MFC_LSA, 1s) spu_writech(MFC_EAL, ea) spu_writech(MFC_Size, size) spu_writech(MFC_TagID, tagid) spu_writech(MFC_Cmd, cmd)

spu mfcdma64: Initiate DMA To/From 64-Bit Effective Address

spu_mfcdma64(ls, eahi, ealow, size, tagid, cmd)

A DMA transfer of size bytes is initiated from local to system memory or from system memory to local storage. The effective address that is specified by the concatenation of eahi and ealow is a 64-bit virtual memory address. The local-storage address is specified by the ls parameter. The DMA request is issued using the specified tagid. The type and direction of DMA, bandwidth reservation, and class ID are encoded in the cmd parameter. For additional details about the commands and restrictions on the size of supported DMA operations, see the *Cell Broadband Engine* $^{\text{TM}}$ *Architecture*.

Table 3-99: Initiate DMA To/From 64-Bit Effective Address

Return/Argument Types					Assembly Mapping	
ls	eahi	ealow	sh	tagid	cmd	Assembly Mapping
volatile void *	unsigned int	spu_writech(MFC_LSA, 1s) spu_writech(MFC_EAH, eahi) spu_writech(MFC_EAL, ealow) spu_writech(MFC_Size, size) spu_writech(MFC_TagID, tagid) spu_writech(MFC_CMD, cmd)				

spu_mfcstat: Read MFC Tag Status

d = spu_mfcstat(type)

The current MFC tag status is read and logically ANDed with the current tag mask, and the result is returned in d. The type of read to be performed is specified by the type parameter. If the type is 0, the function reads and immediately returns the current MFC tag status. If the type is 1, the function reads and blocks for any outstanding MFC tags to complete, and if the type is 2, the function reads and blocks for all outstanding MFC tags to complete.

Table 3-100: Read MFC Tag Status

Return/Argi	ument Types	A
d type		Assembly Mapping
unsigned int	unsigned int	spu_writech(MFC_WrTagUpdate, type) d = spu_readch(MFC_RdTagStat)

4. Programming Support for MFC Input and Output

Several MFC utility functions are described in this chapter. These functions may be provided as a programming convenience; none of them are required. The functions that are described can be implemented either as macro definitions or as built-in functions within the compiler. To access these functions, programmers must include the header file <code>spu mfcio.h</code>.

For each function listed in the sections below, the function usage is shown, followed by a brief description and the function implementation.

4.1. Structures

A principal data structure is the MFC List DMA. The elements in this list are described below.

mfc_list_element: DMA List Element for MFC List DMA

```
typedef struct mfc_list_element {
  uint64_t notify : 1;
  uint64_t reserved : 16;
  uint64_t size: 15;
  uint64_t eal : 32;
} mfc list element t;
```

The mfc_list_element is an element in the array MFC List DMA. The structure is comprised of several bit-fields: notify is the stall-and-notify bit, reserved is set to zero. size is the list element transfer size, and eal is the low word of the 64-bit effective address.

4.2. Effective Address Utilities

A frequent requirement for MFC programming is to manipulate effective addresses. This section describes several functions for performing the most common operations.

mfc_ea2h: Extract Higher 32 Bits From Effective Address

```
(uint32_t) mfc_ea2h(uint64_t ea)
```

The higher 32 bits are extracted from the 64-bit effective address ea.

Implementation

```
(uint32_t)((uint64_t)(ea)>>32)
```

mfc ea2l: Extract Lower 32 Bits From Effective Address

```
(uint32_t) mfc_ea2l(uint64_t ea)
```

The lower 32 bits are extracted from the 64-bit effective address ea.

```
(uint32_t)(ea)
```


mfc_hl2ea: Concatenate Higher 32 Bits and Lower 32 Bits

```
(uint64 t) mfc hl2ea(uint32 t high, uint32 t low)
```

The higher 32 bits of a 64-bit address high and the lower 32 bits low are concatenated.

Implementation

mfc_ceil128: Round Up Value to Next Multiple of 128

```
(uint32_t) mfc_ceil128(uint32_t value)
(uint64_t) mfc_ceil128(uint64_t value)
(uintptr t) mfc ceil128(uintptr t value)
```

The argument value is rounded to the next higher multiple of 128.

Implementation

```
(value + 127) \& ~127
```

Example

```
volatile char buf[256];
volatile void *ptr = (volatile void*)mfc_ceil128((uintptr_t)buf);
```

4.3. MFC DMA Commands

This section describes functions that implement the various MFC DMA commands. See the *Cell Broadband Engine* $^{\text{TM}}$ *Architecture f*or a description of the DMA commands, including restrictions on the size of the supported operations.

MFC DMA command mnemonics are listed in Table 4-101.

Table 4-101: MFC DMA Command Mnemonics¹

Mnemonic	Opcode	Command
MFC_PUT_CMD	0x0020	put
MFC_PUTB_CMD	0x0021	putb
MFC_PUTF_CMD	0x0022	putf
MFC_GET_CMD	0x0040	get
MFC_GETB_CMD	0x0041	getb
MFC_GETF_CMD	0x0042	getf

¹ MFC command enumerants are defined in spu_mfcio.h.

mfc_put: Move Data From Local Storage to Effective Address

```
(void) mfc_put(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
     uint32 t tid, uint32 t rid)
```

Data is moved from local storage to system memory. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier.

mfc_putb: Move Data From Local Storage to Effective Address with Barrier

```
(void) mfc_putb(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
      uint32_t tid, uint32_t rid)
```

Data is moved from local storage to system memory. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command and all subsequent commands with the same tag ID as this command are locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc_putf: Move Data From Local Storage to Effective Address with Fence

```
(void) mfc_putf(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
      uint32 t tid, uint32 t rid)
```

Data is moved from local storage to system memory. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command is locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc_get: Move Data From Effective Address to Local Storage

```
(void) mfc_get(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
      uint32_t tid, uint32_t rid)
```

Data is moved from system memory to local storage. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier.

Implementation

mfc_getf: Move Data From Effective Address to Local Storage with Fence

```
(void) mfc_getf(volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
      uint32_t tid, uint32_t rid)
```

Data is moved from system memory to local storage. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command is locally ordered with respect to all previously issued commands within the same tag group and command queue.

mfc_getb: Move Data From Effective Address to Local Storage with Barrier

```
(void) mfc_getb (volatile void *ls, uint64_t ea, uint32_t size, uint32_t tag,
      uint32_t tid, uint32_t rid)
```

Data is moved from system memory to local storage. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, size is the DMA transfer size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command and all subsequent commands with the same tag ID as this command are locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

4.4. MFC List DMA Commands

This section describes utility functions that can be used to manage the MFC List DMA. See the *Cell Broadband Engine* $^{\text{TM}}$ *Architecture f*or a description of the DMA commands, including restrictions on the size of the supported operations.

MFC List DMA command mnemonics are listed in Table 4-102.

Table 4-102: MFC List DMA Command Mnemonics¹

Mnemonic	Opcode	Command
MFC_PUTL_CMD	0x0024	putl
MFC_PUTLB_CMD	0x0025	putlb
MFC_PUTLF_CMD	0x0026	putlf
MFC_GETL_CMD	0x0044	getl
MFC_GETLB_CMD	0x0045	getlb
MFC_GETLF_CMD	0x0046	getlf

¹ MFC command enumerants are defined in spu mfcio.h.

mfc putl: Move Data From Local Storage to Effective Address Using MFC List

```
(void) mfc_putl(volatile void *ls, uint64_t ea, mfc_list_element_t *list,
      uint32 t list size, uint32 t tag, uint32 t tid, uint32 t rid)
```

Data is moved from local storage to system memory using the MFC list. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, list is the DMA list address, $list_size$ is the DMA list size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier.

Implementation

mfc_putlb: Move Data From Local Storage to Effective Address Using MFC List with Barrier

```
(void) mfc_putlb(volatile void *ls, uint64_t ea, mfc_list_element_t *list,
      uint32 t list size, uint32 t tag, uint32 t tid, uint32 t rid)
```

Data is moved from local storage to system memory using the MFC list. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, list is the DMA list address, $list_size$ is the DMA list size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command and all subsequent commands

with the same tag ID as this command are locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc putlf: Move Data From Local Storage to Effective Address Using MFC List with Fence

```
(void) mfc_putlf(volatile void *ls, uint64_t ea, mfc_list_element_t *list,
      uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)
```

Data is moved from local storage to system memory using the MFC list. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, list is the DMA list address, $list_size$ is the DMA list size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command is locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc_getl: Move Data From Effective Address to Local Storage Using MFC List

```
(void) mfc_getl (volatile void *ls, uint64_t ea, mfc_list_element_t *list,
      uint32 t list size, uint32 t tag, uint32 t tid, uint32 t rid)
```

Data is moved from system memory to local storage using the MFC list. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, list is the DMA list address, $list_size$ is the DMA list size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier.

Implementation

mfc_getlb: Move Data From Effective Address to Local Storage Using MFC List with Barrier

```
(void) mfc_getlb(volatile void *ls, uint64_t ea, mfc_list_element_t *list,
      uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)
```

Data is moved from system memory to local storage using the MFC list. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, list is the DMA list address, $list_size$ is the DMA list size, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. This command and all subsequent commands with the same tag ID as this command are locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc_getlf: Move Data From Effective Address to Local Storage Using MFC List with Fence

```
(void) mfc_getlf(volatile void *ls, uint64_t ea, mfc_list_element_t *list,
      uint32_t list_size, uint32_t tag, uint32_t tid, uint32_t rid)
```

Data is moved from system memory to local storage using the MFC list. The arguments to this function correspond to the arguments of the spu mfcdma64 command: 1s is the local-storage address, ea is the effective address in

system memory, <code>list</code> is the DMA list address, <code>list_size</code> is the DMA list size, <code>tag</code> is the DMA tag, <code>tid</code> is the transfer class identifier, and <code>rid</code> is the replacement class identifier. This command is locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

4.5. MFC Atomic Update Commands

This section describes utility functions that can be used to manage the MFC Atomic DMA. See the *Cell Broadband Engine* $^{\text{TM}}$ *Architecture f*or a description of the DMA commands, including restrictions on the size of the supported operations.

MFC Atomic DMA command mnemonics are listed in Table 4-103.

Table 4-103: MFC Atomic Update Command Mnemonics¹

Mnemonic	Opcode	Command
MFC_GETLLAR_CMD	0x00D0	getllar
MFC_PUTLLC_CMD	0x00B4	putlic
MFC_PUTLLUC_CMD	0x00B0	putlluc
MFC_PUTQLLUC_CMD	0x00B8	putqlluc

¹ MFC command enumerants are defined in spu mfcio.h.

mfc getllar: Get Lock Line and Create Reservation

```
(void) mfc getllar(volatile void *ls, uint64 t ea, uint32 t tid, uint32 t rid)
```

The lock line is obtained and a reservation is created. The arguments to this function correspond to the arguments of the spu_mfcdma64 command: 1s is the 128-byte-aligned local-storage address, ea is the effective address in system memory, tid is the transfer class identifier, and rid is the replacement class identifier.

The $mfc_getllar$ command does not have a tag ID. The command is immediately executed by the MFC. The transfer size is fixed at 128 bytes. An $mfc_read_atomic_status$ () must follow this function to verify completion of the command.

Implementation

mfc_putllc: Put Lock Line if Reservation for Effective Address Exists

```
(void) mfc putllc(volatile void *ls, uint64 t ea, uint32 t tid, uint32 t rid)
```

The lock line is put if a reservation for effective address exists. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the 128-byte-aligned local-storage address, ea is the effective address in system memory, tid is the transfer class identifier, and rid is the replacement class identifier.

The mfc_putllc command does not have a tag ID and is immediately executed by MFC. Transfer size is fixed at 128 bytes. An mfc_read_atomic_status() must follow this command to verify completion of the command.

mfc_putlluc: Put Lock Line Unconditional

```
(void) mfc putlluc(volatile void *ls, uint64 t ea, uint32 t tid, uint32 t rid)
```

The lock line is put regardless of the existence of a previously made reservation. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the 128-byte-aligned local-storage address, ea is the effective address in system memory, tid is the transfer class identifier, and rid is the replacement class identifier.

This command does not have a tag ID and is immediately executed by MFC. The transfer size is fixed at 128 bytes. The mfc read atomic status() must follow this function to verify completion of the command.

Implementation

mfc putglluc: Put Queued Lock Line Unconditional

```
(void) mfc_putqlluc(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
      uint32 t rid)
```

The lock line is put in the queue regardless of the existence of a previously made reservation. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the 128-byte-aligned local-storage address, ea is the effective address in system memory, tid is the transfer class identifier, and rid is the replacement class identifier.

Transfer size is fixed at 128 bytes. This command is functionally equivalent to the $mfc_putlluc$ command. The difference between the two commands is the order in which the commands are executed and the way that completion is determined. $mfc_putlluc$ is performed immediately; in contrast, $mfc_putqlluc$ is placed into the MFC command queue, along with other MFC commands. Because this command is queued, it is executed independently of any pending immediate $mfc_getllar, mfc_putllc$, or $mfc_putlluc$ commands. To determine if this command has been performed, a program must wait for a tag-group completion.

Implementation

4.6. MFC Synchronization Commands

This section describes functions that implement the MFC synchronization commands, including signal notification and storage ordering. See the *Cell Broadband Engine*[™] *Architecture f*or a description of the DMA commands, including restrictions on the size of the supported operations.

MFC synchronization command mnemonics are listed in Table 4-104.

Table 4-104: MFC Synchronization Command Mnemonics¹

Mnemonic	Opcode	Command
MFC_SNDSIG_CMD	0x00A0	sndsig
MFC_SNDSIGB_CMD	0x00A1	sndsigb
MFC_SNDSIGF_CMD	0x00A2	sndsigf
MFC_BARRIER_CMD	0x00C0	barrier
MFC_EIEIO_CMD	0x00C8	mfceieio
MFC_SYNC_CMD	0x00CC	mfcsync

¹ MFC command enumerants are defined in spu_mfcio.h.

mfc_sndsig: Send Signal

```
(void) mfc_sndsig(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
      uint32_t rid)
```

An mfc_sndsig command is enqueued into the DMA queue, or is stalled when the DMA queue is full. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. Transfer size is fixed at 4 bytes.

Implementation

mfc_sndsigb: Send Signal with Barrier

```
(void) mfc_sndsigb(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
      uint32 t rid)
```

An $mfc_sndsigb$ command is enqueued into the DMA queue, or is stalled when the DMA queue is full. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. Transfer size is fixed at 4 bytes. This command and all subsequent commands with the same tag ID as this command are locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc_sndsigf: Send Signal with Fence

```
(void) mfc_sndsigf(volatile void *ls, uint64_t ea, uint32_t tag, uint32_t tid,
     uint32_t rid)
```

An $mfc_sndsigf$ command is enqueued into the DMA queue, or is stalled when the DMA queue is full. The arguments to this function correspond to the arguments of the $spu_mfcdma64$ command: ls is the local-storage address, ea is the effective address in system memory, tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. Transfer size is fixed at 4 bytes. This command is locally ordered with respect to all previously issued commands within the same tag group and command queue.

Implementation

mfc barrier: Enqueue mfc barrier Command into DMA Queue or Stall When Queue is Full

```
(void) mfc barrier(uint32 t tag)
```

An $mfc_barrier$ command is enqueued into the DMA queue, or the command is stalled when the DMA queue is full. tag is the DMA tag. An $mfc_barrier$ command guarantees that MFC commands preceding the barrier will be executed before the execution of MFC commands following it, regardless of the tag of preceding or subsequent MFC commands.

```
spu mfcdma32(0, 0, 0, tag, MFC BARRIER CMD)
```


mfc_eieio: Enqueue mfc_eieio Command into DMA Queue or Stall When Queue is Full

```
(void) mfc eieio (uint32 t tag, uint32 t tid, uint32 t rid)
```

An mfc_eieio command is enqueued into the DMA queue, or the command is stalled when the DMA queue is full. tag is the DMA tag, tid is the transfer class identifier, and rid is the replacement class identifier. Do not use this command to maintain the order of commands immediately inside a single SPE. The mfc_eieio command is designed to use inter-processor/device synchronization. This command creates a large load on the memory system.

Implementation

```
spu_mfcdma32(0, 0, 0, tag, ((tid<<24)|(rid<<16)|MFC_EIEIO_CMD))
```

mfc_sync: Enqueue mfc_sync Command into DMA Queue or Stall When Queue is Full

```
(void) mfc sync (uint32 t tag)
```

An mfc_sync command is enqueued into the DMA queue, where tag is the DMA tag, or the command is stalled when the DMA queue is full. This function must not be used to maintain the order of commands immediately inside a single SPE. The mfc_sync command is designed to use inter-processor/device synchronization. This command creates a large load on the memory system.

Implementation

```
spu_mfcdma32(0, 0, 0, tag, MFC_SYNC_CMD)
```

4.7. MFC DMA Status

This section describes functions that can be used to check the completion of MFC commands or the status of entries in the MFC DMA gueue.

mfc_stat_cmd_queue: Check the Number of Available Entries in the MFC DMA Queue

```
(uint32_t) mfc_stat_cmd_queue(void)
```

The number of available entries in the MFC DMA queue is checked. This information can be used to avoid stalling the execution of an SPU program if a DMA command is issued to a full queue. A full queue is 16 entries.

Implementation

```
spu readchcnt (MFC Cmd)
```

mfc_write_tag_mask: Set Tag Mask to Select MFC Tag Groups to be Included in Query Operation

```
(void) mfc_write_tag_mask (uint32_t mask)
```

A tag mask is set to select the MFC tag groups to be included in the query operation, where mask is the DMA taggroup query mask. Each bit of mask indicates each tag group; tag 0 is mapped to LSB.

Implementation

```
spu writech (MFC WrTagMask, mask)
```

mfc_read_tag_mask: Read Tag Mask Indicating MFC Tag Groups to be Included in Query Operation

```
(uint32 t) mfc read tag mask(void)
```

The tag mask is read to identify MFC tag groups to be included in the query operation. Each bit of the mask indicates each tag group; tag 0 is mapped to LSB. The result represents a DMA tag-group query mask.

```
spu readch (MFC RdTagMask)
```


mfc_write_tag_update: Request That Tag Status be Updated

```
(void) mfc_write_tag_update(uint32_t ts)
```

A request is sent to the MFC to update tag status, where ts specifies a tag-status update condition shown in Table 4-105.

This function must precede a tag-status read with the <code>mfc_read_tag_status()</code> function. A tag-status update request should be performed after setting the tag-group mask with the <code>mfc_write_tag_mask()</code> function.

Table 4-105: MFC Write Tag Update Conditions¹

Number	Mnemonic	Description
0	MFC_TAG_UPDATE_IMMEDIATE	Update immediately, unconditionally.
1	MFC_TAG_UPDATE_ANY	Update tag status if or when any enabled tag group has "no outstanding operation" status.
2	MFC_TAG_UPDATE_ALL	Update tag status if or when all enabled tag groups have "no outstanding operation" status.

¹ Condition enumerants are defined in spu mfcio.h.

Implementation

spu_writech(MFC_WrTagUpdate, ts)

mfc_write_tag_update_immediate: Request That Tag Status be Immediately Updated

```
(void) mfc_write_tag_update_immediate(void)
```

A request is sent to immediately update tag status.

Implementation

spu writech(MFC WrTagUpdate, MFC TAG UPDATE IMMEDIATE)

mfc_write_tag_update_any: Request That Tag Status be Updated for Any Enabled Completion with No Outstanding Operation

```
(void) mfc_write_tag_update_any(void)
```

A request is sent to update tag status when any enabled MFC tag-group completion has a "no operation outstanding" status.

Implementation

```
spu_writech(MFC_WrTagUpdate, MFC_TAG_UPDATE_ANY)
```

mfc_write_tag_update_all: Request That Tag Status be Updated When All Enabled Tag Groups Have No Outstanding Operation

```
(void) mfc write tag update all(void)
```

A request is sent to update tag status when all enabled MFC tag groups have a "no operation outstanding" status.

Implementation

spu_writech(MFC_WrTagUpdate, MFC_TAG_UPDATE_ALL)

mfc stat tag update: Check Availability of Tag Status Update Request Channel

```
(uint32 t) mfc stat tag update(void)
```

The availability of the Tag Status Update Request channel is checked. The result has one of the following values:

- 0: The Tag Status Update Request channel is not yet available.
- 1: The Tag Status Update Request channel is available.

Implementation

spu readchcnt(MFC WrTagUpdate)

mfc_read_tag_status: Wait for an Updated Tag Status

```
(uint32 t) mfc read tag status(void)
```

The status of the tag groups is requested. Unless the tag update is set to MFC_TAG_UPDATE_IMMEDIATE, this call could be blocked. Each bit of a returned value indicates the status of each tag group; tag 0 is mapped to LSB. If set, the tag group has no outstanding operation (that is, commands completed) and is not masked by the query.

Only the status of the enabled tag groups at the time of the tag-group status update are valid. The bit positions that correspond to the tag groups that are disabled at the time of the tag-group status update are set to 0.

Implementation

spu readch (MFC RdTagStat)

mfc_read_tag_status_immediate: Wait for the Updated Status of Any Enabled Tag Group

```
(uint32_t) mfc_read_tag_status_immediate(void)
```

A request is sent to immediately update tag status. The processor waits for the status to be updated.

Implementation

spu mfcstat(MFC TAG UPDATE IMMEDIATE)

mfc_read_tag_status_any: Wait for No Outstanding Operation of Any Enabled Tag Group

```
(uint32_t) mfc_read_tag_status_any(void)
```

A request is sent to update tag status when any enabled MFC tag-group completion has a "no operation outstanding" status. The processor waits for the status to be updated.

Implementation

spu_mfcstat(MFC_TAG_UPDATE_ANY)

mfc_read_tag_status_all: Wait for No Outstanding Operation of All Enabled Tag Groups

```
(uint32 t) mfc read tag status all(void)
```

A request is sent to update tag status when all enabled MFC tag groups have a "no operation outstanding" status. The processor waits for the status to be updated.

Implementation

spu_mfcstat(MFC_TAG_UPDATE_ALL)

mfc_stat_tag_status: Check Availability of MFC_RdTagStat Channel

```
(uint32_t) mfc_stat_tag_status(void)
```

The availability of $\texttt{MFC}_RdTagStat$ channel is checked, and one of the following values is returned:

- 0: The status is not yet available.
- 1: The status is available.

This function is used to avoid a channel stall caused by reading the MFC_RdTagStat channel when a status is not available.

```
spu_readchcnt(MFC_RdTagStat)
```


mfc_read_list_stall_status: Read List DMA Stall-and-Notify Status

```
(uint32 t) mfc read list stall status(void)
```

The List DMA stall-and-notify status is read and returned, or the program is stalled until the status is available.

Implementation

```
spu readch(MFC RdListStallStat)
```

mfc_stat_list_stall_status: Check Availability of List DMA Stall-and-Notify Status

```
(uint32_t) mfc_stat_list_stall_status(void)
```

The availability of the List DMA stall-and-notify status is checked, and one of the following values is returned:

- 0: The status is not yet available.
- 1: The status is available.

Implementation

```
spu readchcnt(MFC RdListStallStat)
```

mfc_write_list_stall_ack: Acknowledge Tag Group Containing Stalled DMA List Commands

```
(void) mfc_write_list_stall_ack(uint32_t tag)
```

An acknowledgement is sent with respect to a prior stall-and-notify event. (See $mfc_read_list_status$ and $mfc_statlist_status$.) The argument tag is the DMA tag.

Implementation

spu_writech(MFC_WrListStallAck, tag)

mfc_read_atomic_status: Read Atomic Command Status

```
(uint32 t) mfc read atomic status(void)
```

The atomic command status is read, or the program is stalled until the status is available. As shown in Table 4-106, one of the following atomic command status results (binary value of bits 29 through 31) is returned:

Table 4-106: Read Atomic Command Status or Stall Until Status Is Available¹

Status	Mnemonic	Description
1	MFC_PUTLLC_STATUS	0: The mfc_putllc command succeeded
		1: The mfc_putllc command failed (reservation lost).
2	MFC_PUTLLUC_STATUS	The mfc_putlluc command was completed.
4	MFC_GETLLAR_STATUS	The mfc_getllar command was completed.

¹ Status enumerants are defined in spu mfcio.h.

Implementation

spu_readch(MFC_RdAtomicStat)

mfc_stat_atomic_status: Check Availability of Atomic Command Status

(uint32_t) mfc_stat_atomic_status(void)

The availability of the atomic command status is checked, and one of the following values is returned:

- 0: An atomic DMA command has not yet completed.
- 1: An atomic DMA command has completed and the status is available.

Implementation

spu_readchcnt(MFC_RdAtomicStat)

4.8. MFC Multisource Synchronization Request

The Cell Broadband Engine[™] Architecture describes the MFC Multisource Synchronization Facility. In that document, a cumulative ordering is broadly defined as an ordering of storage accesses performed by multiple processors or units with respect to another processor or unit. In this section, several functions are described that can be used to achieve a cumulative ordering across local and main storage address domains.

mfc_write_multi_src_sync_request: Request Multisource Synchronization

```
(void) mfc write multi src sync request(void)
```

A request is sent to start tracking outstanding transfers sent to the associated MFC. When the requested synchronization is complete, the channel count of the MFC Multisource Synchronization Request channel is reset to one.

Implementation

spu writech(MFC WrMSSyncReq,0)

mfc_stat_multi_src_sync_request: Check the Status of Multisource Synchronization

```
(uint32 t) mfc stat multi src sync request(void)
```

The channel count of the MFC Multisource Synchronization Request channel is read, and one of the following values is returned:

- 0: Outstanding transfers are being tracked.
- 1: The synchronization requested by mfc write multi src sync request is complete.

Implementation

spu readchcnt (MFC WrMSSyncReq)

4.9. SPU Signal Notification

In this section, functions are described that can be used to read signals from other processors and other devices in the system.

spu_read_signal1: Atomically Read and Clear Signal Notification 1 Channel

```
(uint32_t) spu_read_signal1(void)
```

The Signal Notification 1 channel is read, and any bits that are set are atomically reset. A signal is returned. If no signals are pending, this function will stall the SPU until a signal is issued.

Implementation

```
spu_readch(SPU_RdSigNotify1)
```

spu_stat_signal1: Check if Pending Signals Exist on Signal Notification 1 Channel

```
(uint32_t) spu_stat_signal1(void)
```

A check is made to determine whether any pending signals exist on the Signal Notification 1 channel. One of the following values is returned:

- 0: No signals are pending.
- 1: Signals are pending.

Implementation

spu readchcnt(SPU RdSigNotify1)

spu_read_signal2: Atomically Read and Clear Signal Notification 2 Channel

```
(uint32 t) spu read signal2(void)
```

The Signal Notification 2 channel is read, and any bits that are set are atomically reset. A signal is returned. If no signals are pending, a call of this function stalls the SPU until a signal is issued.

Implementation

```
spu readch(SPU RdSigNotify2)
```

spu stat signal2: Check if Any Pending Signals Exist on Signal Notification 2 Channel

```
(uint32 t) spu stat signal2(void)
```

A check is made to determine whether any pending signals exist on the Signal Notification 2 channel. One of the following values is returned:

- 0: No signals are pending.
- 1: Signals are pending.

Implementation

```
spu_readchcnt(SPU_RdSigNotify2)
```

4.10. SPU Mailboxes

This section describes functions that can be used to manage SPU Mailboxes.

spu_read_in_mbox: Read Next Data Entry in SPU Inbound Mailbox

```
(uint32 t) spu read in mbox(void)
```

The next data entry in the SPU Inbound Mailbox queue is read. The command stalls when the queue is empty. The application-specific mailbox data is returned. Each application can uniquely define the mailbox data.

Implementation

```
spu readch (SPU RdInMbox)
```

spu_stat_in_mbox: Get the Number of Data Entries in SPU Inbound Mailbox

```
(uint32 t) spu stat in mbox(void)
```

The number of data entries in the SPU Inbound Mailbox is returned. If the returned value is non-zero, the mailbox contains data entries that have not been read by the SPU.

Implementation

```
spu readchcnt(SPU RdInMbox)
```

spu write out mbox: Send Data to SPU Outbound Mailbox

```
(void) spu write out mbox (uint32 t data)
```

Data is sent to the SPU Outbound Mailbox, where data is application-specific mailbox data, or the command stalls when the SPU Outbound Mailbox is full.

```
spu writech (SPU WrOutMbox, data)
```


spu_stat_out_mbox: Get Available Capacity of SPU Outbound Mailbox

```
(uint32_t) spu_stat_out_mbox(void)
```

The available capacity of the SPU Outbound Mailbox is returned. A value of zero indicates that the mailbox is full.

Implementation

spu readchcnt(SPU WrOutMbox)

spu_write_out_intr_mbox: Send Data to SPU Outbound Interrupt Mailbox

```
(void) spu_write_out_intr_mbox (uint32_t data)
```

Data is sent to the SPU Outbound Interrupt Mailbox, where <code>data</code> is application-specific mailbox data. The command stalls when the SPU Outbound Interrupt Mailbox is full.

Implementation

spu_writech(SPU_WrOutIntrMbox, data)

spu_stat_out_intr_mbox: Get Available Capacity of SPU Outbound Interrupt Mailbox

```
(uint32 t) spu stat out intr mbox(void)
```

The available capacity of the SPU Outbound Interrupt Mailbox is returned. A value of zero indicates that the mailbox is full.

Implementation

spu readchcnt(SPU WrOutIntrMbox)

4.11. SPU Decrementer

This section describes functions that use the SPU 32-bit decrementer.

spu_read_decrementer: Read Current Value of Decrementer

```
(uint32_t) spu_read_decrementer(void)
```

The current value of the decrementer is read and returned.

Implementation

spu readch (SPU RdDec)

spu_write_decrementer: Load a Value to Decrementer

```
(void) spu write decrementer (uint32 t count)
```

A count is loaded to the decrementer.

Implementation

spu_writech(SPU_WrDec, count)

4.12. SPU Event

This section describes several functions that can be used to monitor SPU events. See the *Cell Broadband Engine*

**Architecture for a description of the SPU Event Facility.

The bit-fields of the Event Status, the Event Mask, and the Event Ack are shown in Table 4-107.

Table 4-107: MFC Event Bit-Fields¹

Bits	Field Name	Description
0x1000	MFC_MULTI_SRC_SYNC_EVENT	Multisource synchronization event
0x0800	MFC_PRIV_ATTN_EVENT	SPU privileged attention event
0x0400	MFC_LLR_LOST_EVENT	Lock-line reservation lost event
0x0200	MFC_SIGNAL_NOTIFY_1_EVENT	SPU Signal Notification 1 available event
0x0100	MFC_SIGNAL_NOTIFY_2_EVENT	SPU Signal Notification 2 available event
0x0080	MFC_OUT_MBOX_AVAILABLE_EVENT	SPU Outbound Mailbox available event
0x0040	MFC_OUT_INTR_MBOX_AVAILABLE_EVENT	SPU Outbound Interrupt Mailbox available event
0x0020	MFC_DECREMENTER_EVENT	SPU decrementer event
0x0010	MFC_IN_MBOX_AVAILABLE_EVENT	SPU Inbound Mailbox available event
8000x0	MFC_COMMAND_QUEUE_AVAILABLE_EVENT	MFC SPU command queue available event
0x0002	MFC_LIST_STALL_NOTIFY_EVENT	MFC DMA List command stall-and-notify event
0x0001	MFC_TAG_STATUS_UPDATE_EVENT	MFC tag-group status update event

¹ Bit-field names are defined in spu mfcio.h.

spu_read_event_status: Read Event Status or Stall Until Status is Available

(uint32 t) spu read event status(void)

The event status is read and returned. The command stalls until the status is available. Events that have been reported but not acknowledged will continue to be reported until acknowledged.

The return value is the value of the SPU Read Event Status channel.

Implementation

spu_readch(SPU_RdEventStat)

spu_stat_event_status: Check Availability of Event Status

(uint32_t) spu_stat_event_status(void)

The event status is checked, and one of the following values is returned:

- 0: No enabled events occurred.
- 1: Enabled events are pending.

Implementation

spu readchcnt(SPU RdEventStat)

spu_write_event_mask: Select Events to be Monitored by Event Status

```
(void) spu write event mask (uint32 t mask)
```

Events are selected to be monitored by event status. The argument, mask, is the event mask.

Implementation

spu writech(SPU WrEventMask, mask)

spu_write_event_ack: Acknowledge Events

```
(void) spu_write_event_ack (uint32_t ack)
```

This function acknowledges that the corresponding events are being serviced by the software. The status of acknowledged events is reset, and the events are resampled. The argument, ack, represents events acknowledgment.

Implementation

spu writech (SPU WrEventAck, ack)

spu read event mask: Read Event Status Mask

```
(uint32 t) spu read event mask(void)
```

The current Event Status Mask is read, and the mask is returned.

Implementation

spu readch(SPU RdEventMask)

4.13. SPU State Management

This section describes functions that relate to interrupts. See the *Cell Broadband Engine* [™] *Architecture* for a description of the SPU Machine Status channel and the SPU interrupt-related channels.

spu_read_machine_status: Read Current SPU Machine Status

```
(uint32_t) spu_read_machine_status(void)
```

The current SPU machine status is read, and the status is returned.

Implementation

spu_readch(SPU_RdMachStat)

spu_write_srr0: Write to SPU SRR0

```
(void) spu write srr0(uint32 t srr0)
```

The value of srr0 is written to the SPU state save/restore register 0 (SRR0).

Implementation

spu writech (SPU WrSRR0, srr0)

spu_read_srr0: Read SPU SRR0

```
(uint32_t) spu_read_srr0(void)
```

The SPU state save/restore register 0 (SRR0) is read, and the state is returned.

Implementation

spu readch(SPU RdSRR0)

5. SPU and Vector Multimedia Extension Intrinsics

Function mapping techniques can be used to increase the portability of source code written with SPU intrinsics. One important set of intrinsic function mappings is between the SPU and PPU. This chapter describes a minimal mapping between SPU intrinsics and PPU Vector Multimedia Extension intrinsics.

For many intrinsic functions, an efficient one-to-one mapping between architectures will exist. For some functions, there could be a less efficient one-to-many instruction mapping; and for other functions, no straightforward mapping will exist because a mapping is either impractical or impossible to implement. In this document, only one-to-one mappings are identified for the SPU and PPU. For those SPU and PPU intrinsic functions for which there is no straightforward mapping, an explanation of the difficulty in mapping is provided.

The mappings between SPU and PPU intrinsics are defined in two header files: vmx2spu.h and spu2vmx.h. The former maps Vector Multimedia Extension intrinsics to generic SPU intrinsics, and the latter maps generic SPU intrinsics to Vector Multimedia Extension intrinsics. The functions that are defined in these two header files can be implemented as overloaded inline functions. To facilitate implementation, the vector data types must also be mapped.

The header file <code>vec_types.h</code> is provided to declare the single token vector data types for the Vector Multimedia Extension vector data types and to perform type mappings between the SPU and Vector Multimedia Extension. Programmers must similarly declare vector data using these single token data types. The single token vector data types for the Vector Multimedia Extension intrinsics are shown in Table 5-108.

Table 5-108: Vector Multimedia Extension Single Token Vector Data Types

Vector Keyword Data Type	Single Token Typedef
vector unsigned char	vec_uchar16
vector signed char	vec_char16
vector bool char	vec_bchar16
vector unsigned short	vec_ushort8
vector signed short	vec_short8
vector bool short	vec_bshort8
vector unsigned int	vec_uint4
vector signed int	vec_int4
vector bool int	vec_bint4
vector float	vec_float4
vector pixel	vec_pixel8

5.1. Mapping of Vector Multimedia Extension Intrinsics to SPU Intrinsics

This section lists the one-to-one mapping of Vector Multimedia Extension intrinsics to SPU intrinsics. It also lists those Vector Multimedia Extension intrinsics that are difficult to map to SPU intrinsics.

5.1.1. One-to-One Mapped Intrinsics

The Vector Multimedia Extension intrinsics that map one-to-one with the generic SPU intrinsics are shown in Table 5-109.

Table 5-109: Vector Multimedia Extension Intrinsics That Map One-to-One with SPU Intrinsics

Generic Vector Multimedia Extension Intrinsic	Maps to SPU Intrinsic	Applicable Data Type(s)
vec_add	spu_add	halfword, word, and float (not byte)
vec_addc	spu_genc	All

Generic Vector Multimedia Extension Intrinsic	Maps to SPU Intrinsic	Applicable Data Type(s)
vec_and	spu_and	All
vec_andc	spu_andc	All
vec_avg	spu_avg	unsigned char
vec_cmpeq	spu_cmpeq	All
vec_cmpgt	spu_cmpgt	All
vec_cmplt	spu_cmpgt	All (requires parameter reordering)
vec_ctf	spu_convtf	All
vec_cts	spu_convts	All
vec_ctu	spu_convtu	All
vec_madd	spu_madd	all
vec_mule	spu_mule	halfword (not byte)
vec_mulo	spu_mulo	halfword (not byte)
vec_nmusb	spu_nmsub	All
vec_nor	spu_nor	All
vec_or	spu_or	All
vec_re	spu_re	All
vec_rl	spu_rl	halfword, word (not byte)
vec_rsqrte	spu_rsqrte	All
vec_sel	spu_sel	All
vec_sub	spu_sub	halfword, word, float
vec_subc	spu_genb	All
vec_xor	spu_xor	all

5.1.2. Vector Multimedia Extension Intrinsics That Are Difficult to Map to SPU Intrinsics

The Vector Multimedia Extension intrinsics that are shown in Table 5-110 are not likely to be mapped to generic SPU intrinsics because a straightforward mapping does not exist.

Table 5-110: Vector Multimedia Extension Intrinsics That Are Difficult to Map to SPU Intrinsics

Generic Vector Multimedia Extension Intrinsic(s)	Explanation
vec_unpackh, vec_unpackl	These functions cannot be mapped without creating additional SPU data types. A mapping of pixel and bool short vector types to an unsigned short (as described in Table 1-2) will cause an overloaded function selection conflict.
vec_mfvscr, vec_mtvscr	Support of the VSCR register is difficult because the SPU does not support IEEE rounding modes on single-precision floating-point operations.
vec_step	Mapping requires specific compiler support that is not mandated by this specification.

5.2. Mapping of SPU Intrinsics to Vector Multimedia Extension Intrinsics

This section lists the one-to-one mapping of SPU intrinsics to Vector Multimedia Extension intrinsics. It also lists those SPU intrinsics that are difficult to map to Vector Multimedia Extension intrinsics.

5.2.1. One-to-One Mapped Intrinsics

Many of the generic SPU intrinsics map one-to-one with Vector Multimedia Extension intrinsics. These mappings are shown in Table 5-111.

Table 5-111: SPU Intrinsics That Map One-to-One with Vector Multimedia Extension Intrinsics

Generic SPU Intrinsic	Maps to Vector Multimedia Extension Intrinsic	Applicable Data Type(s)
spu_add	vec_add	vector/vector (no scalar operands)
spu_and	vec_and	vector/vector (no scalar operands)
spu_andc	vec_andc	All
spu_avg	vec_avg	All
spu_cmpeq	vec_cmpeq	vector/vector (no scalar operands)
spu_cmpgt	vec_cmpgt	vector/vector (no scalar operands)
spu_convtf	vec_ctf	Limited scale range (5 bits)
spu_convts	vec_cts	Limited scale range (5 bits)
spu_convtu	vec_ctu	Limited scale range (5 bits)
spu_genb	vec_subc	All
spu_genc	vec_addc	All
spu_madd	vec_madd	float
spu_mule	vec_mule	All
spu_mulo	vec_mulo	Halfword vector/vector (no scalar operands)
spu_nmsub	vec_nmsub	float
spu_nor	vec_nor	All
spu_or	vec_or	vector/vector (no scalar operands)
spu_re	vec_re	All
spu_rl	vec_rl	vector/vector (no scalar operands)
spu_rsqrte	vec_rsqrte	all
spu_sel	vec_sel	All
spu_sub	vec_sub	vector/vector (no scalar operands)
spu_xor	vec_xor	vector/vector (no scalar operands)

5.2.2. SPU Intrinsics That Are Difficult to Map to Vector Multimedia Extension Intrinsics

The generic SPU intrinsics that are shown in Table 5-112 are not likely to be mapped to Vector Multimedia Extension intrinsics because a straightforward mapping does not exist.

Table 5-112: SPU Intrinsics That Are Difficult to Map to Vector Multimedia Extension Intrinsics

Generic SPU Intrinsic(s)	Explanation	
spu_bisled, spu_bislede, spu_bisledi	Event handling and interrupt handling on the SPU cannot be	
spu_idisable, spu_ienable	precisely mapped.	
spu_readch, spu_readchqw, spu_readchcnt	Specific channel functionality cannot be easily supported on the PPU, nor would it generally be desirable to do so. Whereas some channel	
spu_writech, spu_writechqw	sequences could be mapped, most would require special programmer insight and direction.	
spu_mfcdma32, spu_mfcdma64, spu_mfcstat	The mapping of DMA transactions typically is not needed because the PPU has full memory access. Nevertheless, these intrinsics could be used to perform memory synchronization that might not be precisely mappable.	
spu_sync, spu_sync_c	These intrinsics could be mapped to one of the PPU sync	
spu_dsync	instructions, but the results might not be what was intended.	
spu_convts, spu_convtu, spu_convtf	The full dynamic range of scale factors is not easily supported. Vector Multimedia Extension provides a 5-bit scale factor; the SPU has an 8-bit scale factor. Some implementations might support only the 5-bit range provided by the direct mapping of the equivalent intrinsics.	

Generic SPU Intrinsic(s)	Explanation	
spu_hcmpeq, spu_hcmpgt	The halt instruction might be mappable to an exit function, but this will not work in all environments.	
spu_stop, spu_stopd	It is not always appropriate to stop execution of the PPU.	

6. PPU VMX Intrinsics

This chapter describes intrinsics which make the underlying PPU VMX instruction set accessible from the C and C++ programming languages. The *AltiVec Technology Programming Interface Manual*, Section 4.4, defines most of the generic intrinsics for the PPU VMX instruction set, except for a few new instructions which are specified in this chapter. The new intrinsics are in two different categories: intrinsics for extracting vector elements and intrinsics for inserting vector elements.

The PPU VMX intrinsics will be declared in the system header file altivec.h but they may be either defined as macros within this header or implemented internally within the compiler.

For data prefetches, the __dcbt, __dcbtst, __dcbt_TH1000, and __dcbt_TH1010 intrinsics should be used. The related stream control operations that are defined in the *AltiVec Technology Programming Interface Manual*, which are listed below, have been deprecated on the PPU and will execute as a NOP.

Table 6-113: Stream Control Operators That Have Been Deprecated on the PPU

Stream Control Operator	Description
vec_dss(a)	Vector Data Stream Stop
vec_dssall()	Vector Stream Stop All
vec_dst(a,b,c)	Vector Stream Touch
vec_dstst(a,b,c)	Vector Data Stream Touch for Store Transient

vec_extract: Extract Vector Element From Vector

d = vec_extract(a, element)

The element that is specified by <code>element</code> is extracted from vector <code>a</code> and returned in scalar <code>d</code>. Depending on the size of the element, only a limited number of the least significant bits of the <code>element</code> index are used. Specifically for 1-, 2-, and 4-byte elements, only four, three, and two of the least significant bits are used, respectively.

Table 6-114: Extract Vector Element From Vector

Return/Argument Types		Assembly Mapping ¹	
d	а	element	Assembly Mapping
unsigned char	vector unsigned char		EA=memaddr + (element&0xF) stvebx a, 0, EA lbzx d, 0, EA
signed char	vector signed char		EA=memaddr + (element&0xF) stvebx a, 0, EA lbzx d, 0, EA extsb d, d
unsigned short	vector unsigned short		EA=memaddr + (element&0x7)<<2 stvehx a, 0, EA lhzx d, 0, EA
signed short	vector signed short	int	EA=memaddr + (element&0x7)<<2 stvehx a, 0, EA lhzx d, 0, EA extsh d, d
unsigned int	vector unsigned int		EA=memaddr + (element&0x3)<<3 stvewx a, 0, EA lwzx a, 0, EA
signed int	vector signed int		EA=memaddr + (element&0x3)<<3 stvewx a, 0, EA lwzx a, 0, EA extsw d, d ²
float	vector float		EA=memaddr + (element&0x3)<<3 stvewx a, 0, EA lfsx a, 0, EA

¹ memaddr is the address of a temporary memory location which is 16-byte aligned.

² The sign extend from word to doubleword can be omitted if the processor is running in 32-bit mode.

vec_insert: Insert Scalar into Specified Vector Element

d = vec_insert(a, b, element)

Scalar a is inserted into the element of vector b that is specified by the element parameter, and the modified vector is returned. All other elements of b are unmodified. Depending on the size of the element, only a limited number of the least significant bits of the element index are used. Specifically for 1-, 2-, and 4-byte elements, only four, three, and two of the least significant bits are used, respectively.

Table 6-115: Insert Scalar into Specified Vector Element

Return/Argument Types				Assembly Mapping ¹
d	а	b element		Assembly Mapping
vector unsigned char	unsigned char	vector unsigned char		EA=memaddr + (element&0xF) stbx a, 0, EA
vector signed char	signed char	vector signed char		lvebx d, 0, EA vperm d, d, a, pattern
vector unsigned short	unsigned short	vector unsigned short		EA=memaddr + (element&0x7)<<2 sthx a, 0, EA
vector signed short	signed short	vector signed short	int	lvehx d, 0, EA vperm d, d, a, pattern
vector unsigned int	unsigned int	vector unsigned int		EA=memaddr + (element&0x3)<<3 stwx a, 0, EA
vector signed int	signed int	vector signed int		lvewx d, 0, EA vperm d, d, a, pattern
vector float	float	vector float		EA=memaddr + (element&0x3)<<3 stfsx a, EA lvewx d, 0, EA vperm d, d, a, pattern

¹ memaddr is the address of a temporary memory location which is 16-byte aligned.

vec_lvlx: Load Vector Left Indexed

d = vec_lvlx(a, b)

Let $\mathbb{E}\mathbb{A}$ be the effective address formed from the sum of the contents of a and the contents of b and let a be the value of the four least significant bits of a. The (16 - a b) bytes addressed by a are loaded into the leftmost (16 - a b) byte elements of a and the rightmost a byte of a are set to zero.

Table 6-116: Load Vector Left Indexed

Return/Argument Types			Assembly Mapping
d	а	b	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned chai	any integral type	vector unsigned char *	
vector signed char	any integral type	signed char *	
vector signed criai	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
vector unsigned short	any integral type	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	
vector signed short	any integral type	signed short *	lvlx d, a, b
vector signed short		vector signed short *	
vector bool short	any integral type	vector bool short *	IVIX U, a, D
vector pixel	any integral type	vector pixel *	
vector uncigned int	any intogral type	unsigned int *	
vector unsigned int	any integral type	vector unsigned int *	
vector signed int	any integral type	signed int *	
vector signed int	any integral type	vector signed int *	
vector bool int	any integral type	vector bool int *	
vector float any integral type	any integral type	float *	
	any integral type	vector float *	

vec_lvlxl: Load Vector Left Indexed Last

d = vec lvlxl(a, b)

Let EA be the effective address formed from the sum of the contents of a and the contents of b and let b be the value of the four least significant bits of EA. The (16 - b) bytes addressed by EA are loaded into the leftmost (16 - b) bytes of d and the rightmost b bytes of d are set to zero. vec_lvlxl provides a hint that the quadword in memory addressed by EA will probably not be needed again by the program in the near future.

Table 6-117: Load Vector Left Indexed Last

Return/Argument Types			Assembly Mapping
d	а	b	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned chai	any integral type	vector unsigned char *	
vector signed shor	any intogral type	signed char *	
vector signed char	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
vooter uneigned short	any intogral type	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	
vootor signed short	any intogral type	signed short *	
vector signed short	any integral type	vector signed short *	hylyl d. a. b.
vector bool short	any integral type	vector bool short *	Ivlxl d, a, b
vector pixel	any integral type	vector pixel *	
vester unsigned int	any intogral typo	unsigned int *	
vector unsigned int	any integral type	vector unsigned int *	
vector signed int	any integral type	signed int *	
vector signed int	any integral type	vector signed int *	
vector bool int	any integral type	vector bool int *	
vector float	any intogral type	float *	
VECTOI IIOAL	any integral type	vector float *	

vec_lvrx: Load Vector Right Indexed

d = vec lvrx(a, b)

Let $\mathbb{E}\mathbb{A}$ be the effective address formed from the sum of the contents of a and the contents of b and let a be the value of the four least significant bits of $\mathbb{E}\mathbb{A}$. If a is not equal to zero (for example, a is not quadword-aligned), then a by bytes in memory addressed by (a and a by are loaded into the rightmost a bytes of a and the leftmost (16 - a by bytes of a are set to zero. If a is equal to zero (for example, a is quadword-aligned), then the contents of a are set to zero.

Table 6-118: Load Vector Right Indexed

Return/Argument Types			Assembly Mapping
d	а	b	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned chai	any integral type	vector unsigned char *	
vector signed char	any integral type	signed char *	
vector signed char	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
vector ungigned short	any intogral type	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	
vector signed short	any integral type	signed short *	
vector signed short		vector signed short *	lypy d. o. b
vector bool short	any integral type	vector bool short *	lvrx d, a, b
vector pixel	any integral type	vector pixel *	
vector unaigned int	any integral type	unsigned int *	
vector unsigned int	any integral type	vector unsigned int *	
vector signed int	any intogral type	signed int *	
vector signed int	any integral type	vector signed int *	
vector bool int	any integral type	vector bool int *	
vector float	any integral type	float *	
	any integral type	vector float *	

vec_lvrxl: Load Vector Right Indexed Last

d = vec_lvrxl(a,b)

Let EA be the effective address formed from the sum of the contents of a and the contents of b and let a be the value of the four least significant bits of EA. If a is not equal to zero (for example, EA is not quadword-aligned), then a bytes in memory addressed by (EA - a b) are loaded into the rightmost a bytes of a and the leftmost (16 - a b) bytes of a are set to zero. If a is equal to zero (for example, EA is quadword-aligned), then the contents of a are set to zero. Vec_lvrxl provides a hint that the quadword in memory addressed by EA will probably not be needed again by the program in the near future.

Table 6-119: Load Vector Right Indexed Last

Return/Argument Types			Assembly Mapping
d	а	b	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned chai	arry integral type	vector unsigned char *	
vector signed char	any integral type	signed char *	
vector signed chai	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
vector ungigned short	any intogral type	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	
vector signed short	any integral type any integral type	signed short *	
vector signed short		vector signed short *	luryl d. o. b
vector bool short		vector bool short *	Ivrxl d, a, b
vector pixel	any integral type	vector pixel *	
vector uncigned int	any integral type	unsigned int *	
vector unsigned int		vector unsigned int *	
vector signed int	any integral type	signed int *	
vector signed int		vector signed int *	
vector bool int	any integral type	vector bool int *	
tardard		float *	
vector float	any integral type	vector float *	

vec_stvlx: Store Vector Left Indexed

(void) vec_ stvlx(a, b, c)

Let $\mathbb{E}\mathbb{A}$ be the effective address formed from the sum of the contents of b and the contents of c, and let eb be the value of the four least significant bits of $\mathbb{E}\mathbb{A}$. Store the (16 - eb) leftmost bytes of a into the memory addressed by $\mathbb{E}\mathbb{A}$.

Table 6-120: Store Vector Left Indexed

Return/Argument Types			Assembly Mapping
а	b	С	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned char		vector unsigned char *	
voctor signed char	any integral type	signed char *	
vector signed char	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
vector unsigned short	any internal tyre	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	
vector signed short	any integral type	signed short *	ohdy a h a
vector signed short		vector signed short *	
vector bool short	any integral type	vector bool short *	stvlx a, b, c
vector pixel	any integral type	vector pixel *	
vector uncigned int	any integral type	unsigned int *	
vector unsigned int	any integral type	vector unsigned int *	
vector signed int	any integral type	signed int *	
		vector signed int *	
vector bool int	any integral type	vector bool int *	
vector fleet		float *	
vector float	any integral type	vector float *	

vec_stvixi: Store Vector Left Indexed Last

(void) vec_ stvlxl(a, b, c)

Let \mathtt{EA} be the effective address formed from the sum of the contents of b and the contents of c, and let \mathtt{eb} be the value of the four least significant bits of \mathtt{EA} . Store the (16 - \mathtt{eb}) leftmost bytes of a into the memory addressed by \mathtt{EA} . $\mathtt{vec_stvlxl}$ provides a hint that the quadword in memory addressed by \mathtt{EA} will probably not be needed again by the program in the near future.

Table 6-121: Store Vector Left Indexed Last

Return/Argument Types		Assembly Mapping		
а	b	С	Assembly Mapping	
vector unsigned char	any integral type	unsigned char *		
vector unsigned chai	any integral type	vector unsigned char *		
vector signed char	any integral type	signed char *		
vector signed chai	arry integral type	vector signed char *		
vector bool char	any integral type	vector bool char *		
vector unsigned short	any integral type	unsigned short *		
vector unsigned short		vector unsigned short *		
vector signed short	any integral type	signed short *	stvlxl a, b, c	
vector signed short		vector signed short *		
vector bool short	any integral type	vector bool short *		
vector pixel	any integral type	vector pixel *		
vector unsigned int	any integral type	unsigned int *		
		vector unsigned int *		
vector signed int	any integral type	signed int *		
		vector signed int *		
vector bool int	any integral type	vector bool int *		
vector float		float *		
	any integral type	vector float *		

vec_stvrx: Store Vector Right Indexed

(void) vec_ stvrx(a, b, c)

Let $\mathbb{E}\mathbb{A}$ be the effective address formed from the sum of the contents of b and the contents of c, and let b be the value of the four least significant bits of $\mathbb{E}\mathbb{A}$. Store the b rightmost bytes of b into the memory addressed by ($\mathbb{E}\mathbb{A}$ - b). If b is zero, $\mathbb{E}\mathbb{A}$ is 16-byte aligned, and no memory is stored.

Table 6-122: Store Vector Right Indexed

Return/Argument Types		Assembly Mapping	
a	b	С	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned chai	any integral type	vector unsigned char *	
vester signed short	any integral type	signed char *	
vector signed char	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
	any interval turns	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	
vector signed short	any intogral type	signed short *	
vector signed short	any integral type	vector signed short *	otury o b o
vector bool short	any integral type	vector bool short *	stvrx a, b, c
vector pixel	any integral type	vector pixel *	
vector unsigned int	any integral type	unsigned int *	
		vector unsigned int *	
vector signed int	any integral type	signed int *	
		vector signed int *	
vector bool int	any integral type	vector bool int *	
vector float	any integral type	float *	
		vector float *	

vec_ stvrxl: Store Vector Right Indexed Last

(void) vec_ stvrxl(a, b, c)

Let $\mathbb{E}\mathbb{A}$ be the effective address formed from the sum of the contents of b and the contents of c, and let eb be the value of the four least significant bits] of $\mathbb{E}\mathbb{A}$. Store the eb rightmost bytes of a into the memory addressed by ($\mathbb{E}\mathbb{A}$ - eb). If eb is zero, $\mathbb{E}\mathbb{A}$ is 16-byte aligned, no memory is stored. vec_stvrxl provides a hint that the quadword in memory addressed by $\mathbb{E}\mathbb{A}$ will probably not be needed again by the program in the near future.

Table 6-123: Store Vector Right Indexed Last

Return/Argument Types		Assembly Mapping	
а	b	С	Assembly Mapping
vector unsigned char	any integral type	unsigned char *	
vector unsigned chai		vector unsigned char *	
vector signed char	any integral type	signed char *	
vector signed criai	any integral type	vector signed char *	
vector bool char	any integral type	vector bool char *	
vector unsigned short	any intogral typo	unsigned short *	
vector unsigned short	any integral type	vector unsigned short *	stvrxl a, b, c
vector signed short	any integral type	signed short *	
vector signed short		vector signed short *	
vector bool short		vector bool short *	SIVIXI a, b, C
vector pixel	any integral type	vector pixel *	
vector ungigned int	any integral type	unsigned int *	
vector unsigned int		vector unsigned int *	
vector signed int	any integral type	signed int *	
		vector signed int *	
vector bool int	any integral type	vector bool int *	
vector float	any integral type	float *	
		vector float *	

vec_promote: Promote Scalar to a Vector

d = vec_promote(a, element)

Scalar a is promoted to a vector containing a in the element that is specified by the <code>element</code> parameter, and the result is returned in vector a. All other elements of a are undefined. Depending on the size of a, only a limited number of the least significant bits of the <code>element</code> index are used. Specifically for 1-, 2-, and 4-byte elements, only four, three, and two of the least significant bits are used, respectively.

Table 6-124: Promote Scalar to a Vector

Return/Argument Types		Assembly Mapping ¹		
d	а	element	Assembly Mapping	
vector unsigned char	unsigned char	int	EA=memaddr + (element&0xF) stbx a, 0, EA	
vector signed char	signed char		lvebx d, 0, EA	
vector unsigned short	unsigned short		EA=memaddr + (element&0x7)<<2 sthx a. 0. EA	
vector signed short	signed short		Ivehx d, 0, EA	
vector unsigned int	unsigned int		EA=memaddr + (element&0x3)<<3 stwx a. 0. EA	
vector signed int	signed int		Ivewx d, 0, EA	
vector float	float		EA=memaddr + (element&0x3)<<3 stfsx a, EA lvewx d, 0, EA	

¹ memaddr is the address of a temporary memory location which is 16-byte aligned.

vec_splats: Splat Scalar to a Vector

d = vec_splats(a)

The single scalar *a* value is replicated across all elements of a vector of the same type and the result is returned in vector *d*.

Table 6-125: Splat Scalar to a Vector

Return/Argument Types		Assembly Mapping	
d	а	Assembly Mapping	
vector unsigned char	unsigned char		
vector signed char	signed char		
vector unsigned short	unsigned short	store a into memory (EA) that 16-byte aligned	
vector signed short	signed short	lvebx/lvehx/lvewx tmp, 0, EA	
vector unsigned int	unsigned int	vspltb/vsplth/vspltw d, tmp, 0	
vector signed int	signed int		
vector float	float		
vector unsigned char	unsigned char (5-bit unsigned literal)	vspltisb d, a	
vector signed char	signed char (5-bit unsigned literal)	or	
vector unsigned short	unsigned short (5-bit unsigned literal)	vspltish d, a or	
vector signed short	signed short (5-bit unsigned literal)	vspltisw d, a	
vector unsigned int	unsigned int (5-bit unsigned literal)	or	
vector signed int	signed int (5-bit unsigned literal)	vspltisw d, a	
vector float	float (5-bit unsigned literal)		

7. PPU Intrinsics

This chapter specifies a minimal set of specific intrinsics to make the underlying PPU instruction set accessible from the C programming language. Except for __setflm, each of these intrinsics has a one-to-one assembly language mapping, unless compiled for a 32-bit ABI in which the high and low halves of a 64-bit doubleword are maintained in separate registers. In this latter situation, the corresponding 32-bit intrinsic might generate a sequence of instructions. In other instances, a corresponding 32-bit implementation cannot be supported.

The PPU intrinsics will be declared in the system header file, ppu_intrinsics.h. They may be either defined within this header as macros or implemented internally within the compiler.

Some intrinsics take a literal value of either 3, 4, 5, 6, 8, or 10 bits in length. By default, a call to an intrinsic with an out-of-range literal is reported by the compiler as an error. Compilers may provide an option to issue a warning for out-of-range literal values and use only the specified number of least significant bits for the out-of-range argument.

The intrinsics do not have a specific ordering unless otherwise noted. The intrinsics can be optimized by the compiler and be scheduled like normal operations.

__cctph: Change Thread Priority to High

(void) cctph()

The current thread priority is changed to high priority. This intrinsic will not be reordered by the compiler.

Table 7-126: Change Thread Priority to High

Return/Argument Types	Assembly Mapping
none	cctph

__cctpl: Change Thread Priority to Low

(void) __cctpl()

The current thread priority is changed to low priority. This intrinsic will not be reordered by the compiler.

Table 7-127: Change Thread Priority to Low

Return/Argument Types	Assembly Mapping
none	cctpl

__cctpm: Change Thread Priority to Medium

(void) cctpm()

The current thread priority is changed to medium priority. This intrinsic will not be reordered by the compiler.

Table 7-128: Change Thread Priority to Medium

Return/Argument Types	Assembly Mapping
none	cctpm

__cntlzd: Count Leading Doubleword Zeros

 $d = \underline{} cntlzd(a)$

The number of leading zeros in the doubleword *a* is returned in *d*.

Table 7-129: Count Leading Doubleword Zeros

Return/Ar	gument Types	As	sembly Mapping
d	а	64-bit ABI	32-bit ABI
unsigned int	unsigned long long	cntlzd d, a	cntlzw hi_cnt, a_hi cntlzw lo_cnt, a_lo rlwinm mask, hi_cnt, 26, 0, 5 srawi mask, mask, 31 and lo_cnt, lo_cnt, mask add d, hi_cnt, lo_cnt

__cntlzw: Count Leading Word Zeros

 $d = __cntlzw(a)$

The number of leading zeros in the word a is returned in d.

Table 7-130: Count Leading Word Zeros

Return/Argument Types		Assembly Mapping
d	а	Assembly Mapping
unsigned int	unsigned int	cntlzw d, a

__db10cyc: Delay 10 Cycles at Dispatch

(void) __db10cyc()

The current thread is blocked at dispatch for 10 cycles. This intrinsic will not be reordered by the compiler.

Table 7-131: Delay 10 Cycles At Dispatch

Return/Argument Types	Assembly Mapping
none	db10cyc

__db12cyc: Delay 12 Cycles at Dispatch

(void) __db12cyc()

The current thread is blocked at dispatch for 12 cycles. This intrinsic will not be reordered by the compiler.

Table 7-132: Delay 12 Cycles At Dispatch

Return/Argument Types	Assembly Mapping
none	db12cyc

__db16cyc: Delay 16 Cycles at Dispatch

(void) __db16cyc()

The current thread is blocked at dispatch for 16 cycles. This intrinsic will not be reordered by the compiler.

Table 7-133: Delay 16 Cycles At Dispatch

, ,	•
Return/Argument Types	Assembly Mapping
none	db16cyc

__db8cyc: Delay 8 Cycles at Dispatch

(void) db8cyc()

The current thread is blocked at dispatch for 8 cycles. This intrinsic will not be reordered by the compiler.

Table 7-134: Delay 8 Cycles At Dispatch

Return/Argument Types	Assembly Mapping
none	db8cyc

__dcbf: Data Cache Block Flush

(void) __dcbf(pointer)

The cache block that contains the argument pointer is flushed and removed from the cache.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-135: Data Cache Block Flush

Return/Argument Types	Assembly Mapping
pointer	Assembly Mapping
void*	dcbf base, index

__dcbst: Data Cache Block Store

(void) dcbst(pointer)

The cache block that contains the argument pointer is written to main memory. This intrinsic will not be reordered by the compiler.

The ${\it base}$ and ${\it index}$ arguments for the assembly mapping are calculated from ${\it pointer}.$

Table 7-136: Data Cache Block Store

Return/Argument Types	Assembly Mapping
pointer	
void*	dcbst base, index

__dcbt: Data Cache Block Touch

(void) dcbt(pointer)

The processor receives a hint that the cache block which contains the argument <code>pointer</code> will soon be loaded. This intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-137: Data Cache Block Touch

Return/Argument Types	Accombly Manning
pointer	Assembly Mapping
void*	dcbt base, index

__dcbt_TH1000: Start Streaming Data

```
(void) dcbt TH1000 (EATRUNC, D, UG, ID)
```

A stream is started with an id of ID and an effective address of EATRUNC. The argument D describes which direction the stream is going: true for forwards and false for backwards. The argument UG says if the stream is unlimited in bounds or not. This intrinsic will not be reordered by the compiler.

The effective address for this instruction is calculated as:

```
((unsigned long long) EATRUNC) & \sim 0 \times 7F) | (((D & 1) << 6) | ((UG & 1) << 5) | (ID & 0 \times F)
```

The base and index arguments for the assembly mapping are calculated from the above effective address.

Table 7-138: Start Streaming Data

Return/Argument Types				Assembly Mapping
EATRUNC	D UG ID			Assembly Mapping
void*	bool	bool	int	dcbt base, index, 8

__dcbt_TH1010: Stop Streaming Data

```
(void) __dcbt_TH1010(G0, S, UNITCNT, T, U, ID)
```

The processor receives a hint that the stream identified by ID will no longer be needed. If GO is set then the program will soon load from all nascent data streams that have been completely described, and it will probably no longer load from any other nascent data streams; all the rest of the arguments are ignored in this case. If S is 10 then the stream associated with ID will stop and all other arguments except for ID are ignored. If S is S is S is S in a data stream in S if the program's need for each block of the data stream is likely to be transient. S tells if the data stream is unlimited and the S in S argument is ignored. This intrinsic will not be reordered by the compiler.

The effective address for this instruction is calculated as:

```
(((unsigned long long) G0 & 1) << 31)
| ((S & 0x3) << 29)
| ((UNITCNT & 0x3FF) << 7)
| ((T & 1) << 6)
| ((U & 1) << 5)
| (ID & 0xF)</pre>
```

The base and index arguments for the assembly mapping are calculated from the above effective address.

Table 7-139: Stop Streaming Data

Return/Argument Types					Assembly Mapping	
G0	S	UNITCNT	Т	U	ID	Assembly Mapping
bool	int	int	bool	bool	int	dcbt base, index, 10

__dcbtst: Data Cache Block Touch for Store

(void) dcbtst(pointer)

The processor receives a hint that the cache block that contains the argument pointer will soon be stored. This intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-140: Data Cache Block Touch For Store

Return/Argument Types	Assembly Mapping	
pointer		
void*	dcbtst base, index	

dcbz: Data Cache Block Set to Zero

(void) __dcbz(pointer)

The cache block that contains the argument pointer is zeroed out. If the address is already in cache, the cache block containing it is zeroed. If the address was not already in a cache block, a cache block for it is created with all zeros. This intrinsic will not be reordered by the compiler.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-141: Data Cache Block Set to Zero

Return/Argument Types	Accombly Manning	
pointer	Assembly Mapping	
void*	dcbz base, index	

__eieio: Enforce In-Order Execution of I/O

(void) eieio()

A memory barrier is created, which provides an ordering function for the storage accesses caused by *Load*, *Store*, __dcbz(), __eciwx(), and __ecowx() instructions executed by the processor executing the __eieio() instruction. The memory barrier and ordering function are described in section 1.7.1 of *PowerPC Architecture Book*, *Book II: PowerPC Virtual Environment Architecture*, *Version 2.02*.

Table 7-142: Enforce In-Order Execution of I/O

Return/Argument Types	Assembly Mapping
none	eieio

__fabs: Double Absolute Value

 $d = _{fabs(a)}$

The absolute value of the argument a is returned in d with the sign bit set to zero.

Table 7-143: Double Absolute Value

Return/Argume	Assembly Mapping	
d a		
double	double	fabs d, a

__fabsf: Float Absolute Value

$$d = __fabsf(a)$$

The absolute value of the argument a is returned in d with the sign bit set to zero.

Table 7-144: Float Absolute Value

Return/Argu	ment Types	Assembly Mapping
d	а	
float	float	fabs d, a

__fcfid: Convert Doubleword to Double

$$d = _fcfid(a)$$

The doubleword in a is converted to a floating-point and returned in d.

Table 7-145: Convert Doubleword to Double

Return/Argu	ment Types	Assembly Mapping
d	а	Assembly Mapping
double	long long	fcfid d, a

__fctid: Convert Double to Doubleword

$$d = fctid(a)$$

The double *a* is converted to a doubleword integer and returned in *d*. This function takes into account the current rounding mode.

Table 7-146: Convert Double to Doubleword

Return/Arg	jument Types	Assembly Mapping
d	а	
long long	double	fctid d, a

__fctidz: Convert Double to Doubleword with Round Towards Zero

The double a is converted to a doubleword integer and returned in d. This function always rounds towards zero.

Table 7-147: Convert Double to Doubleword with Round Towards Zero

Return/Argu	ument Types	Assembly Mapping
d	а	Assembly Mapping
long long	double	fctidz d, a

__fctiw: Convert Double to

$$d = _fctiw(a)$$

The double a is converted to a word integer and returned in d. This function takes into account the current rounding mode.

Table 7-148: Convert Double to Word

Return/Argument Types		Assembly Mapping	
d a		Assembly Mapping	
int	double	fctiw tmp, a stfiwx tmp, r1, tempspace lwzx d, r1, tempspace	

__fctiwz: Convert Double to Word with Round Towards Zero

The double a is converted to a word integer and returned in d. This function always rounds towards zero.

Table 7-149: Convert Double to Word with Round Towards Zero

Return/Argu	ment Types	Assembly Mapping	
d a		Assembly Mapping	
int	double	fctiwz tmp, a stfiwx tmp, r1, tempspace lwzx d, r1, tempspace	

__fmadd: Double Fused Multiply and Add

$$d = fmadd(a, b, c)$$

The argument a is multiplied by the argument b, and the argument c is added to that product. The resulting value $(a \times b + c)$ is returned in d.

Table 7-150: Double Fused Multiply and Add

	Return/Argu	Assembly Mapping		
d a b c			Assembly Mapping	
double	double	double	double	fmadd d, a, b, c

__fmadds: Float Fused Multiply and Add

$$d = fmadds(a, b, c)$$

The argument a is multiplied by the argument b, and the argument c is added to that product. The resulting value $(a \times b + c)$ is returned in d.

Table 7-151: Float Fused Multiply and Add

	Return/Argu	Assembly Mapping		
d a b c			Assembly Mapping	
float	float	float	float	fmadds d, a, b, c

__fmsub: Double Fused Multiply and Subtract

$$d = fmsub(a, b, c)$$

The argument a is multiplied by the argument b, and the argument c is subtracted from that product. The resulting value $(a \times b - c)$ is returned in d.

Table 7-152: Double Fused Multiply and Subtract

	Return/Argu	Assembly Mapping		
d a b c			Assembly Mapping	
double	double	double	double	fmsub d, a, b, c

__fmsubs: Float Fused Multiply and Subtract

$$d = _{max}fmsubs(a, b, c)$$

The argument a is multiplied by the argument b, and the argument c is subtracted from that product. The resulting value $(a \times b - c)$ is returned in d.

Table 7-153: Float Fused Multiply and Subtract

	Return/Argu	Assembly Mapping		
d	а	b	С	Assembly Mapping
float	float	float	float	fmsubs d, a, b, c

__fmul: Double Multiply

$$d = _{mul}(a, b)$$

The doubles a and b are multiplied, and their product $(a \times b)$ is returned in d.

Table 7-154: Double Multiply

Retu	ırn/Argument	Assembly Mapping	
d	а	b	Assembly Mapping
double	double	double	fmul d, a, b

__fmuls: Float Multiply

$$d = fmuls(a, b)$$

The floats a and b are multiplied, and their product (a×b) is returned in d.

Table 7-155: Float Multiply

	Retu	Assembly Mapping		
	d	а	b	Assembly Mapping
float		float	float	fmuls d, a, b

__fnabs: Double Negative

The negative absolute value of the argument a is returned in d. The sign bit is set to 1.

Table 7-156: Double Negative

Return/Ar	gument Types	Assembly Mapping
d	а	Assembly Mapping
double	double	fnabs d, a

__fnabsf: Float Negative

The negative absolute value of the argument a is returned in the d. The sign bit is set to 1.

Table 7-157: Float Negative

Return/A	rgument Types	Assembly Mapping
d a		Assembly Mapping
float	float	fnabs d, a

__fnmadd: Double Fused Negative Multiply and Add

$$d = fnmadd(a, b, c)$$

The arguments a and b are multiplied, and the argument c is added to their product. The sum is negated, and the resulting value $-(a \times b + c)$ is returned in d.

Table 7-158: Double Fused Negative Multiply and Add

Return/Argument Types				Assembly Mapping
d a b c			Assembly Mapping	
double	double	double	double	fnmadd d, a, b, c

__fnmadds: Float Fused Negative Multiply and Add

```
d = fnmadds(a, b, c)
```

The arguments a and b are multiplied, and the argument c is added to their product. The sum is negated, and the resulting value $-(a \times b + c)$ is returned in d.

Table 7-159: Float Fused Negative Multiply and Add

Return/Argument Types				Assembly Mapping
d	d a b c			Assembly Mapping
float	float	float	float	fnmadds d, a, b, c

__fnmsub: Double Fused Negative Multiply and Subtract

$$d = fnmsub(a, b, c)$$

The arguments a and b are multiplied, and the argument c is subtracted from their product. The sum is negated, and the resulting value $-(a \times b - c)$ is returned in d.

Table 7-160: Double Fused Negative Multiply and Subtract

	Return/Argu	Assembly Mapping		
d a b c			Assembly Mapping	
double	double	double	double	fnmsub d, a, b, c

__fnmsubs: Float Fused Negative Multiply and Subtract

```
d = _{n} fnmsubs(a, b, c)
```

The arguments a and b are multiplied, and the argument c is subtracted from their product. The sum is negated, and the resulting value $-(a \times b - c)$ is returned in d.

Table 7-161: Float Fused Negative Multiply and Subtract

	Return/Argu	Assembly Mapping		
d	d a b c			Assembly Mapping
float	float	float	float	fnmsubs d, a, b, c

__fres: Float Reciprocal Estimate

An estimate of the reciprocal of the argument a is returned in d. The estimate is correct to a precision of one part in 256 of the reciprocal.

Beyond this precision, the value is indeterminate; the results of executing this instruction may vary between implementations and between different executions on the same implementation.

Table 7-162: Float Reciprocal Estimate

Return/Argument Types		Assembly Mapping
d	а	Assembly Mapping
float	float	fres d, a

__frsp: Round to Single Precision

$$d = _frsp(a)$$

The argument a is rounded to single precision and returned in d.

Table 7-163: Round to Single Precision

Return/Argument Types		Accombly Manning
d	а	Assembly Mapping
float	float	frsp d, a

__frsqrte: Double Reciprocal Square Root Estimate

An estimate of the reciprocal of the square root of the argument a is returned in d.

The estimate is correct to a precision of one part in 32 of the reciprocal of the square root. Beyond this precision, the value is indeterminate; the results of executing this instruction may vary between implementations and between different executions on the same implementation.

Table 7-164: Double Reciprocal Square Root Estimate

Return/Argument Types		Assembly Mapping
d a		
float	double	frsqrte d, a

__fsel: Floating-Point Select of Double

$$d = _fsel(a, b, c)$$

The argument b is returned in d if the argument d is less than or equal to d.0; otherwise d0 is returned.

Table 7-165: Floating-Point Select of Double

Return/Argument Types			Assembly Mapping	
d a b c			Assembly Mapping	
double	double	double	double	fsel d, a, b, c

__fsels: Floating-Point Select of Float

$$d = _fsels(a, b, c)$$

The argument b is returned in d if the argument d is less than or equal to d.0; otherwise d0 is returned.

Table 7-166: Floating-Point Select of Float

Return/Argument Types			Assembly Mapping	
d	а	b	Assembly Mapping	
float	float	float	float	fsel d, a, b, c

__fsqrt: Double Square Root

The square root of the argument a is returned in d.

Table 7-167: Double Square Root

Return/Argument Types		Assembly Mapping
d	а	Assembly Mapping
double	double	fsqrt d, a

__fsqrts: Float Square Root

The square root of the argument a is returned in d.

Table 7-168: Float Square Root

Return/Argument Types		Assembly Mapping
d a		
float	float	fsqrts d, a

__icbi: Instruction Cache Block Invalidate

The instruction cache block that contains the argument pointer is invalidated, if such a block is in the cache. This intrinsic will not be reordered by the compiler.

The $\it base$ and $\it index$ arguments for the assembly mapping are calculated from $\it pointer$.

Table 7-169: Instruction Cache Block Invalidate

Return/Argument Types	A a a a malal v. Mana in a	
pointer	Assembly Mapping	
void*	icbi base, index	

__isync: Instruction Sync

The processor waits until all previous instructions have finished. The __isync() function ensures that all icbi have been performed.

Table 7-170: Instruction Sync

Return/Argument Types	Assembly Mapping
none	isync

__Idarx: Load Doubleword with Reserved

d = ldarx(pointer)

The reserved address of the processor is set to the value of pointer. A doubleword from the address in pointer is returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-171: Load Doubleword with Reserved

Return/Argumen	A complete Managina	
d pointer		Assembly Mapping
unsigned long long	void*	ldarx d, base, index

__Idbrx: Load Reversed Doubleword

d = ldbrx(pointer)

A doubleword from the address in pointer is loaded in reversed endian order into d and returned.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-172: Load Reversed Doubleword

Return/Argument Types		Assembly Mapping	
d	pointer	64-bit ABI	32-bit ABI
unsigned long long	void*	ldbrx d, base, index	lwbrx d_lo, base, index lwbrx d_hi, base, index+4

_Ihbrx: Load Reversed Halfword

d = __lhbrx(pointer)

A halfword from the address in pointer is loaded in reversed endian order into d and returned.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-173: Load Reversed Halfword

Return/Argument Types		Assembly Mapping
d pointer		
unsigned short	void*	Ihbrx d, base, index

__lwarx: Load Word with Reserved

d = __lwarx(pointer)

The reserved address of the processor is set to the value of pointer. A word from the address in pointer is returned in d.

The ${\it base}$ and ${\it index}$ arguments for the assembly mapping are calculated from ${\it pointer}.$

Table 7-174: Load Word with Reserved

Return/Argument Types		Assembly Mapping
d pointer		
unsigned void*		lwarx d, base, index

_lwbrx: Load Reversed Word

d = lwbrx(pointer)

A word from the address in pointer is loaded in reversed endian order into d.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-175: Load Reversed Word

Return/Argument Types		Assembly Mapping	
d pointer		Assembly Mapping	
unsigned	void*	lwbrx d, base, index	

__lwsync: Light Weight Sync

(void) __lwsync()

A memory barrier is created, providing an ordering function for the storage accesses caused by prior *Load*, *Store*, and __dcbz() instructions that are executed by the processor executing __lwsync(). The memory barrier and ordering function are described in section 1.7.1 of *PowerPC Architecture Book*, *Book II: PowerPC Virtual Environment Architecture*, *Version 2.02*.

Table 7-176: Light Weight Sync

Return/Argument Types	Assembly Mapping
none	lwsync

__mffs: Move From Floating-Point Status and Control Register

d = mffs()

The current Floating-Point Status and Control Register is returned in *d*. This intrinsic will not be reordered by the compiler.

Table 7-177: Move From Floating-Point Status and Control Register

Return/Argument Types	Assembly Mapping	
d		
double	mffs d	

__mfspr: Move From Special Purpose Register

 $d = _mfspr(spr)$

The contents of the special purpose register specified by spr are returned in d. This intrinsic will not be reordered by the compiler.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-178: Move From Special Purpose Register

Return/Argument Types		Assembly Mapping
d	spr	Assembly Mapping
unsigned long long	10-bit literal unsigned int	mfspr d, spr

__mftb: Move From Time Base

$$d = _mftb()$$

The time base register is returned in α . This intrinsic will not be reordered by the compiler.

Table 7-179: Move From Time Base

Return/Argument Types	Assembly Mapping	
d	64-bit ABI	32-bit ABI
unsigned long long	mftb d	retry: mftbu d_hi mftb d_lo mftbu tmp cmp d_hi, tmp bne retry

mtfsb0: Set Field of FPSCR

(void) mtfsb0(bt)

Bit bt of Floating-Point Status and Control Register (FPSCR) is set to 0. This intrinsic will not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 7-180: Set Field of FPSCR

Return/Argument Types	Assembly Mapping	
bt	7 toochibity Mapping	
5-bit unsigned int (literal)	mtfsb0 bt	

__mtfsb1: Unset Field of FPSCR

(void) mtfsb1(bt)

Bit bt of Floating-Point Status and Control Register is set to 1. This intrinsic will not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 7-181: Unset Field of FPSCR

Return/Argument Types	Assembly Mapping	
bt	Assembly Mapping	
5-bit unsigned int (literal)	mtfsb1 bt	

__mtfsf: Set Fields in FPSCR

(void) mtfsf(flm, b)

The fields of Floating-Point Status and Control Register are set to b masked by the argument £1m. This intrinsic will not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 7-182: Set Fields in FPSCR

Return/Argument	Assembly Mapping	
flm b		
8-bit unsigned int (literal)	double	mtfsf flm, b

__mtfsfi: Set Field FPSCR From Other Field

```
(void) mtfsfi(bf, u)
```

The u field of Floating-Point Status and Control Register is copied into the bf field of FPSCR. This intrinsic will not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 7-183: Set Field FPSCR From Other Field

Return/Argument Types		Assembly Mapping
bf u		7.63cmbiy Wapping
3-bit unsigned int (literal)	4-bit unsigned int (literal)	mtfsfi bf, u

__mtspr: Move to Special Purpose Register

```
(void) __mtspr(spr, value)
```

The special purpose register specified by spr is set to the argument value. This intrinsic will not be reordered by the compiler.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-184: Move to Special Purpose Register

Return/Argument Types		Assembly Mapping	
spr value		Assembly Mapping	
10-bit unsigned int (literal) unsigned long long		mtspr spr, value	

__mulhd: Multiply Doubleword, High Part

$$d = \underline{\quad} mulhd(a, b)$$

The high part of the signed product of the doubleword arguments a and b is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-185: Multiply Doubleword, High Part

Return/Argument Types			Assembly Mapping	
d	а	b	Assembly Mapping	
long long	long long	long long	mulhd d, a, b	

__mulhdu: Multiply Double Unsigned Word, High Part

$$d = mulhdu(a, b)$$

The high part of the unsigned product of the doubleword arguments a and b is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-186: Multiply Double Unsigned Word, High Part

	Assembly Mapping					
d	d a b					
unsigned long long	unsigned long long	unsigned long long	mulhdu d, a, b			

__mulhw: Multiply Word, High Part

$$d = \underline{\quad} mulhw(a, b)$$

The high part of the signed product of the word arguments a and b is returned in d.

Table 7-187: Multiply Word, High Part

Returr	n/Argumen	Assembly Mapping	
d	а	b	Assembly Mapping
int	int	int	mulhw d, a, b

__mulhwu: Multiply Unsigned Word, High Part

$$d = mulhwu(a, b)$$

The high part of the unsigned product of the word arguments a and b is returned in d.

Table 7-188: Multiply Unsigned Word, High Part

Ret	urn/Argument Ty	pes	Assembly Mapping
d	Assembly Mapping		
unsigned int	unsigned int	unsigned int	mulhwu d, a, b

__nop: No Operation

(void) __nop()

The preferred nop instruction is generated. This intrinsic will not be reordered by the compiler.

Table 7-189: No Operation

Return/Argument Types	Assembly Mapping
none	nop

_rldcl: Rotate Left Doubleword then Clear Left

$$d = _rldcl(a, b, mb)$$

The value in the argument a is rotated leftwards by the number of bits specified by the argument b. A mask is generated having 1-bits from bit mb through bit 63, and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned into d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-190: Rotate Left Doubleword then Clear Left

	Assembly Mapping				
d a		a b mb		7.03cmbry Wapping	
unsigned long long	unsigned long long	unsigned long long	6-bit unsigned int (literal)	rldcl d, a, b, mb	

__rldcr: Rotate Left Doubleword then Clear Right

The value in the argument a is rotated leftwards by the number of bits specified by the argument b. A mask is generated having 1-bits from bit 0 though bit me and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-191: Rotate Left Doubleword then Clear Right

		Assembly Mapping			
	d a b me		7.03cmbiy Mapping		
unsign	signed long long unsigned long long		unsigned long long	6-bit unsigned int (literal)	rldcr d, a, b, me

rldic: Rotate Left Doubleword Immediate then Clear

$$d = _rldic(a, sh, mb)$$

The value in the argument a is rotated leftwards by the number of bits specified by the argument sh. A mask is generated having 1-bits from bit mb through bit 63-sh and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-192: Rotate Left Doubleword Immediate then Clear

	Assembly Mapping			
d	а	sh	mb	Assembly Mapping
unsigned long long	unsigned long long	6-bit unsigned int (literal)	6-bit unsigned int (literal)	rldic d, a, sh, mb

rldicl: Rotate Left Doubleword Immediate then Clear Left

The value in the argument a is rotated leftwards by the number of bits specified by the argument sh. A mask is generated having 1-bits from bit mb through bit 63 and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-193: Rotate Left Doubleword Immediate then Clear Left

	Assembly Mapping			
d	а	sh	mb	Assembly Mapping
unsigned long long	unsigned long long	6-bit unsigned int (literal)	6-bit unsigned int (literal)	rldicl d, a, sh, mb

__rldicr: Rotate Left Doubleword Immediate then Clear Right

d = rldicr(a, sh, me)

The value in the argument a is rotated leftwards by the number of bits specified by the argument sh. A mask is generated having 1-bits from bit 0 though bit me and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned in d.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-194: Rotate Left Doubleword Immediate then Clear Right

	Return/Argument Types					
d a		sh	me	Assembly Mapping		
unsigned long long	unsigned long long	6-bit unsigned int (literal)	6-bit unsigned int (literal)	rldicr d, a, sh, me		

__rldimi: Rotate Left Doubleword Immediate then Mask Insert

d = rldimi(a, b, sh, mb)

A mask is generated with 1-bits from bit mb through bit 63-sh, and 0-bits elsewhere. The value in a is ANDed with the complement of this mask, zeroing out just the bits inside the range mb through 63-sh. The argument b is rotated left by sh bits and ANDs the result with the mask, zeroing out all bits outside the range mb through 63-sh. The two masked values are combined together with inclusive OR, and returned in c.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-195: Rotate Left Doubleword Immediate then Mask Insert

	Assembly Mapping					
d	d a b sh mb					
unsigned long long	unsigned long long	unsigned long long	6-bit unsigned int (literal)	6-bit unsigned int (literal)	mr d, a rldimi d, b, sh, mb	

_rlwimi: Rotate Left Word Immediate then Mask Insert

 $d = \underline{}$ rlwimi(a, b, sh, mb, me)

A mask is generated with 1-bits from bit mb through bit me, and 0-bits elsewhere. The value in a is ANDed with the complement of this mask, zeroing out just the bits inside the range mb through me. The argument b is rotated left by sh bits and ANDs the result with the mask, zeroing out all bits outside the range mb through me. The two masked values are combined together with inclusive OR, and returned in d.

Table 7-196: Rotate Left Word Immediate then Mask Insert

	Return/Argument Types						
d	а	b	sh	mb	me	Assembly Mapping	
unsigned	int unsigned int	unsigned int	5-bit unsigned int (literal)	5-bit unsigned int (literal)	5-bit unsigned int (literal)	mr d, a rlwimi d, b, sh, mb, me	

__rlwinm: Rotate Left Word Immediate then AND With Mask

 $d = _rlwinm(a, sh, mb, me)$

A mask is generated with 1-bits from *mb* through bit *me*, and 0-bits elsewhere. The value in *a* is rotated left by *sh* bits, then ANDed with this mask, and returned in *d*.

Table 7-197: Rotate Left Word Immediate then AND With Mask

	Return/Argument Types						
d	d a sh mb me						
unsigned int	unsigned int	5-bit unsigned int (literal)	5-bit unsigned int (literal)	5-bit unsigned int (literal)	rlwinm d, a, sh, mb, me		

__rlwnm: Rotate Left Word then AND With Mask

d = rlwnm(a, b, mb, me)

The argument a is rotated leftwards by the argument b. A mask is generated having 1-bits from bit mb through bit me, and 0-bits elsewhere. The rotated data ANDed with the generated mask is returned in d.

Table 7-198: Rotate Left Word then AND With Mask

Return/Argument Types				Assembly Mapping		
d	а	b	mb	me	Assembly Mapping	
unsigned int	unsigned int	unsigned int	5-bit unsigned int (literal)	5-bit unsigned int (literal)	rlwnm d, a, b, mb, me	

setflm: Save and Set the FPSCR

d = setflm(a)

The Floating-Point Status and Control Register is set to a, and the context of that register is returned in b. This intrinsic will not be reordered by the compiler. It will also cause a barrier for floating-point operations.

Table 7-199: Save and Set the FPSCR

Return/Argu	ment Types	Assembly Mapping
d a		Assembly Mapping
double	double	mffs d; mtfst 0xFF, a

__stdbrx: Store Reversed Doubleword

(void) __stdbrx(pointer, b)

The argument b is stored in reversed endian order into the doubleword located at the argument pointer.

The ${\it base}$ and ${\it index}$ arguments for the assembly mapping are calculated from ${\it pointer}.$

Table 7-200: Store Reversed Doubleword

Return/Argument Types		Assembly Mapping		
pointer b		64-bit ABI	32-bit ABI	
void*	unsigned long long	stdbrx b, base, index	stwbrx b_lo, base, index stwbrx b_hi, base, index+4	

__stdcx: Store Doubleword Conditional

```
d = stdcx(pointer, b)
```

If the reserved address of the processor is the value in the argument pointer, b is stored into the doubleword at the argument pointer, and the value of 1 is returned in d. Otherwise, the store is not performed, and the value of 0 is returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

The instruction stdcx. returns its value in cr0.eq, the equals field of conditional register 0.

This intrinsic might not be supported when compiling for 32-bit ABIs in which a 64-bit doubleword is maintained in two separate registers.

Table 7-201: Store Doubleword Conditional

Return/Argument Types			Assembly Mapping	
d	d pointer b		Assembly Mapping	
bool	void*	unsigned long long	stdcx. b, base, index; d = cr0.eq	

sthbrx: Store Reversed Halfword

```
(void) sthbrx(pointer, b)
```

The argument b is stored in reversed endian order into the halfword located at the argument pointer.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-202: Store Reversed Halfword

Return/Ar	gument Types	Assembly Mapping
pointer	b	Assembly Mapping
void*	unsigned short	sthbrx b, base, index

__stwbrx: Store Reversed Word

```
(void) stwbrx(pointer, b)
```

The argument b is stored in reversed endian order into the word located at the argument pointer.

The base and index arguments for the assembly mapping are calculated from pointer.

Table 7-203: Store Reversed Word

Return/A	rgument Types	Assembly Mapping	
pointer b		Assembly Mapping	
void*	unsigned	stwbrx b, base, index	

109

stwcx: Store Word Conditional

If the reserved address of the processor is the value in the argument pointer, b is stored into the word at the argument pointer, and the value of 1 is returned in d. Otherwise, the store is not performed, and the value of 0 is returned in d.

The base and index arguments for the assembly mapping are calculated from pointer.

The instruction stwcx. returns its value in cr0.eq, the equals field of conditional register 0.

Table 7-204: Store Word Conditional

Return/Argument Types			Assembly Mapping	
d	pointer	b	Assembly Mapping	
bool	void*	unsigned	stwcx. b, base, index; d = cr0.eq	

__sync: Sync

A memory barrier is created, providing an ordering function for all instructions executing on the same processor. The memory barrier and ordering function are described in section 1.7.1 of PowerPC Architecture Book, Book II: PowerPC Virtual Environment Architecture, Version 2.02.

Table 7-205: Sync

Return/Argument Types	Assembly Mapping
none	sync

8. SPU C and C++ Standard Libraries and Language Support

This chapter describes differences between the implementations of the C and C++ standard libraries on the SPU and the corresponding IS0/IEC standards. It also identifies common language features that are specifically not supported on the SPU.

8.1. Standard Libraries

The C and C++ standard libraries that are required for the SPU are based on the Standard C Library described in ISO/IEC Standard 9899:1999 and the C++ Standard Library described in ISO/IEC Standard 14882:1998. However, neither library must be a fully compliant implementation of the respective ISO/IEC standard.

The proposed differences from ISO/IEC compliant implementations are due to two reasons: 1) The SPU does not have the same system resources and operating system support that are available to most stand-alone processors; and 2) the SPU hardware doesn't fully support the IEEE floating-point standard. Because of the SPU's limited operating system support, library functions that require system calls, thread facilities, and file input/output (I/0) may not be supported. Because of differences in floating-point behavior, the results of single-precision floating-point functions will probably be less accurate than defined by the Standard, and floating-point exceptions will be less reliable. Nevertheless, the standard library functions that are provided should execute fast, in most cases.

The minimum C and C++ library features that must be provided for the SPU are described in the following sections.

8.1.1. C Standard Library

This section describes the minimum requirements of a compliant C standard library implementation.

Library Contents

All of the entities required in the C standard library must be declared and defined within the library header files listed in Table 8-206. Differences between the contents of these header files and the header files that comprise the ISO Standard Library are identified in the table. For a detailed description of the particular entities, see the ISO/IEC C Standard listed in the "Related Documentation" section.

Table 8-206: C Library Header Files

Header Name	Description
assert.h	Enforce assertions when functions execute. The assert macro reports assertion failures using the special debug printf (described below).
complex.h	Perform complex arithmetic.
ctype.h	Classify characters. The functions declared in this header use only the "C" locale.
errno.h	Test error codes reported by library functions.
fenv.h	Control IEEE style floating-point arithmetic. Macros for single- and double-precision exceptions are described in "9.2.2. Floating-Point Exceptions".
float.h	Test floating-point type properties. These properties are specified in section "9.1. Properties of Floating-Point Data Type Representations".
inttypes.h	Convert various integer types.
iso646.h	Program in ISO 646 variant character sets.
limits.h	Test integer type properties. The macro MB_LEN_MAX is defined as 1.
locale.h	Not available.
math.h	Compute common mathematical functions. The floating-point behavior of these functions will adhere to the specifications described in section "9.3. Floating-Point Operations". Although not specified or required, corresponding vector versions of the math functions may be added to the library to take advantage of the many high-performance SIMD (single instruction, multiple data) instructions provided by the SPU hardware.
setjmp.h	Execute nonlocal goto statements.
signal.h	Not available.

Header Name	Description
stdarg.h	Access a varying number of arguments.
stdbool.h	Define a convenient Boolean type name and constants.
stddef.h	Define several useful types and macros. The wchar_t is not defined.
stdint.h	Define various integer types with size constraints. SIG_ATOMIC_MAX and SIG_ATOMIC_MIN are not defined, nor are any of the WCHAR_MAX, WCHAR_MIN, WINT_MAX, and WINT_MIN.
stdio.h	Not available, except for printf, which is provided for debugging. (See section "Debug printf()".)
stdlib.h	Perform a variety of operations. The functions <code>getenv</code> , <code>mblen</code> , <code>mbstowcs</code> , <code>mbtowc</code> , <code>system</code> , <code>wcstombs</code> , and <code>wctomb</code> are not defined. The type <code>wchar_t</code> and the macro <code>MB_CUR_MAX</code> are also not defined.
string.h	Manipulate several kinds of strings. The function strxfrm uses only the "C" locale.
tgmath.h	Declare various type-generic math functions. Single-precision functions declared in this header adhere to the same specifications described for the corresponding functions that are declared in math.h.
time.h	Not available.
wchar.h	Not available.
wctype.h	Not available.

Debug printf()

A printf() function will be provided for application debugging. The implementation of this function depends on the particular services provided by the underlying operating system. Although detailed specifications for this function are not mandated by this document, a full-featured implementation is recommended. Such an implementation would include all of the usual output format conversion specifiers required by the C standard. In addition, conversion specifiers of the type described in the AltiVec Technology Programming Interface Manual are recommended to handle vector output formatting. Output conversion specifiers take the following form:

%[<flags>][<width>][<precision>][<size>]<conversion>

where

```
<flags>
                ::= <flag-char> | <flags><flag-char>
<flag-char>
                  ::= <std-flag-char> | <c-sep>
                  ::= '-' | '+' | '0' | '#' | ' '
<std-flag-char>
                  ::= ',' | ';' | ':' | ' '
<c-sep>
                  ::= <decimal-integer> | '*'
<width>
on>
                 ::= '.' <width> | `.' | `.*'
<size>
                 ::= 'hh' | 'h' | 'l' | 'll' | 'L' | <vector-size>
<vector-size>
                 ::= 'v' | 'vhh' | 'vh' | 'vl' | 'vll' | 'vL' | 'hhv'
                       | 'hv' | 'lv'| 'llv' | 'Lv'
<conversion>
                  ::= <char-conv> | <str_conv> | <fp-conv> | <int-conv>
                    | <byte-conv> | <misc-conv>
                  ::= 'c'
<char-conv>
                  ::= 's'
<str-conv>
<fp-conv>
                  ::= 'e' | 'E' | 'f' | 'F' | 'g' | 'G'
<int-conv>
                  ::= 'd' | 'i' | 'u' | 'p' | 'o' | 'x' | 'X'
                  ::= 'uc' | 'co' | 'cx' | 'cX'
<br/>
<br/>
byte-conv>
                  ::= 'n' | '%'
<misc-conv>
```

Extensions to the C standard output conversion specification are shown in bold for vector types. Vector types are formatted using the conversions shown in Table 8-207. String conversions (<str-conv>) and miscellaneous

conversions (<misc-conv>) are not defined for vectors. The 'p' integer conversion (<int-conv>) is also not defined. The default separator (<c-sep>) is a space, except for character conversion (<char-conv>), which has no separator.

Table 8-207: Vector Formats

Vector Size	Conversion	Description
v	<char-conv></char-conv>	A vector is printed as a vector char, consisting of 16 one-byte elements. The 'c' conversion prints contiguous ASCII characters.
v	<int-conv> <byte-conv></byte-conv></int-conv>	With the 'uc' conversion, a vector is printed as a vector unsigned char, consisting of 16 one-byte elements. Similarly, the 'co', 'cx', and 'cX' conversions print either a vector unsigned char or a qword, in octal format or in hexadecimal format. For all other integer conversions, a vector is printed in the respective octal (o), integer (d, i, u) or hexadecimal (x, X) format, either as a vector unsigned int or as a vector signed int, consisting of 4 four-byte elements.
v	<fp-conv></fp-conv>	A vector is printed in a signed decimal fractional representation, either in standard decimal notation (f or F) or with a decimal power-of-ten exponent (e, E, g, G). The representation is printed as a vector float, containing 4 four-byte elements.
vhh or hhv	<int-conv></int-conv>	A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x, X) format, either as a vector unsigned char or as a vector signed char, consisting of 16 one-byte elements.
vh or hv	<int-conv></int-conv>	A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x, X) format, either as a vector unsigned short or as a vector signed short, consisting of 8 two-byte elements.
vl or lv	<int-conv></int-conv>	A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x, X) format, as a vector unsigned int or as a vector signed int, consisting of 4 four-byte elements.
vII or IIv	<int-conv></int-conv>	A vector is printed in the respective octal (o), integer (d, i, u), or hexadecimal (x, X) format, as a vector unsigned long long or as a vector signed long long, consisting of 2 eight-byte elements.
vL or Lv	<fp-conv></fp-conv>	A vector is printed in a signed decimal fractional representation, either in standard decimal notation (f or F) or with a decimal power-of-ten exponent (e, E, g, G). The representation is printed as a vector double, consisting of 2 eight-byte elements.

Malloc Heap

The malloc heap is defined to begin at _end and to extend to the end of the stack. The memory heap may be enlarged by a heap-extending function. This function would negatively adjust the Available Stack Size element of the current Stack Pointer Information register and all Available Stack Sizes residing in the saved SP registers found in the sequence of Back Chain quadwords.

Whenever the malloc heap is enlarged, code should verify that the enlarged malloc heap does not extend into the currently used stack. If it does, the operation should fail.

Implementations of <code>setjmp/longjmp</code> are also affected by the use of heap-extending functions. When restoring the Stack Pointer Information register as a result of invoking the <code>longjmp</code> function, the function must detect any change to the Available Stack Size between <code>setjmp</code> and <code>longjmp</code>, and it must correct the saved Stack Pointer Information register. For example:

where SP is the current Stack Pointer Information register, and SP_set is the Stack Pointer Information register saved at the last setjmp call.

8.1.2. C++ Standard Library

This section describes the minimum contents of the C++ standard library.

As with the C library, the C++ library header files declare or define the contents of the C++ library. Table 8-208 lists the header files that comprise the core of the C++ standard library. Differences between the contents of the C++ header files and the header files that comprise the ISO Standard Library are noted in this table.

Table 8-208: C++ Library Header Files

Header Name	Description
algorithm	Define numerous templates that implement useful algorithms.
bitset	Define a template class that administers sets of bits.
complex	Define a template class that supports complex arithmetic.
deque	Define a template class that implements a deque container.
exception	Not available.
fstream	Not available.
functional	Define several templates that help construct predicates for the templates defined in algorithm and numeric.
iomanip	Not available.
ios	Not available.
iosfwd	Not available.
iostream	Not available.
istream	Not available.
iterator	Define several templates that help define and manipulate iterators.
limits	Test numeric type properties.
list	Define a template class that implements a doubly linked list container.
locale	Not available.
map	Define template classes that implement associative containers that map keys to values.
memory	Define several templates that allocate and free storage for various container classes.
new	Declare several functions that allocate and free storage.
numeric	Define several templates that implement useful numeric functions.
ostream	Not available.
queue	Define a template class that implements a queue container.
set	Define template classes that implement associative containers.
slist	Define a template class that implements a singly linked list container.
sstream	Not available.
stack	Define a template class that implements a stack container.
stdexcept	Not available.
streambuf	Not available.
string	Define a template class that implements a string container.
strstream	Not available.
typeinfo	Not available.
utility	Define several templates of general utility.
valarray	Define several classes and template classes that support value-oriented arrays.
vector	Define a template class that implements a vector container.

The C++ standard library contains new-style C++ header files that correspond to 12 traditional C header files. Both the new-style and the traditional-style header files are included in the library. These header files are listed in Table 8-209.

Table 8-209: New and Traditional C++ Library Header Files

New-Style Header Name	Traditional Header Name	Description
cassert	assert.h	Enforce assertions when functions execute. ¹
cctype	ctype.h	Classify characters. ¹
cerrno	errno.h	Test error codes reported by library functions. ¹
cfloat	float.h	Test floating-point type properties.
ciso646	iso646.h	Program in ISO 646 variant character sets.
climits	limits.h	Test integer type properties. ¹
clocale	locale.h	Not available.
cmath	math.h	Compute common mathematical functions. ¹
csetjmp	setjmp.h	Execute nonlocal goto statements.
csignal	signal.h	Not available.
cstdarg	stdarg.h	Access a varying number of arguments.
cstddef	stddef.h	Define several useful types and macros. ¹
cstdio	stdio.h	Not available.
cstdlib	stdlib.h	Perform a variety of operations. ¹
cstring	string.h	Manipulate several kinds of strings. ¹
ctime	time.h	Not available.
cwchar	wchar.h	Not available.
cwctype	wctype.h	Not available.

¹ See Table 8-206: C Library Header Files, for specific implementation limitations.

8.2. Non-Supported Language Features

C and C++ implementations should comply with the language features prescribed in the respective ISO/IEC standards, as much as possible. However, certain features are specifically not supported because of SPU architecture limitations. Below is a list of non-supported features:

• C++ exception handling

9. Floating-Point Arithmetic on the SPU

Annex F of the C99 language standard (ISO/IEC 9899) specifies support for the IEC 60559 floating-point standard. This chapter describes differences from Annex F and ISO/IEC Standard 60559 that apply to SPU compilers and libraries

Floating-point behavior is essentially dictated by the SPU hardware. For single precision, the hardware provides an extended single-precision number range. Denorm arguments are treated as 0, and NaN and Infinity are not supported. The only rounding mode that is supported is truncation (round towards 0), and exceptions apply only to certain extended range floating-point instructions). For double precision, the hardware provides the standard IEEE number range, but again, denorm arguments are treated as 0. IEEE exceptions are detected and accumulated in the FPSCR register, and the IEEE rules for propagation of NaNs are not implemented in the architecture. (For details, see the *Synergistic Processor Unit Instruction Set Architecture*.) These and other IEEE differences affect almost every aspect of floating-point computation, including data-type properties, rounding modes, exception status, error reporting, and expression evaluation. The particular effect of these differences on the compiler and libraries are described in the following sections.

9.1. Properties of Floating-Point Data Type Representations

The properties of floating-point data type representations are declared as macros in float.h. Table 9-210 lists these macros and the corresponding values that are applicable for the SPU.

Table 9-210: Values for Floating-Point Type Properties

Macro	Value
FLT_DIG	6
FLT_EPSILON	0x1p-23f (1.19209290E-07f)
FLT_MANT_DIG	24
FLT_MAX_10_EXP	38
FLT_MAX_EXP	129
FLT_MIN_10_EXP	-37
FLT_MIN_EXP	-125
FLT_MAX	0x1.FFFFFEp128f (6.80564694E+38f)
FLT_MIN	0x1p-126f (1.17549436E-38f)
FLT_ROUNDS	Initialized to 16 (to nearest for both elements)
FLT_EVAL_METHOD	0 (no promotions occur)
FLT_RADIX	2
DBL_DIG	15
DBL_EPSILON	0x1p-52 (2.2204460492503131E-016)
DBL_MANT_DIG	53
DBL_MAX_10_EXP	308
DBL_MAX_EXP	1024
DBL_MIN_10_EXP	-307
DBL_MIN_EXP	-1021
DBL_MAX	0x1.FFFFFFFFFFFp1023 (1.7976931348623157E+308)
DBL_MIN	0x1p-1022 (2.2250738585072014E-308)
DECIMAL_DIG	17

9.2. Floating-Point Environment

The macros defined within fenv.h control the directed-rounding control mode and floating-point exception status flags for floating-point operations.

9.2.1. Rounding Modes

Whereas the C language specification requires that all floating-point data types use the same rounding modes, the SPU hardware supports different rounding modes for single- and double-precision arithmetic. On the SPU, the rounding mode for single precision is round-towards-zero, and the default rounding mode for double precision is round-to-nearest.

According to the C99 standard, the rounding mode for floating-point addition is characterized by the implementation-defined value of FLT_ROUNDS. On the SPU, this macro is only used for double precision. Single-precision rounding mode is always truncation. (See Table 9-210.)

FLT_ROUNDS will return a 5-bit value which represents the rounding mode for both double precision elements. The highest bit is always 1. The next two bits are the rounding mode for element 0 and the two lowest bits are the rounding mode for element 1. Table 9-211 lists the rounding mode represented by the two bits for each element.

Table 9-211: Rounding Mode for Two Bits of FLT_ROUNDS

Last Two Bits	Rounding Mode
00	Round to nearest even
01	Round toward zero (truncate)
10	Round toward +infinity
11	Round towards -infinity

Because the SPU hardware only supports rounding towards zero for single precision, some single-precision math functions will necessarily deviate from the C99 standard. The standard library math functions and macros that deviate are described later, in section "9.3.2. Overall Behavior of C Operators and Standard Library Math Functions".

Table 9-212 lists the macros that can be used to set the double precision rounding modes for element 0 and element 1. The macros for element 0 and element 1 may be used together with a bitwise OR to set the rounding mode for both elements, or the macros can be used separately to set the rounding mode for only that element.

Table 9-212: Macros for Double Precision Rounding Modes

Macro	Comment
FE_TONEAREST	Set element 0 to round to nearest even
FE_TOWARDZERO	Set element 0 to round towards zero
FE_UPWARD	Set element 0 to round towards +infinity
FE_DOWNWARD	Set element 0 to round towards –infinity
FE_TONEAREST_1	Set element 1 to round to nearest even
FE_TOWARDZERO_1	Set element 1 to round towards zero
FE_UPWARD_1	Set element 1 to round towards +infinity
FE_DOWNWARD_1	Set element 1 to round towards -infinity

9.2.2. Floating-Point Exceptions

Table 9-213 and Table 9-214 list the macros for floating-point exceptions that will be defined in fenv.h. Because of the restricted behavior of the SPU floating-point hardware, single-precision library functions can have an undefined effect on these exception flags. Moreover, hardware traps will not result from any raised exception.

Table 9-213: Macros for Single Precision Floating-Point Exceptions

Macro	Comment
FE_OVERFLOW_SNGL	Overflow exception for element 0
FE_UNDERFLOW_SNGL	Underflow exception for element 0
FE_DIFF_SNGL	Different from IEEE exception for element 0
FE_DIVBYZERO_SNGL	Divide by zero exception for element 0
FE_OVERFLOW_SNGL_1	Overflow exception for element 1
FE_UNDERFLOW_SNGL_1	Underflow exception for element 1
FE_DIFF_SNGL_1	Different from IEEE exception for element 1
FE_DIVBYZERO_SNGL_1	Divide by zero exception for element 1
FE_OVERFLOW_SNGL_2	Overflow exception for element 2
FE_UNDERFLOW_SNGL_2	Underflow exception for element 2
FE_DIFF_SNGL_2	Different from IEEE exception for element 2
FE_DIVBYZERO_SNGL_2	Divide by zero exception for element 2
FE_OVERFLOW_SNGL_3	Overflow exception for element 3
FE_UNDERFLOW_SNGL_3	Underflow exception for element 3
FE_DIFF_SNGL_3	Different from IEEE exception for element 3
FE_DIVBYZERO_SNGL_3	Divide by zero exception for element 3
FE_ALL_EXCEPT_SNGL	Bitwise OR of all macros for element 0
FE_ALL_EXCEPT_SNGL_1	Bitwise OR of all macros for element 1
FE_ALL_EXCEPT_SNGL_2	Bitwise OR of all macros for element 2
FE_ALL_EXCEPT_SNGL_3	Bitwise OR of all macros for element 3
FE_ALL_EXCEPT_SNGL_3	Bitwise OR of all macros for element 3

Table 9-214: Macros for Double Precision Floating-Point Exceptions

Macro	Comment
FE_OVERFLOW_DBL	Overflow exception for element 0
FE_UNDERFLOW_DBL	Underflow exception for element 0
FE_INEXACT_DBL	ISO/IEC inexact for element 0
FE_INVALID_DBL	ISO/IEC invalid for element 0
FE_NC_NAN_DBL	Possibly non-compliant NaN for element 0
FE_NC_DENORM_DBL	Possibly non-compliant denormal for element 0
FE_OVERFLOW_DBL_1	Overflow exception for element 1
FE_UNDERFLOW_DBL_1	Underflow exception for element 1
FE_INEXACT_DBL_1	ISO/IEC inexact for element 1
FE_INVALID_DBL_1	ISO/IEC invalid for element 1
FE_NC_NAN_DBL_1	Possibly non-compliant NaN for element 1
FE_NC_DENORM_DBL_1	Possibly non-compliant denormal for element 1
FE_ALL_EXCEPT_DBL	Bitwise OR of all macros for element 0
FE_ALL_EXCEPT_DBL_1	Bitwise OR of all macros for element 1
FE_ALL_EXCEPT	Bitwise OR of all macros from this table

The floating-point environment variables defined in the C99 specification only apply to double-precision.

The pragma <code>FENV_ACCESS</code> will be used to inform the compiler whether the program intends to control and test floating-point status. If the pragma is on, the compiler will take appropriate action to ensure that code transformations preserve the behavior specified in this document.

9.2.3. Other Floating-Point Constants in math.h

Several additional floating-point constants are defined in math.h. These constants are used by functions to report various domain and range errors. Many have a non-standard definition for the SPU. A description of these particular constants is shown in Table 9-215.

Table 9-215: Floating-Point Constants

Macro	Description
HUGE_VAL	Infinity
HUGE_VALF	FLT_MAX
HUGE_VALL	Infinity
INFINITY NAN	Double precision adheres to the IEEE definition. These macros are not used for single-precision operations.
FP_INFINITE FP_NAN FP_NORMAL FP_SUBNORMAL FP_ZERO	For single precision, the fpclassify() function will only return FP_NORMAL and FP_ZERO classes; FP_NAN, FP_INFINITE, and FP_SUBNORMAL are never generated.
FP_FAST_FMAF FP_FAST_FMAF FP_FAST_FMAL	These are defined to indicate that the ${\tt fma}$ function executes more quickly than a multiply and an add of float and double operands.
FP_ILOGB0	FP_ILOGB0 is the value returned by ilogb(x) and ilogbf(x) if x is zero or a denorm number. Its value is INT_MIN.
FP_ILOGBNAN	FP_ILOGBNAN is the value returned by $ilogb(x)$ if x is a NaN. This does not apply to the single-precision case of $ilogbf$. Its value is INT_MAX .
MATH_ERRNO MATH_ERREXCEPT	These will expand to the integer constants 1 and 2, respectively.
math_errhandling	Expands to an expression that has type int and the value MATH_ERRNO, MATH_ERREXCEPT, or the bitwise OR of both. The value of math_errhandling is constant for the duration of a program.

9.3. Floating-Point Operations

This section specifies floating-point data conversions, and it describes the overall behavior of C operators and standard library functions. It also describes several special cases where floating-point results might vary from the IEEE standard. Lastly, the section describes the specific behavior of several specific math functions.

9.3.1. Floating-Point Conversions

This section provides specifications for the four types of floating-point data conversions: 1) conversions from integers to floating-point; 2) conversions from floating-point to integer; 3) conversion between floating-point precisions; and, 4) conversions between floating-point and string.

Integer to Floating-Point Conversions

Conversions from integers to floats will adhere to the following rules:

- A single-precision conversion from integer to float produces a result within the extended single-precision floating-point range. See Table 9-210 for details about this range.
- A single-precision conversion from integer to float rounds towards zero.
- A double-precision conversion from integer to float produces a result within the C99 standard double-precision floating-point range.
- A double-precision conversion from integer to float rounds according to the rounding mode indicated by the value of FLT_ROUNDS.

Floating-Point to Integer Conversions

Conversions from floats to integers will have the following behavior:

- When converting from a float to an integer, exceptions are raised for overflow, underflow, and IEEE noncompliant result.
- Overflow and underflow exceptions are raised when converting from a double to an integer. If a
 double-precision value is infinite or NaN or if the integral part of the floating value exceeds the range of the
 integer type, an "invalid" floating-point exception is raised, and the resulting value is unspecified. An "inexact"
 floating-point exception is raised by the hardware when a conversion involves an integral floating-point value
 that is outside the range of the integer data type.

Conversions between Floating-Point Precision

To achieve maximum performance, compilers only perform conversion from float to double and from double to float within the IEEE standard range. These conversions will comply with the IEEE standard, except for denormal inputs, which are forced to zero. Conversion of numbers outside of the IEEE standard range is unspecified. Conversions with NaNs, infinities, or denormal results are also unspecified.

Conversions between Floating-Point and Strings

Conversions between floating-point and string values will adhere to both the extended single-precision floating-point range and the IEEE standard double-precision floating-point range.

9.3.2. Overall Behavior of C Operators and Standard Library Math Functions

Library functions and compilers will obey the same general rules with respect to rounding and overflow. These rules differ, however, depending on whether the code is single precision or double precision.

Single-Precision Code

For single precision, the C operators (+, -, *, and /) and the standard library math functions will have the following behavior:

- If the operation produces a value with a magnitude greater than the largest positive representable extended-precision number, the result will be FLT MAX with appropriate sign, and the overflow flag will be raised.
- For all operators and standard functions, except the negate operator and the fabsf() and copysignf() functions, an argument with a denormal value will be treated as +0.0.
- Except for the negate operator and the fabsf() and copysignf() functions, operators and standard functions will never return a denormal value or -0.0.
- The negate operator and the fabsf() and copysignf() functions must be implemented such that only the sign bit is changed.
- Expressions will be evaluated using the round-towards-zero mode. Implementations that depend on other rounding directions for algorithm correctness will produce incorrect results and therefore cannot be used.
- The overflow flag will be set when FLT_MAX is returned instead of a value whose magnitude is too large.
 Because infinity is undefined for single precision, FLT_MAX will be used to signal infinity in situations where infinity would otherwise be generated on an IEEE754-compliant system. This modification will enable common trig identities to work.
- NaN is not supported and does not need to be copied from any input parameter.
- By default, compilers may perform optimizations for single-precision floating-point arithmetic that assume 1) that NaNs are never given as arguments; and, 2) that ±Inf will never be generated as a result.
- Compilers can assume that floating-point operations will not generate user-visible traps, such as division by zero, overflow, and underflow.
- Constant expressions that are evaluated at compile time will produce the same result as they would if they
 were evaluated at runtime. For example,

```
float x = 6.0e38f * 8.1e30f;
```

will be evaluated as FLT MAX.

Compilers may use single-precision contracted operations, such as Floating Reciprocal Absolute Square
Root Estimate (frsqest) or Floating Multiply and Add (fma), unless explicitly prohibited by FP_CONTRACT
pragma or a no-fast-float compiler option. When contracted operations are used, errno does not need to be
set.

Double-Precision Code

For double-precision floating-point, the C operators and standard library math functions will be compliant with the IEEE standard, with the following exceptions:

- When a NaN is produced as a result of an operation, it will always be a QNaN.
- Except for the negate operator and the fabs() and copysign() functions, denormal values will only be supported as results. A denormal operand is treated as 0 with same sign as the denormal operand.
- The default rounding mode for double precision is rounding to nearest.
- Compilers may use double precision contracted operations, such as Double Floating Multiply and Add (dfma), unless explicitly prohibited by the FP_CONTRACT pragma or a no-fast-double compiler option. When contracted operations are used, errno does not need to be set.

9.3.3. Floating-Point Expression Special Cases

The C99 standard describes several standard expression transformations that might fail to produce the required effect on the SPU:

• $x/2 \rightarrow x*0.5$

Valid for this particular value because the value is an exact power of 2, but it is invalid in general (for example, x/10 = x*0.1) because the floating-point constant is not exactly representable in any finite base-2 floating-point system.

• $x*1 \rightarrow x$ and $x/1 \rightarrow x$

Invalid when: 1) x is a SNaN or a non-default QNaN (double precision only); 2) x is a denormal number; or, 3) x = 0.0 (single precision only).

• x/x -> 1.0

Invalid for single precision when x is zero or a denormal, and invalid for double precision when x is zero, or a denormal, Inf, or NaN.

x-y -> -(y-x)

Invalid for zero results which might have different signs, or, for double precision, round to +/- infinity, non-zero results might differ by 1 ULP.

• x-x -> 0.0

Always valid for single precision, but the equivalence is invalid for double precision when x is either NaN or Inf. It is also invalid for double precision for round to –infinity, in which case the result will be -0.0.

• 0*x -> 0.0

Always valid for single precision, but invalid for double precision when x is a NaN, Inf, negative number, or -0.

• x+0 -> x

Invalid in single precision, if x is a denormal operand or -0. Invalid in double precision if x=-0 under round-to-nearest, round to +infinity and truncate. Also invalid in double precision if x is a SNaN or non-default QNaN and if x is a denormal number, in which case x+0 becomes a zero with appropriate sign.

• x-0 -> x

Valid for single precision, except if x is a denormal operand or -0. Invalid for double precision if x is an SNaN or non-default QNaN, if x is a denormal number, or if x is +0 and rounding mode is rounding to –infinity. In this last case, x-0=+0-0=-0. For any normalized operand the result is valid even with round to –infinity.

- -x -> 0-x
 - Invalid for single precision when x is +0.0 or a denormal. Invalid for double precision in the following cases: 1) For NaNs the value of -x is undefined; the result will be different for all NaNs. 2) If x is +0 and the rounding mode is rounding to nearest-even, +infinity, or truncation, 0-x = +0 and -x = -0.
- x!=x -> false

Always valid for single precision. For double precision, x=NaN always compares unordered, so $x!=x \rightarrow true$.

• x==x -> true

Always valid for single precision. For double precision, x=NaN always compares unordered, so x==x -> false.

```
• x<y -> isless(x,y),
 x<=y -> islessequal(x,y),
 x>y -> isgreater(x,y), and
 x>=y -> isgreaterequal(x,y)
```

Valid. Exceptions are due to flags that are set as side effects when x or y are NaN under double precision. The FENV ACCESS pragma can change the invalid flag behavior.

9.3.4. Specific Behavior of Standard Math Functions

This section describes the specific behavior of various floating-point functions declared in <code>math.h</code>. As noted, the SPU hardware has a direct effect on the behavior of floating-point functions. Because of the many differences between strict IEEE behavior and the hardware behavior, the standard math functions do not need to provide rigorous checks for exception situations and out-of-range conditions. Consequently, the results of many functions are redefined. The following is a list of differences:

- The function nanf() will return 0.
- The isnan() macro will always return false for single precision.
- Unlike C99 standard specifications, single-precision versions of nearbyint, lrint, llrint, and fma round towards zero.
- Trig, hyperbolic, exponential, logarithmic, and gamma functions do not need to set the inexact flag when values are rounded.
- The boundary cases for single-precision versions of frexp (NaN, exp) and modf (NaN, iptr) are not defined because these functions propagate and return NaN.
- nextafterf(subnormal,y) will never raise an underflow flag. The functions nextafterf() and nexttowardf() will succeed when incrementing past the IEEE maximal float value.
- The following boundary cases will not be supported for single precision because infinity is not a valid argument: atanf(tinf), atan2f(ty, tinf), atan2f(tinf,x), atan2f(tinf,tinf), acoshf(tinf), asinhf(tinf), atanhf(tinf), coshf(tinf), sinhf(tinf), tanhf(tinf), expf(tinf), expf(tinf), expf(tinf), frexpf(tinf), frexpf(tinf), sinhf(tinf), tanhf(tinf), expf(tinf), expf(tinf), explf(tinf), frexpf(tinf), frexpf(tinf), logbf(tinf), modff(tinf,exp), logf(tinf), log10f(tinf), log1pf(tinf), hypotf(tinf), logbf(tinf), modff(tinf,iptr), scalbnf(tinf,n), cbrtf(tinf), fabsf(tinf), hypotf(tinf), powf(x,tinf), powf(tinf,y), sqrtf(tinf), erff(tinf), erfcf(tinf), lgammaf(tinf), tgammaf(tinf), ceilf(tinf), floorf(tinf), nearbyintf(tinf), roundf(tinf), rintf(tinf), lrintf(tinf), lrintf(tinf), remainderf(tinf), remquof(tinf), and copysignf(tinf).
- For single precision, the following boundary cases will produce a non-IEEE-compliant result: acosf(|x|>1), asinf(|x|>1), acoshf(x<1.0), atanhf(|x|>1), tgammaf(x<0), fmodf(x,0), $ldexpf(x,BIG_INT)$, $logf(\pm 0)$, logf(x<0), $log10f(\pm 0)$, log10f(x<0), log10f(x<0), log1pf(-1), log1pf(x<-1), $log2f(\pm 0)$, log2f(x<0), $logbf(\pm 0)$, $powf(\pm 0,y)$, and $tgammaf(\pm 0)$
- For single precision, the following boundary cases will not return NaN,: cosf(±inf), sinf(±inf), tanf(±inf), tgammaf(-inf), fmodf(±inf,y), nextafterf(x,±inf), fmaf(±inf|0,0|±inf,z), and fmaf(±inf,0,-+inf).

• Section "9.3.1. Floating-Point Conversions" describes the behavior of implicit conversions when a single precision value is passed as an argument to a double precision function or when a single precision variable is assigned the result of a double-precision function.

Index

A	read word channel (spu_readch)48 write quadword channel (spu_writechqw)49 write word channel (spu_writech)49
alignment align_hint3	common intrinsic operations – compare, branch and halt
AltiVec compatibility6	branch indirect and set link if external data (spu_bisled)24
C	element-wise compare absolute equal
C library header files111	(spu_cmpabseq)24
C standard library111	element-wise compare absolute greater than (spu_cmpabsgt)25
C++ library header files114	element-wise compare equal (spu_cmpeq).25
C++ standard library114	element-wise compare greater than
common intrinsic operations – arithmetic	(spu_cmpgt)26
negative vector multiply and add	halt if compare equal (spu_hcmpeq)27
(spu_nmadd)21	halt if compare greater than (spu_hcmpgt) .27
negative vector multiply and subtract	common intrinsic operations – constant
(spu_nmsub)22	formation intrinsics
vector add (spu_add)17	splat scalar to vector (spu_splats)15
vector add extended (spu_addx)18 vector floating-point reciprocal estimate	common intrinsic operations – control
(spu_re)22	disable interrupts (spu_idisable)45 enable interrupts (spu_ienable)45
vector floating-point reciprocal square root	move from floating-point status and control
estimate (spu_rsqrte)22	register (spu_mffpscr)46
vector generate borrow (spu_genb)18	move from special purpose register
vector generate borrow extended	(spu_mfspr)46
(spu_genbx)18 vector generate carry (spu_genc)18	move to floating-point status and control
vector generate carry (spu_genc)vector generate carry extended (spu_gencx)	register (spu_mtfpscr)46 move to special purpose register (spu_mtspr)
19	46
vector multiply (spu_mul)20	stop and signal (spu_stop)47
vector multiply and add (spu_madd)19	synchronize (spu_sync)47
vector multiply and shift right (spu_mulsr)21	synchronize data (spu_dsync)47
vector multiply and subtract (spu_msub)20	common intrinsic operations – conversion
vector multiply even (spu_mule)20 vector multiply high (spu_mulh)20	convert floating point vector to signed integer
vector multiply high high and add	vector (spu_convts)16
(spu_mhhadd)19	convert floating-point vector to unsigned integer vector (spu_convtu)16
vector multiply odd (spu_mulo)21	convert vector to float (spu_convtf)16
vector subtract (spu_sub)22	round vector double to vector float
vector subtract extended (spu_subx)23	(spu_roundtf)17
common intrinsic operations – bits and masking	sign extend vector (spu_extend)16
form select byte mask (spu_maskb)28	common intrinsic operations – logical
form select halfword mask (spu_maskh)29 form select word mask (spu_maskw)29	OR word across (spu_orx)35
gather bits from elements (spu_gather)28	vector bit-wise AND (spu_and)31
select bits (spu sel)30	vector bit-wise AND with complement (spu_andc)32
shuffle two vectors of bytes (spu_shuffle)30	vector bit-wise complement of AND
vector count leading zeros (spu_cntlz)28	(spu_nand)33
vector count ones for bytes (spu_cntb)27	vector bit-wise complement of OR (spu_nor)
common intrinsic operations – bytes	33
average of two vectors (spu_avg)23	vector bit-wise equivalent (spu_eqv)32
element-wise absolute difference (spu_absd)23	vector bit-wise exclusive OR (spu_xor)35
sum bytes into shorts (spu_sumb)24	vector bit-wise OR (spu_or)34 vector bit-wise OR with complement
common intrinsic operations – channel control	(spu_orc)35
read channel count (spu_readchcnt)49	common intrinsic operations – scalar
read quadword channel (spu_readchqw)49	22

extract vector element from vector	macros for single precision floating-point
(spu_extract)50	exceptions119
insert scalar into specified vector element	rounding mode for two bits of FLT_ROUNDS
(spu_insert)51	118
promote scalar to a vector (spu_promote)52	rounding modes118
common intrinsic operations – shift and rotate	floating-point operations120
element-wise rotate left and mask algebraic	conversion between floating-point and strings
by bits (spu_rlmaska)37	121
element-wise rotate left and mask by bits	conversions
(spu_rlmask)	conversions between floating-point precision
element-wise rotate left by bits (spu_rl)36	121
element-wise shift left by bits (spu_sl)42	floating-point to integer conversions121
rotate left and mask quadword by bits	integer to floating-point conversions120
(spu_rlmaskqw)38	
rotate left and mask quadword by bytes	G
(spu_rlmaskqwbyte)39	-
rotate left and mask quadword by bytes from	generate controls for sub-quadword insertion
bit shift count (spu_rlmaskqwbytebc)40	si_cbd9
rotate left quadword by bits (spu_rlqw)40	si_cbx10
rotate left quadword by bytes (spu rlqwbyte)	si_cdd10
41	si_cdx10
	si_chd10
rotate left quadword by bytes from bit shift	si_chx10
count (spu_rlqwbytebc)42	si cwd10
shift left quadword by bits (spu_slqw)43	
shift left quadword by bytes (spu_slqwbyte)43	si_cwx10
shift left quadword by bytes from bit shift	
count (spu_slqwbytebc)44	Н
composite intrinsics (DMA)53	header files2
	ricauci ilies
spu_mfcdma3253	
spu_mfcdma6453	
spu_mfcstat54	inline assembly8
constant formation intrinsics	
si il11	intrinsics
si ila11	arithmetic17
si ilh11	bits and mask27
si ilhu11	byte operation23
si iohl11	channel control47
_	compare, branch and halt24
control intrinsics	composite (DMA)53
si_stopd12	constant formation11, 15
	control12, 45
D	conversion
data types	generic and built-ins13
default alignments3	logical intrinsics31
restrict type qualifier7	low-level specific and generic
single token vector2, 73	mapping with scalar operands13
type casting5	scalar50
vector1	shift and rotate36
	specific1, 9
vector literals5	specific casting12
debug printf()112	specific dastingspecific dastingspecific intrinsics not accessible through
F	generic intrinsics9
floating-point arithmetic on the SPU117	M
floating-point environment118	malloc heap113
exceptions118	·
	mapping
floating-point constants120	SPU data types to Vector Multimedia
macros for double precision floating-point	Extension data types2
exceptions119	SPU intrinsics that are difficult to map to
macros for double precision rounding modes	vector multimedia extension intrinsics75
118	SPU intrinsics that are difficult to map to
	Vector Multimedia Extension intrinsics93
	V COLOT WIGHTING EXECTION IT IT IT IS 105 30

SPU intrinsics that map one-to-one with	check availability of MFC_RdTagStat channel
vector multimedia extension intrinsics75	(mfc_stat_tag_status)65
Vector Multimedia Extension data types to	check availability of tag status update request
SPU data types1	channel (mfc_stat_tag_update)64
vector multimedia extension intrinsics that are	check the number of available entries in the
difficult to map to SPU intrinsics74	MFC DMA queue (mfc_stat_cmd_queue)
vector multimedia extension intrinsics that	63
map one-to-one with SPU intrinsics73	read atomic command status
with scalar operands13	(mfc_read_atomic_status)66
	read list DMA stall-and-notify status
memory load and store intrinsics	(mfc_read_list_stall_status)66
si_lqa11	read tag mask indicating MFC tag groups to
si_lqd11	be included in query operation
si_lqr11	
si_lqx11	(mfc_read_tag_mask)63
si_stqa11	request that tag status be immediately
si_stqd12	updated
si_stqr12	(mfc_write_tag_update_immediate)64
si_stqx12	request that tag status be updated
MFC atomic update commands60	(mfc_write_tag_update)64
get lock line and create reservation	request that tag status be updated for any
(mfc_getllar)60	enabled completion with no outstanding
put lock line if reservation for effective	operation (mfc_write_tag_update_any) .64
	request that tag status be updated when all
address exists (mfc_putllc)60	enabled tag groups have no outstanding
put lock line unconditional (mfc_putlluc)61	operation (mfc_write_tag_update_all)64
MFC DMA commands	set tag mask to select MFC tag groups to be
move data from effective address to local	included in query operation
storage (mfc_get)57	(mfc_write_tag_mask)63
move data from effective address to local	wait for an updated tag status
storage using MFC list (mfc_getl)59	(mfc_read_tag_status)65
move data from effective address to local	wait for no outstanding operation of all
storage using MFC list with barrier	enabled tag groups
(mfc_getlb)59	(mfc_read_tag_status_all)65
move data from effective address to local	wait for no outstanding operation of any
storage using MFC list with fence	enabled tag group
(mfc_getlf)59	(mfc_read_tag_status_any)65
move data from effective address to local	wait for the updated status of any enabled tag
storage with barrier (mfc_getb)58	group (mfc_read_tag_status_immediate)
move data from effective address to local	* ' ' = = = '
storage with fence (mfc_getf)57	65
move data from local storage to effective	MFC multisource synchronization functions
address (mfc_put)56	check the status of multisource
	synchronization
move data from local storage to effective	(mfc_stat_multi_src_sync_request)67
address using MFC list (mfc_putl)58	request multisource synchronization
move data from local storage to effective	(mfc_write_multi_src_sync_request)67
address using MFC list with barrier	MFC multisource synchronization request67
(mfc_putlb)58	
move data from local storage to effective	MFC structures
address using MFC list with fence	DMA list element for MFC list DMA
(mfc_putlf)59	(mfc_list_element)55
move data from local storage to effective	MFC synchronization commands61
address with barrier (mfc_putb)57	
move data from local storage to effective	MFC synchronization functions
address with fence (mfc_putf)57	enqueue mfc_barrier command into DMA
MFC DMA status63	queue or stall when queue is full
	(mfc_barrier)62
MFC DMA status functions	enqueue mfc_eieio command into DMA
acknowledge tag group containing stalled	queue or stall when queue is full
DMA list commands	(mfc_eieio)63
(mfc_write_list_stall_ack)66	enqueue mfc_sync command into DMA
check availability of atomic command status	queue or stall when queue is full
(mfc_stat_atomic_status)66	(mfc_sync)63
check availability of list DMA stall-and-notify	send signal (mfc_sndsig)62
status (mfc_stat_list_stall_status)66	send signal with barrier (mfc_sndsigb)62

SONY

send signal with fence (mfc_sndsigf)62	double multiply (fmul)96
MFC utility functions	double negative (fnabs)96
concatenate higher 32 bits and lower 32 bits	double reciprocal square root estimate
(mfc_hl2ea)56	(frsqrte)98
extract higher 32 bits from effective address	double square root (fsqrt)99
(mfc_ea2h)55	enforce in-order execution of I/O (eieio)93
extract lower 32 bits from effective address	float absolute value (fabsf)94
(mfc_ea2l)55	float fused multiply and add (fmadds)9
put queued lock line unconditional	float fused multiply and subtract (fmsubs)
(mfc_putqlluc)61	90
	float fused negative multiply and add
round up value to next multiple of 128	(fnmadds)9
(mfc_ceil128)56	float fused negative multiply and subtract
	(fnmsubs)97
N	float multiply (fmuls)96
new and traditional C++ library header files115	float negative (fnabsf)96
•	float reciprocal estimate (fres)98
no operation intrinsics	float square root (fsqrts)99
si_lnop11	floating-point select of double (fsel)98
si_nop11	floating-point select of double (iser)99
non-supported language features115	instruction cache block invalidate (_icbi)9
	instruction sync (isync)99
0	light weight sync (_lwsync)10
operators	load doubleword with reserved (_ldarx)100
address4	load reversed doubleword (_ldbrx)100
assignment4	load reversed halfword (_lhbrx)100
sizeof()4	load reversed word (_lwbrx)10
	load word with reserved (_lwarx)100
P	move from floating-point status and control
pointers	register (mffs)10
	move from special purpose register (mfspr
arithmetic and pointer dereferencing4	10
PPU instrinsics	move from time base (mftb)102
change thread priority to high (cctph)89	move to special purpose register (mtspr)
change thread priority to low (cctpl)89	103
change thread priority to medium (cctpm)	multiply double unsigned word, high part
89	(mulhdu)103
convert double to doubleword (fctid)94	multiply doubleword, high part (mulhd)103
convert double to doubleword with round	multiply unsigned word, high part (mulhwu)
towards zero (fctidz)94	104
convert double to word with round towards	multiply word, high part (mulhw)104
zero (fctiwz)95	no operation (nop)104
Word (fctiw)94	rotate left doubleword immediate then clear
convert doubleword to double (fcfid)94	(rldic)105
count leading doubleword zeros (cntlzd).90	rotate left doubleword immediate then clear
count leading word zeros (cntlzw)90	left (rldicl)105
data cache block flush (dcbf)91	rotate left doubleword immediate then clear
data cache block set to zero (dcbz)93	right (rldicr)106
data cache block store (dcbst)91	rotate left doubleword immediate then mask
data cache block touch (dcbt)91	insert (rldimi)106
data cache block touch for store (dcbtst) 93	rotate left doubleword then clear left (rldcl)
delay 10 cycles at dispatch (db10cyc)90	104
delay 12 cycles at dispatch (db12cyc)90	rotate left doubleword then clear right
delay 16 cycles at dispatch (db16cyc)90	(rldcr)10
delay 8 cycles at dispatch (db8cyc)91	rotate left immediate then mask insert
double absolute value (fabs)93	(rlwimi)100
double fused multiply and add (fmadd)95	rotate left word immediate then AND with
double fused multiply and subtract (fmsub)	mask (rlwinm)107
95	rotate left word then AND with mask
double fused negative multiply and add	(rlwnm)10
(fnmadd)97	round to single precision (frsp)98
double fused negative multiply and subtract	save and set the FPSCR (setflm)10
(formerly)	set field of FPSCR (mtfsb0)

set fields in FPSCR (mtfsf)	
(vec_insert) 79 load vector left indexed (vec_lvlx) 80 load vector left indexed last (vec_lvlx) 81 load vector right Indexed (vec_lvrx) 82	
load vector right indexed last (vec_lvrxl)83 promote scalar to a vector (vec_promote)88 splat scalar to a vector (vec_splats)88 store vector left indexed (vec_stvlx)84 store vector left indexed last (vec_stvlx)85 store vector right indexed (vec_stvrx)86 store vector right indexed last (vec_stvrxl).87 stream control operators that have been deprecated on the PPU	
programmer directed branch prediction7	
Programming Support for MFC Input and Output55	
R	
restrict type qualifier7	
SPU decrementer69	
SPU decrementer functions	
load a value to decrementer (spu_write_decrementer)69 read current value of decrementer	
(spu_read_decrementer)69	
SPU event70	
SPU event functions acknowledge events (spu_write_event_ack)71	

(spu_stat_event_status)70
read event status mask
(spu_read_event_mask)71
read event status or stall until status is
available (spu_read_event_status)70
select events to be monitored by event status
(spu write event mask)70
, , /
SPU mailbox functions
get available capacity of SPU outbound
interrupt mailbox
(spu_stat_out_intr_mbox)69
get available capacity of SPU outbound
mailbox (spu_stat_out_mbox)69
get the number of data entries in SPU
inbound mailbox (spu_stat_in_mbox)68
read next data entry in SPU inbound mailbox
(spu read in mbox)68
(Spu_reau_iii_iiiiiii)
send data to SPU outbound interrupt mailbox
(spu_write_out_intr_mbox)69
send data to SPU outbound mailbox
(spu_write_out_mbox)68
SPU mailboxes68
SPU signal notification67
check if pending signals exist on signal
check if perioling signals exist on signal
notification 1 channel (spu_stat_signal1)
67
67
SPU signal notification functions
SPU signal notification functions atomically read and clear signal notification 1
SPU signal notification functions atomically read and clear signal notification 1 channel (spu read signal1)67
SPU signal notification functions atomically read and clear signal notification 1
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)67 atomically read and clear signal notification 2
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)67 atomically read and clear signal notification 2 channel (spu_read_signal2)68
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)67 atomically read and clear signal notification 2 channel (spu_read_signal2)68 check if any pending signals exist on signal
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)67 atomically read and clear signal notification 2 channel (spu_read_signal2)68 check if any pending signals exist on signal notification 2 channel (spu_stat_signal2)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)67 atomically read and clear signal notification 2 channel (spu_read_signal2)68 check if any pending signals exist on signal
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)
SPU signal notification functions atomically read and clear signal notification 1 channel (spu_read_signal1)

End of Document