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Introduction

Problem definition

Instead of assuming a parametric model for the underlying statistical
structure of data or looking for a convenient distance or dissimilarity
measure among data, a parametric model for the corresponding
discriminant functions can be imposed to solve the pattern recognition
problem.

g(x ; W )

The parameters W are usually called weights in this context and a
convenient criterion function, J(W ) must be defined in order to look for
W .
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Introduction

Linear Models for Classification

One of the simplest and most used cases is linear discriminant functions
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Introduction

Linear Models

One can also compute a fixed mapping of the input instead

g(x) = wTφ(x) + w0

And write it in a compact form as g(x) = aT y(x)

where aT = (w0,wT ) is the weight vector and y(x)T = (1, φ(x)T )

In general, φ is a vectorial mapping whose dimensionality may be different
from d , as in

g(x) = w0 + wT x + xTW x

y are usually referred to as extended vectors
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Introduction

Linear models

The decision boundaries correspond to g(x) = const. so they do not get
modified if an activation function is applied. So in general,
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Introduction

Linear Models. Geometry

g(x) = 0 defines an hyperplane whose director vector is w and whose

distance to the origin is given by |w0|
||w|| .
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x2

w

||w||
|w0|

y1=x1

y2=x2

1
a

y0

In general, the signed (Euclidean) distance from any x to the hyperplane is

given by g(x)
||w|| and its magnitude |g(x)|

||a|| ≤ |g(x)|
||w|| .
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Fisher’s linear discriminant

Fisher’s linear discriminant

A linear discriminant for a 2-class problem can be decomposed as a
mapping from IRd to IR plus a threshold.

It is possible to try to define a mapping w which maximizes separability
between classes.
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Fisher’s linear discriminant

Fisher’s linear discriminant

Class separability can be related to (projected) class mean distance,
∆µ̃ = µ̃1 − µ̃2 or scatter, ∆µ̃T ∆µ̃, where µ̃i = wµi .

But mean distances need to be combined with (low) class scatter (or
variance), s̃1 + s̃2, where s̃i = wT siw.

Fisher’s criterion (2-class)

J(w) =
∆µ̃2

s̃1 + s̃2
=

wTSBw

wTSW w

where SB = (µ1 − µ2)(µ1 − µ2)T and

SW =
∑
i=1,2

Si =
∑
i=1,2

∑
x∈Di

(x− µi )(x− µi )
T .
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Fisher’s linear discriminant

Fisher’s linear discriminant (2-class)

The projection that maximizes JF is given can be obtained by ∇wJF = 0
which implies that

SW w = SBw
wTSW w

wTSBw
∝ SBw ∝ ∆µ

For non singular SW one can safely project data using

w = S−1
W ∆µ

Once the data is projected onto 1D, any classifier can be designed. For
example, parametric estimation of (normal) Bayes classifier becomes
feasible.
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Fisher’s linear discriminant

Fisher’s linear discriminant (multiple classes)

In general we can define the total, within and between scatter matrices:

ST =
∑

x

(x− µ)(x− µ)T

SW =
c∑

i=1

Si

SB =
c∑

i=1

ni (µi − µ)(µi − µ)T

such that
ST = SW + SB
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Fisher’s linear discriminant

Fisher’s linear discriminant (multiple classes)

Instead of a vector w we consider now a matrix W (a linear mapping from
IRd to IRd ′

) and W TS is a projected d ′-dimensional scatter matrix.

The Fisher criterion can be defined either as

JF (W ) =
|W TSBW |
|W TSW W |

or

JF (W ) =
Tr{W TSBW }
Tr{W TSW W }
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Fisher’s linear discriminant

Fisher’s linear discriminant (multiple classes)

It can be shown that the columns of the optimal W consist of the
generalized eigenvectors that correspond to largest eigenvalues in

SBwi = λiSW wi

Also, for nonsingular SW , the eigenvectors of S−1
W SB can be computed

instead.

Remark:

as SB is at most of rank c − 1 (sum of c one-rank matrices constrained by
the fact that µ is a linear combination of µi ), the maximum number of
columns in optimal W is c − 1.
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Perceptrons

The Perceptron

Let Ω = {ω1, ω2}, a = (w0,w1, . . . ,wd)T and D = {x1, . . . , xN} where
xi ∈ IRd . Define

zi =

{
1 if xi ∈ ω1

−1 if xi ∈ ω2

In this way, all samples in D will be correctly classified if and only if (in
terms of extended vectors and weights)

zia
T yi > 0 ∀i

Linear separability

If such a vector a exists, D is said to be linearly separable.

F.J. Ferri (Univ. València) AIRF 1/2008 13 / 41

Perceptrons

The linear discrimination problem

The problem consists of finding a vector solution, a, for a system of linear
constraints. The additional constraint ||a|| = 1 can be used.

w1 w2 w1 w2

b/||w||

An alternative (stricter) formulation of the problem (using margins) is

Minimize: ||a|| subject to: zia
T yi > b

b/||w|| is the minimum distance from any point to the separating
hyperplane.
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Perceptrons

Gradient descent

Let J(a) be a convenient criterion function satisfying very mild
smoothness conditions.

J(a) is a scalar function that can be seen as a surface over IRd+1. The
gradient, ∇J(a) is a vector in IRd+1 whose magnitude accounts for the
local slope of the surface and points to the direction of maximal (positive)
change.

a1 a3 a2 a
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Perceptrons

Gradient descent

Gradient descent algorithm

a0 = arbitrary

ak+1 = ak − η(k)∇Jp(a)

The learning rate η(k) is a function of k and controls the amount of
change to apply at each iteration.

The learning rate is usually set to an appropriate constant or is set as
η(k) = η(0)

k .

Under certain circumstances the convergence of the algorithm to a local
(or even global) minimum can be established.
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Perceptrons

Extensions to basic gradient descent

Consider Second order expansion of J around a0

J(a) = J(a0) +∇JT (a− av0) +
1

2
(a− av0)TH(a− av0)

where H is the Hessian matrix, { ∂2J
∂ai∂aj

}.

Assuming smoothness and a(k + 1)− a(k) = −η(k)∇J

J(a(k + 1)) ≈ J(a(k))− η(k)∇JT∇J +
1

2
η(k)2∇JTH∇J

This is minimized when [η∇2 − 1
2η

2∇H∇] is maximized.

Deriving with regard to η will give the optimal rate as η = ∇2

∇H∇ .
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Perceptrons

Second order gradient descent

By setting an optimal rate an improved descent algorithm is obtained.

2nd order gradient descent algorithm

ak+1 = ak − ||∇J||2
∇JTH∇J

∇Jp(a)

Alternatively, the first and 2nd order terms in the expansion of J can be
minimized by deriving with respect to a and equating to 0.

Newton method

ak+1 = ak − H−1∇Jp(a)
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Perceptrons

The Perceptron Criterion

A good criterion to measure how good a linear classifier is could consist of
the total number of misclassified samples.

A (piecewise) differentiable version of the above is the sum of the
distances to the separating hyperplane for misclassified samples

Jp(a) =
∑

i :zi aT yi≤0

(−aT yi )

The corresponding gradient is

∇Jp(a) =
∑

i :zi aT yi≤0

(−yi )
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Perceptrons

Perceptron algorithm

The preceptron criterion can be minimized using a gradient descent
approach starting from an arbitrary classifier given by a0

Batch perceptron algorithm

ak+1 = ak − η(k)
∑

i :zi aT yi≤0

(−yi )

As the criterion Jp is a piecewise linear function, the convergence to a
solution for linear separable sets can be taken for granted.
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Perceptrons

Batch versus per sample correction

A closely related criterion involving only one sample can be defined as
Jp(a, yi ) = −aT yi if zia

T yi ≤ 0 and zero otherwise. Then

Single-sample perceptron algorithm

ak+1 = ak + η(k)yi

Other, more or less related criteria can be defined

Jq(a) =
1

2

∑
i :zi aT yi≤0

(aT yi )
2 ∇Jq(a) =

∑
i :zi aT yi≤0

(aT yi )yi

Jr (a) =
1

2

∑
i :zi aT yi≤0

(aT yi − b)2

||yi ||2 ∇Jr (a) =
∑

i :zi aT yi≤0

(aT yi − b)

||yi || yi
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Squared Error Procedures

Learning using Least Minimum Squares

Instead of looking for a solution to a system or linear constraints
zia

T yi > 0, it is possible to specify a set of desired outputs, bi , and try
to solve a set of linar equations, aT yi = bi .

In matrix form,
Y a = b

where b = (b1, . . . , bN)T and Y = (yT
1 , . . . , y

T
N )

T
.

It is possible to solve this by least squares by setting as a criterion:

Js(a) = ||Y a− b||2 =
N∑

i=1

(aT yi − bi )
2
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Squared Error Procedures

The pseudoinverse method

The least square solution is given by equating the gradient of the
criterion to zero

∇Js =
N∑

i=1

2(aT yi − bi )yi = 2Y T (Y a− b) = 0

which implies

TTY a = Y T b

when Y TY is non singular we have obtain the pseudoinverse
method

a = (Y TY )−1Y T b = Y +b
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Squared Error Procedures

The Widrow-Hoff Adaline

An alternative way of minimizing the same square error criterion is by
gradient descent.

Batch Widrow-Hoff algorithm

ak+1 = ak − η(k)∇Js(a) = ak − η(k)Y T ∆

where ∆ = Y a− b is a vector containing the current prediction errors.

Single-sample Widrow-Hoff algorithm

ak+1 = ak − η(k)(aT yi − bi )yi = ak − η(k)δiyi

where δi = aT yi − bi is the i-th current prediction error.

This is also known as Adaptive linear element (Adaline),
Least-mean-squared (LMS) or delta rule.
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Squared Error Procedures

Improving LMS for linear separable problems

There is no guarantee of finding an existing linearly separable solution
using LMS.

Given Y linearly separable ⇒ ∃a,b : Y a = b

The problem consists of setting an appropriate set of desired outputs, b in
advance.

Alternatively, we can try to minimize

Js(a,b) = ||Y a− zT b||2

subject to b > 0. (where z = (z1, . . . , zN)).
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Squared Error Procedures

Ho-Kashyap method

The corresponding gradients

∇aJs = 2Y T (Y a− b)

∇bJs = −2(Y a− b)

The problem is that we need to maintain the constraint b > 0 and avoid
the (trivial) solution b = 0.

Solution: start with small b and perform only positive corrections.

b(k + 1) = b(k)− η(k)(∆ + |∆|)

And obtain a from b with the pseudoinverse.

a(k + 1) = Y +b(k + 1)
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Support Vector Machines

Learning using maximal margins

In a linear discriminant with margin b, we want to solve

g(xi ) = wT xi + w0 > zib

This means that all points need to be at least at a distance b
||w|| from the

separating hyperplane, H.

As the particular value of b is not important, we can fix b = 1 and try to
solve

g(xi ) = wT x + w0 > zi

and minimize ||w||, which implies maximizing all distances to H, and in
particular the (minimal) ones from points for which g(xi ) = zi .

This minimal distance, 1
||w|| , that has to be maximal is referred to

simply as the margin.
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Support Vector Machines

Learning using maximal margins
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Support Vector Machines

The (linear) Support Vector Machine

Formally,

Minimize ||w||2 (= maximal margin)
subject to: g(xi ) = wT xi + w0 ≥ zi ∀i (= correctly classified)

This is a quadratic optimization problem that can be solved in a number
of ways. In particular can convert it into

Minimize: Lp(w,wo , α) =
1

2
wT w −

N∑
i=1

αi (wT xi + wo − zi )

subject to: αi ≥ 0

The αi ’s are known as Lagrange multipliers.
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Support Vector Machines

The (linear) Support Vector Machine

Definition: suport vector (given w and wo)

Any point, x such that g(xi ) = wT xi + wo = 1.

Intuitively,

The solution to our problem (that is, w and w0) must depend only on
support vectors. (We will obtain the very same solution if we remove all
other points).
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Support Vector Machines

Solving quadratic constrained optimization

The optimal solution must satisfy

∇wLp = w −
N∑

i=1

ziαixi = 0

from which an expression for w as a linear combination of training points
is obtained

w =
N∑

i=1

ziαixi

We could now rewrite the problem from the beginning and express the
discriminant in terms of α “weights” and w0:

g(x) =
N∑

i=1

ziαix
T
i x + w0, ∀x
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Support Vector Machines

Solving quadratic constrained optimization

The minimization of Lp (the primal), can be converted into a completely
equivalent but different maximization problem (the dual) which is

Maximize: Ld =
N∑

i=1

αi − 1

2

N∑
i ,j=1

αiαjzizjx
T
i xj

subject to:
N∑

i=1

ziαi = 0 and αi ≥ 0 ∀i

The solution for this must satisfy the so-called Karush-Kuhn-Tucker
conditions. In this case

Karush-Kuhn-Tucker conditions

αi ≥ 0 (obvious)
zig(xi ) ≥ 1 (correct classification with margin)
αi (zig(xi )− 1) = 0 (αi = 0 iff xi is not a support vector)
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Support Vector Machines

The training of (linear) support vector machines

A quadratic solver is used to obtain α’s from the (easier) dual problem.

Then wo is computed

How? think about it.

The final discriminant function is given in terms of support vectors
and α’s

g(x) =
∑

i :αi>0

ziαix
T
i x + w0
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Support Vector Machines

Using soft margins

Basic (linear) support vector machines can only solve linearly separable
problems.

To account for solutions in which some of the points can be (slightly)
missclassified, the formulation can be exended by adding a set of slack
variables.

g(xi ) = wT xi + w0 ≥ (1− ξi )zi

Clearly if ξi = 0 the corresponding xi has to be outside the margin. Points
on either side of the margin will satisfy 0 < ξ ≤ 1 while points outside the
margin but on the wrong side will have ξ > 1.
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Support Vector Machines

Using soft margins

1/||w||

ξ
i

1

decide class w1 decide class w2

w2

w1

H

H+

H−
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Support Vector Machines

Soft margin support vector machines

The optimization problem can now be stated as

Minimize ||w||2 + C
∑N

i=1 ξi (= maximal soft margin)
subject to: g(xi ) = wT xi + w0 ≥ (1− ξi )zi (= correctly (soft) classified)
and ξi ≥ 0 ∀i

From which the primal now is

Minimize:

Lp(w,wo , α, µ) =
1

2
wT w+C

N∑
i=1

ξi−
N∑

i=1

αi (zi (wT xi+wo)−1+ξi )−
N∑

i=1

µiξi

subject to: αi ≥ 0 and µi ≥ 0

where the Lagrange multipliers are now αi and µi .

F.J. Ferri (Univ. València) AIRF 1/2008 36 / 41



Support Vector Machines

The training of (linear) support vector machines

A quadratic solver is used to obtain α’s from the (easier) dual problem.

Then wo is computed

How? think about it.

The final discriminant function is given in terms of support vectors
and α’s

g(x) =
∑

i :αi>0

ziαix
T
i x + w0
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Support Vector Machines

Soft margin support vector machines

Maximize: Ld =
N∑

i=1

αi − 1

2

N∑
i ,j=1

αiαjzizjx
T
i xj

subject to:
N∑

i=1

ziαi = 0 and 0 ≤ αi ≤ C ∀i

Now also from
∂Lp

∂ξi
= C − αi − µi = 0 we have

αi = C − µi

Karush-Kuhn-Tucker conditions

αi ≥ 0, ξi ≥ 0, µi ≥ 0 (obvious)
zig(xi ) ≥ 1− ξi (correct classification with soft margin)
αi (zig(xi )− 1 + ξi ) = 0 (αi = 0 iff xi is not a support vector)
µiξi = 0 (either µi or ξi equals 0.
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Support Vector Machines

The training of (linear) support vector machines with soft margin

A quadratic solver is used to obtain α’s and µ’s from the dual problem and
w0 is obtained from them.

New definition: suport vector (given w, wo and ξi)

Any point, (xi , zi ) such that zig(xi ) = zi (wT xi + wo) = 1− ξi .

The final discriminant function is given in terms of support vectors
and α’s

g(x) =
∑

i :αi>0

ziαix
T
i x + w0(α, µ)
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Support Vector Machines

Support vector machines with soft margin

There are two kinds of support vectors (xi such that αi > 0):

0 < αi < C which implies µi > 0 and consequently ξi = 0 which
means the support vector is exactly at distance 1

||w|| from the
separating hyperplane.

αi = C which implies µi = 0 and as there is no restriction on the
value of ξi :

I ξi = 0: at distance 1
||w|| as before.

I 0 < ξi ≤ 1
2 or 1

2 ≤≤ 1: inside the margin, either on the right or wrong
side.

I ξi ≥ 1: the support vector is further than 1
||w|| on the wrong side.

F.J. Ferri (Univ. València) AIRF 1/2008 40 / 41



Support Vector Machines

Support vector machines: practical considerations

The trade-off parameter, C , controls the relative importance given to
misclassifications. For C =∞ we obtain the basic support vector solution.

It is very difficult to set an appropriate value for C a priori. In practice one
usually selects this by a cross validation evaluation test.

There is an alternative formulation of soft-margin SVMs which are called
ν-SVMs in which the (meaningless) parameter C is substituted by ν which
can be interpreted as an upper bound on the fraction of margin errors
and as a lower bound on the fraction of support vectors.
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