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Dimensionality Reduction

Representation Spaces

Usually several changes of representation (and corresponding spaces)
are needed.

We concentrate here in the domain-independent part of the process
were no explicit apriori knowledge is used.

Usually, there is no change of domain and transforms are restricted to
subspaces or manifolds of the initial representation space.
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Dimensionality Reduction

Dimensionality reduction

The process can be seen as decomposing the original problem

IRD // classifier // Ω

into two different problems:

IRD // dimensionality
reduction

IRd
// classifier // Ω

in such a way that new learning problem (in a d-dimensional space) is
significantly easier.

This is usually related to the fact that d << D.
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Dimensionality Reduction

Motivation

There is a number of reasons to consider dimensionality reduction:

Some of the attributes (dimensions) may contain no information or
just noise.

Large dimensionalities may lead to numerical instabilities when
learning or estimating parameters.

Too much dimensions obviously imply more computational cost and
more hardware/space/transmission demands.

Some of the measurements may imply an economic cost (medical
diagnosis), which can be avoided if there is no significant impact of
these in the learning/classification results.

Obviously, there is a trade-off between the number of different
measurements (dimensions) about a particular phenomenon and how
particular learning methods make use of these to solve the
classification problem.
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Dimensionality Reduction

The peaking phenomenon

Theoretically, in the asymptotic case, the more dimensions the better
(even if just noise is added).

On the other hand, taking into account that we are usually interested in
inductive learning where there is a process that depends on a training set
of a particular size.

Consequently, there is a value over which adding new measures
(dimensions) progressively degrades the results of any learning process
based on a fixed size training set.
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Dimensionality Reduction

Feature extraction/selection

Feature Extraction

(y1, . . . , yD) // A(y1, . . . , yD)
(x1,...,xd ) // C // Ω

↑ Potentially optimal
↓ Must restrict the family of functions

↑ Less information is lost
↓ the function must be used online also

Feature Selection

(y1, . . . , yD) // j(i)
(yj 1

,...,yj d
)

// C // Ω

ji represents any particular subset of the set of features U = {1, . . . ,D}.

↑ Discarded features are not needed
↓ More information is lost

↑ Selected features keep their meanings
↓ Combinatorial problem (usually NP-
complete)
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Dimensionality Reduction

Formulation

The goal of feature extraction is to find a mapping:

W = arg máx
w∈W

J(w)

The goal of feature selection is to find a subset:

χ = arg máx
ξ∈U

J(ξ)

The criterion J is suposed to measure the degree of efectivity that can be
achieved by using either the transformed or selected features when solving
the classification problem.
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Dimensionality Reduction

Feature extraction/selection criteria

Probability of error

Probability distances

Battacharyya distance

JB = − ln

∫ √
p(x ′|w1)p(x ′|w2)dx ′

Kullback-Leibler divergence

JK =

∫
p(x ′|w1) ln

p(x ′|w1)

p(x ′|w2)
dx ′

Entropy measures

Dependence measures

Inter- intra- class distance measures
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Dimensionality Reduction

Feature extraction/selection criteria

The Battacharyya distance in the normal case is

JB =
1

4
(µ2 − µ1)

T [Σ1 + Σ2]
−1(µ2 − µ1) +

1

2
ln

[
1
2(Σ1 + Σ2)√
|Σ1||Σ2|

]

In the particular case of equal covariance matrices this reduces to the
Mahalanobis distance

JM = (µ2 − µ1)
TΣ−1(µ2 − µ1)
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Feature Selection

The Feature Selection Problem

In the most general case, the only optimal way of solvint the FS problem is
though exhaustive exploration.

The search space can be of size

(
D
d

)
(subsets of size d) or 2D (all subsets

of U).

For each subset, the criterion J must be computed. Apart from the search
problem, the computation of J may lead to significantly different methods.

Monotonic criteria

A function J : 2U → IR is said to be monotonic if

χi ⊂ χj ⇒ J(χi ) ≤ J(χj), ∀χi , χj ⊆ U

Most probabilistic distances, entropy and dependence measures are monotonic.
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Feature Selection

Optimization

Once the criterion has been selected, the problem can be formulated in
two different ways.

Minimize d subject to J(χd) > t (given t)

Maximize J(χd) subject to d < d ′ or d = d ′) (given d ′)

Some methods give as a result a sequence of subjects of all
dimensionalities.
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Feature Selection

Optimal feature selection

If J is monotonic, the best d-subset of features can be obtained in a
slightly more efficient way.

The feasible part of the search space are the

(
D
d

)
subsets. It is possible to

conveniently enumerate this

U

φ

D( )
d

{1,2,3,4,5}

1 2 3{2,3,4,5} {1,3,4,5} {1,2,4,5}

2 3 4 3 4 4

53 5 44 5 5 5 54
{4,5}

{1,2,5}

{1,2}

{3,4,5}
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Feature Selection

Optimal feature selection: bounding

As J is monotonic and all subsets along any of the branches of the trees
are nested, one can stop exploring a subtree as soon as a value worse than
the best subset so far.

This search can be improved if features are ordered at each node according
to partial values of the criterion computed.

φ

U

This is known as the branch and bound algorithm for feature selection.

Bad news: exponential worst case!!
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Feature Selection

Sequential Feature Subset Search

It is a whole family of sequential algorithms that explore the lattice of
subsets in a simple fashion either top-down (Backward) or upwards
(Forward).

Sequential Forward Selection (SFS) m

φ

U

Sequential Backward Selection (SBS)

Plus `, take away r

φ

U
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Feature Selection

Sequential Feature Subset Search

Generalized plus ` take away r

Sequential Floating Forward Selection (SFFS)

Other approaches for FS

-Use metaheuristic search to explore the search space.
-Use mixtures of gaussians and slack variables to select features
-Use boosting algorithms to learn weights to rank features
-etc.
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Feature Extraction

Taxonomy

Feature
Extraction



linear

 unsupervised (PCA)

supervised (LDA)

nonlinear


nonparametric (NDA,MDS)

kernel-based (KPCA, KLDA)

manifold-based (Isomap, LLE)
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Feature Extraction

Unsupervised Feature Extraction

The easiest case of dimensionality reduction consists of looking for a linear
transformation of the original data

y = ATx

x ∈ IRD and y ∈ IRd and A is an D × d matrix.

A set of n column vectors X can be transformed as

(y1 · · · yn) = Y = ATX = AT (x1 · · · xn)

F.J. Ferri (Univ. València) AIRF 2/2008 18 / 18



Feature Extraction

Principal Component Analysis

The goal is to find a linear transformation, y = AT x , that gives optimally
uncorrelated data. That is, E [yiyj ] = 0 ∀i 6= j .

Equivalently, the correlation matrix, Rx = E [xxT ] should be diagonal.

Two almost equivalent matrices also used in this context are the
covariance matrix, Σx = E [(x − µ)(x − µ)T ], and the scatter matrix,
Sx =

∑
k(xk − µ)(xk − µ)T .

The transform A is obtained by eigenanalysis of any of the above matrices.

A = (u1, . . . ,uD)

Sxuk = λkuk

ATSxA = Λ

where Λ is a diagonal matrix with all eigenvalues, λk .
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Feature Extraction

Principal Component Analysis

If less than D eigenvectors are used, we have a D × d matrix and the
transformation cannot be exactly inverted.

x̂ = Ax is the reconstruction of x. It can be shown that the reconstruction
error is given by

E [||x− x̂||2] =
∑

discarded

λk

This transform is usually applied with a target dimension d or a fixed
percentage of variance preserved.

This is referred to also as Karhunen-Loeve, Hotelling, or Whitening.
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Feature Extraction

The Fisher mapping

Let SW =
∑c

i Si be the within-class scatter matrix (Si is the i-th class
scatter matrix).

And let SB =
∑c

i ni (µi − µ)(µi − µ)T the between-class scatter matrix

(ST = SW + SB)

The generalized Fisher criterion is

J(A) =
|ATSBA|
|ATSW A|

which gives rise to a generalized eigenvalue problem SBw = λSW w.

The solution is given by the eigenvectors of S−1
W SB (if SW is invertible)

(c − 1 at most).
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