

 LIBCKPT(1V) LIBCKPT(1V)

 NNAAMMEE
 checkpoint_here, include_bytes, exclude_bytes - check-
 pointing functions

 SSYYNNOOPPSSIISS
 # #iinncclluuddee <<cchheecckkppooiinntt..hh>>

 i inntt c ckkpptt__ttaarrggeett((aarrggcc,, aarrggvv,, eennvvpp))
 i inntt aarrggcc;;
 c chhaarr * ***aarrggvv,, * ***eennvvpp;;

 i inntt c chheecckkppooiinntt__hheerree(())

 i inntt eexxcclluuddee__bbyytteess((aaddddrr,, s siizzee,, uussaaggee))
 c chhaarr * *aaddddrr;;
 l loonngg ssiizzee;;
 i inntt uussaaggee;;

 i inntt i inncclluuddee__bbyytteess((aaddddrr,, s siizzee))
 c chhaarr * *aaddddrr;;
 l loonngg ssiizzee;;

 DDEESSCCRRIIPPTTIIOONN
 l li ibbcckkpptt..aa is a library of checkpointing functions enabling
 application programmers to write fault tolerant code. To
 use l li ibbcckkpptt, all you have to do is rename m maaiinn(()) to
 c ckkpptt__ttaarrggeett(()), recompile, and link with l li ibbcckkpptt..aa.

 This enables l li ibbcckkpptt to gain control of the application,
 perform some initializations, and begin checkpointing. By
 default, a sequential checkpoint will be taken every ten
 minutes. Should the system running the application fail,
 simply invoke the checkpointed program with the special
 command line option = =rreeccoovveerr (see OPTIONS below) to resume
 execution from most recent checkpoint.

 c chheecckkppooiinntt__hheerree(()) forces l li ibbcckkpptt to take a checkpoint.
 With clever placement of calls to c chheecckkppooiinntt__hheerree(()) along
 with calls to i inncclluuddee__bbyytteess(()) and e exxcclluuddee__bbyytteess(()), sub-
 stantial improvements in the performance of l li ibbcckkpptt are
 possible. Observe, however, that these calls are NOT nec-
 essary to make l li ibbcckkpptt work well.

 e exxcclluuddee__bbyytteess((aaddddrr,, s siizzee,, uussaaggee)) informs the checkpointing
 tool that the range [_ a_d_d_r_, _ a_d_d_r _ + _s_i_z_e] is to be
 excluded from all checkpoints until further notice. If
 _ u_s_a_g_e is equal to the pre-defined constant C CKKPPTT__DDEEAADD,
 exlusion begins immediately (that is, when the next check-
 point is taken). If _ u_s_a_g_e is equal to the pre-defined
 constant C CKKPPTT__RRDDOONNLLYY, the range will not be excluded dur-
 ing the next checkpoint, but WILL be excluded from all
 subsequent checkpoints. This feature enables l li ibbcckkpptt to
 deal correctly with read only memory, which should be

 22 July 1994 1

 LIBCKPT(1V) LIBCKPT(1V)

 checkpointed exactly once. Checkpointing read only memory
 multiple times is an inefficiency; Never checkpointing
 read only memory is an error that will yield results which
 are quite incorrect. See the EXAMPLES section below.

 i inncclluuddee__bbyytteess(()) informs the checkpointing tool that the
 range [_ a_d_d_r, _ a_d_d_r+_s_i_z_e] is to be included in all check-
 points until further notice. Initially, the entire
 address space from the beginning of the data segment to
 the end of the BSS segment is included. This is automatic
 and need not be specified by the user via an explicit call
 to i inncclluuddee__bbyytteess(()). If the break is extended between
 checkpoints (via a call to malloc() or sbrk(), for exam-
 ple), the new area is automatically included.

 A possible use for the i inncclluuddee__bbyytteess(()) and e exxcclluuddee__bbyytteess(())
 functions would be to exclude dead varibles from a check-
 point. A variable is said to be dead at a point in the
 code if for all possible execution paths the variable will
 have a new value written to it before it is subsequently
 read. Substantial savings on the size of the checkpoint
 file are possible if there are large areas of the heap
 excluded during a checkpoint.

 OOPPTTIIOONNSS
 When invoking your application from the Unix command line,
 you may give one of two options (in addition to your own
 command line options):

 =c chheecckkppooiinntt
 Enable checkpointing. This option allows the
 developer to determine how checkpointing with
 l li ibbcckkpptt interacts with the application program
 without modifying the ._ c_k_p_t_r_c file each time the
 application is run. See the PARAMETERS section
 below for more information on this parameter
 file.

 When your program is invoked using the =c chheecckk--
 p pooiinntt option, it must be the last option on the
 command line. _ a_r_g_c is decremented to hide the
 presence of this option from your application
 program.

 =r reeccoovveerr Recover from a system failure. When you invoke
 your application with this option, it must be
 the only option on the command line. l li ibbcckkpptt
 will detect the presence of this option and
 enter a recovery function which restores the
 application’s data space and stack to the state
 it was in at the time the most recent checkpoint
 was taken. This includes the command line

 22 July 1994 2

 LIBCKPT(1V) LIBCKPT(1V)

 options you used when the program was originally
 invoked. The system file table is restored, and
 the processor’s registers are restored, ending
 with the restoration of the Program Counter.
 This in effect restarts your application from
 the point where the last checkpoint was taken.

 Consider the following series of events:

 You invoke your application (named a.out) as
 follows:

 a.out arg1 arg2 =checkpoint

 Your application examines the value of _ a_r_g_c and
 finds it holds the value 3.

 Your application runs for some time, taking
 occasional checkpoints, the system fails, and
 you restart your application with the command
 line:

 a.out =recover

 Your application examines _ a_r_g_c and _ a_r_g_v and
 finds that once again _ a_r_g_c holds the value 3,
 and _ a_r_g_v[2] holds the string arg2.

 RREETTUURRNN VVAALLUUEESS
 c chheecckkppooiinntt__hheerree(()) returns 0 if returning normally (i.e.
 after taking a checkpoint), 1 when returning from a recov-
 ery. On failure, it returns -1 and sets errno to indicate
 the error.

 i inncclluuddee__bbyytteess(()) and e exxcclluuddee__bbyytteess(()) return 0 on success.
 On failure, they return -1 and set errno to indicate the
 error.

 EERRRROORRSS
 Note that the errors E ENNOOCCKKPPTT and EETTOOOOSSOOOONN are exclusive to
 _ l_i_b_c_k_p_t and are unknown to the standard error routines
 such as p peerrrroorr(()). If e errrrnnoo is E ENNOOCCKKPPTT or E ETTOOOOSSOOOONN and you
 call p peerrrroorr((00)) the message "Unkown error" is displayed on
 the s sttddeerrrr.

 If a checkpoint is not taken because not enough time has
 expired (E ETTOOOOSSOOOONN) or because a previous checkpoint is
 still in progress (E ECCHHIILLDD), then subsequent checkpoints
 may still be taken. In all other cases, if a checkpoint

 22 July 1994 3

 LIBCKPT(1V) LIBCKPT(1V)

 fails (because, for example, the disk is full), then
 checkpointing is disabled, and all future checkpointing
 attempts, whether by explicit calls to c chheecckkppooiinntt__hheerree(())
 or by timer interupts, will set e errrrnnoo to E ENNOOCCKKPPTT and
 return -1.

 EFAULT A call to i inncclluuddee__bbyytteess(()) or e exxcclluuddee__bbyytteess(()) speci-
 fied an address range not entirely within the data
 or BSS segments of user memory.

 ENOCKPT
 c chheecckkppooiinntt__hheerree(()), i inncclluuddee__bbyytteess(()), or
 e exxcclluuddee__bbyytteess(()) was called without enabling check-
 pointing via the use of the checkpointing parame-
 ters. See the PARAMETERS section below. This
 error flag will also be set if a checkpoint is
 attempted after a previous attempt to take a check-
 point failed.

 ETOOSOON
 c chheecckkppooiinntt__hheerree(()) was called before _ m_i_n_t_i_m_e seconds
 had expired since the previous checkpoint. See the
 PARAMETERS section below.

 ECHILD An attempt was made to take a checkpoint while the
 child forked by a previous checkpoint is still in
 progress. This error may only occur if the _ f_o_r_k
 parameter is enabled. See the PARAMETERS section
 below.

 PPAARRAAMMEETTEERRSS
 Several parameters are available to fine tune the opera-
 tion of _ l_i_b_c_k_p_t. You may enable or disable checkpointing,
 you may enable or disable incremental or forked check-
 pointing, and you may specify a minimum and maximum time.
 These times are used to ensure that enough, but not too
 many, checkpoints are taken. You may also specify a
 directory in which checkpoint files are to be created,
 turn verbose mode on or off, and specify the maximum num-
 ber of checkpoint files which can be created before they
 are coalesced. These parameters may be set in a special
 parameter file, ._ c_k_p_t_r_c, which may appear in either your
 home directory or the current directory. If both exist,
 the version in the current directory takes precedence.

 All these paramters have defaults. If you wish to accept
 the defaults, no action is required. The possilbe parame-
 ters, their values, and their defaults are as follows:

 parameter range default

 checkpointing on/off on

 22 July 1994 4

 LIBCKPT(1V) LIBCKPT(1V)

 incremental on/off off
 fork on/off off
 mintime [number] 0
 maxtime [number] 600
 directory [directory] .
 verbose on/off off
 maxfiles [number] 1

 The checkpointing parameter turns checkpointing on or off.
 If off, the other parameters are irrelevant, and any calls
 to c chheecckkppooiinntt__hheerree(()),, i inncclluuddee__bbyytteess(()),, or e exxcclluuddee__bbyytteess(())
 will return -1 and set _ e_r_r_n_o to E ENNOOCCKKPPTT.

 The incremental parameter enables or disables automatic
 incremental checkpointing. This type of incremental
 checkpointing makes use of the m mpprrootteecctt(()) system call and
 may not be entirely reliable on all systems. Manual
 incremental checkpointing may be accomplished by turning
 the _ i_n_c_r_e_m_e_n_t_a_l parameter off and placing calls to
 i inncclluuddee(()) and e exxcclluuddee(()) properly so that sections of the
 heap which have not changed since the previous checkpoint
 will not be included. Turning the _ i_n_c_r_e_m_e_n_t_a_l parameter
 on does this automatically, but since the m mpprrootteecctt(()) sys-
 tem call is flaky, so is automatic incremental checkpoint-
 ing.

 The fork parameter enables or disables forked checkpoint-
 ing. If disabled, a sequential checkpoint is taken; that
 is, execution of the application is suspended while the
 checkpoint file is written to disk. If enabled, a child
 process is forked which takes the checkpoint while the
 parent process resumes execution of the application. If
 an attempt is made to take another checkpoint while this
 child is still executing, the new checkpoint is NOT taken
 and e errrrnnoo is set to E ECCHHIILLDD. If this attempted checkpoint
 is the result of a call to c chheecckkppooiinntt__hheerree(()) (as opposed
 to a timer interupt), then c chheecckkppooiinntt__hheerree(()) r reettuurrnnss --11..

 You may specify a minimum time which _ m_u_s_t pass before a
 new checkpoint may be taken using the _ m_i_n_t_i_m_e parameter.
 If c chheecckkppooiinntt__hheerree(()) is called before _ m_i_n_t_i_m_e seconds have
 passed since the previous checkpoint, no checkpoint is
 taken; c chheecckkppooiinntt__hheerree(()) r reettuurrnnss - -11 aanndd s seettss _ e_r_r_n_o to
 E ETTOOOOSSOOOONN. You may disable this timer by setting _ m_i_n_t_i_m_e
 to 0.

 You may specify a maximum time which may pass between
 checkpoints using the _ m_a_x_t_i_m_e parameter. If _ m_a_x_t_i_m_e sec-
 onds expire without c chheecckkppooiinntt__hheerree(()) being called, it is
 called automatically. You may disable this timer by set-
 ting _ m_a_x_t_i_m_e to 0.

 You may specify a directory in which l li ibbcckkpptt will write
 checkpoint files using the _ d_i_r_e_c_t_o_r_y parameter. The

 22 July 1994 5

 LIBCKPT(1V) LIBCKPT(1V)

 default is the current directory.

 You may enable verbose mode by setting the _ v_e_r_b_o_s_e parame-
 ter to o onn. If enabled, this causes l li ibbcckkpptt to write diag-
 nostic messages to the s sttddeerrrr when applicable. In partic-
 ular, messages will be displayed at the beginning of the
 application, and every time l li ibbcckkpptt regains control of the
 process. This is useful for fine tuning l li ibbcckkpptt using
 various values in the parameter file. The format of the
 messages are

 _ C_K_P [_n_u_m_b_e_r] :_ m_e_s_s_a_g_e

 where _ n_u_m_b_e_r is the return value of the t ti immee((00)) function
 call. An example of such a message (the message displayed
 when a checkpoint is begun) is:

 CKP 774906022 : beginning

 The default for _ v_e_r_b_o_s_e is off.

 You may specify the maximum number of checkpoints retained
 by l li ibbcckkpptt using the _ m_a_x_f_i_l_e_s parameter. Since l li ibbcckkpptt
 may use incremental checkpointing, each checkpoint file
 must be retained during the lifetime of the application.
 After _ m_a_x_f_i_l_e_s checkpoint files have been created, l li ibbcckkpptt
 will coalesce them into a single file. If _ i_n_c_r_e_m_e_n_t_a_l is
 off and _ m_a_x_f_i_l_e_s is 1, l li ibbcckkpptt not only knows that auto-
 matic incremental checkpointing is disabled, but also
 assumes that you have NOT coded incremental checkpointing
 by hand using c chheecckkppooiinntt__hheerree(()), e exxcclluuddee__bbyytteess(()), and
 i inncclluuddee__bbyytteess(()). In this case, only one checkpoint file
 is ever kept, and no coalescing is performed. This is the
 default.

 Finally, you may enable checkpointing on the command line,
 (even if the file _ ._c_k_p_t_r_c exists and has _ c_h_e_c_k_p_o_i_n_t_i_n_g
 off). To enable checkpointing on the command line,
 include the flag =c chheecckkppooiinntt as the last command line
 argument. _ a_r_g_c is decremented before c ckkpptt__ttaarrggeett(()) is
 called in order to hide the use of the =c chheecckkppooiinntt flag
 from the application. Setting the _ c_h_e_c_k_p_o_i_n_t_i_n_g parameter
 on the command line overides whatever settings are found
 in the ._ c_k_p_t_r_c files.

 EEXXAAMMPPLLEESS
 The simplest example is to simply rename m maaiinn(()) to
 c ckkpptt__ttaarrggeett(()) and recompile, linking with l li ibbcckkpptt. This
 must be done regardless of whether other modifications are
 included. l li ibbcckkpptt includes it’s own m maaiinn(()) function,
 which simply does some initialization, then calls
 c ckkpptt__ttaarrggeett(()).

 22 July 1994 6

 LIBCKPT(1V) LIBCKPT(1V)

 If renaming m maaiinn(()) to c ckkpptt__ttaarrggeett(()) is the only modifica-
 tion made, then in the absence of the _ ._c_k_p_t_r_c parameter
 file, l li ibbcckkpptt will take a checkpoint every 10 minutes.
 Several optimizations are available simply by creating or
 modifying the _ ._c_k_p_t_r_c parameter file.

 An example _ ._c_k_p_t_r_c file appears below:

 c chheecckkppooiinntti inngg oonn
 i innccrreemmeennttaall o onn
 f foorrkk oonn
 d diirreeccttoorryy . .
 v veerrbboossee oonn
 m maaxxffi il leess 55
 m maaxxtti immee 330000
 m miinntti immee 00

 This parameter file will yield excellent perfor-
 mance for many applications. It forces a forked,
 incremental checkpoint every 300 seconds (5 min-
 utes). Since verbose is on, diagnostic messages
 will be written to the s sttddeerrrr so performance may be
 measured.

 # #iinncclluuddee <<cchheecckkppooiinntt..hh>>
 c ckkpptt__ttaarrggeett((aarrggcc,, aarrggvv))
 i inntt aarrggcc;;
 c chhaarr * ***aarrggvv;;
 { {
 p prriinnttff((""bbeeggiinnnniinngg pprrooggrraamm\\nn""));;
 i if f ((cchheecckkppooiinntt__hheerree(())))
 p prriinnttff((""rreettuurrnniinngg ffrroomm aa rreeccoovveerryy\\nn""));;
 e ellssee
 p prriinnttff((""rreettuurrnniinngg ffrroomm aa ssiimmppllee cchheecckkppooiinntt\\nn""))
 ;;
 } }

 If the a.out resulting from this code is run with
 no ._ c_k_p_t_r_c file and with =c chheecckkppooiinntt as the last
 command line argument, the output is

 beginning program
 returning from a simple checkpoint

 If the a.out is then run with =r reeccoovveerr as the only
 command line argument, the output is

 returning from a recovery

 The return value of c chheecckkppooiinntt__hheerree(()) is often
 ignored, since the program state upon a normal

 22 July 1994 7

 LIBCKPT(1V) LIBCKPT(1V)

 return from c chheecckkppooiinntt__hheerree(()) is identical to the
 program state resulting from the use of the
 =r reeccoovveerr flag. The example is merely indended to
 illustrate flow of control caused by use of the
 =c chheecckkppooiinntt or =r reeccoovveerr flags.

 Observe that if the above code is run with _ n_e_i_t_h_e_r
 =c chheecckkppooiinntt nor =r reeccoovveerr, the output is

 beginning program
 returning from a recover

 since c chheecckkppooiinntt__hheerree(()) will return a -1 in this
 case and set _ e_r_r_n_o to _ E_N_O_C_K_P_T to indicate that the
 c chheecckkppooiinntt__hheerree(()) function was called even though
 checkpointing was currently disabled.

 The next example shows how c chheecckkppooiinntt__hheerree(()) would
 normally be called:

 # #iinncclluuddee <<cchheecckkppooiinntt..hh>>

 c ckkpptt__ttaarrggeett((aarrggcc,, aarrggvv))
 i inntt aarrggcc;;
 c chhaarr * ***aarrggvv;;
 { {

 w whhiil lee((11)) { {
 g geett__iinnppuutt(());;
 i if f ((ddoonnee)) bbrreeaakk;;
 d doo__ccaallccuullaatti ioonn(());;
 w wrriit tee__oouuttppuutt(());;
 c chheecckkppooiinntt__hheerree(());;

 } }

 } }

 In this example, performace improvements may be
 possible if the user is able to determine that
 large portions of the data space are dead at the
 call to c chheecckkppooiinntt__hheerree(()). In this case, calls to
 e exxcclluuddee__bbyytteess(()) and i inncclluuddee__bbyytteess(()) may be used to
 inform l li ibbcckkpptt that these memory locations need not
 be written to the checkpoint file. If get_input
 reads to a large global array A of size ARRAYSIZE,
 then the code could be modified to look like the
 following:

 # #iinncclluuddee <<cchheecckkppooiinntt..hh>>

 22 July 1994 8

 LIBCKPT(1V) LIBCKPT(1V)

 c ckkpptt__ttaarrggeett((aarrggcc,, aarrggvv))
 i inntt aarrggcc;;
 c chhaarr * ***aarrggvv;;
 { {

 w whhiil lee((11)) { {
 g geett__iinnppuutt(());;
 i if f ((ddoonnee)) bbrreeaakk;;
 d doo__ccaallccuullaatti ioonn(());;
 w wrriit tee__oouuttppuutt(());;
 e exxcclluuddee__bbyytteess((AA,, AARRRRAAYYSSIIZZEE,, CCKKPPTT__DDEEAADD));;
 c chheecckkppooiinntt__hheerree(());;
 i inncclluuddee__bbyytteess((AA,, AARRRRAAYYSSIIZZEE));;

 } }

 } }

 The third argument to e exxcclluuddee__bbyytteess(()) forces
 l li ibbcckkpptt to exclude the indicated range of memory
 immediately rather than after the next checkpoint.
 You should also observe that in the above example
 the array A is only dead at the bottom of the loop;
 thus we must call i inncclluuddee__bbyytteess(()) as shown to
 ensure that a correct checkpoint will be taken even
 if a checkpoint is taken as a result of a timer
 interupt. Such a timer interupt can occur at any
 point in the code, so we must be careful to make
 sure that our series of calls to i inncclluuddee__bbyytteess(())
 and e exxcclluuddee__bbyytteess(()) yields AT ALL TIMES a correct
 list of memory locations to checkpoint.

 If we disable timer based checkpoints by setting
 the _ m_a_x_t_i_m_e parameter to 0, then such care need not
 be taken, since we know that no such interupt
 driven checkpoints will occur. The example code
 may then look like:

 # #iinncclluuddee <<cchheecckkppooiinntt..hh>>

 c ckkpptt__ttaarrggeett((aarrggcc,, aarrggvv))
 i inntt aarrggcc;;
 c chhaarr * ***aarrggvv;;
 { {

 e exxcclluuddee__bbyytteess((AA,, AARRRRAAYYSSIIZZEE,, CCKKPPTT__DDEEAADD));;
 w whhiil lee((11)) { {
 g geett__iinnppuutt(());;
 i if f ((ddoonnee)) bbrreeaakk;;
 d doo__ccaallccuullaatti ioonn(());;
 w wrriit tee__oouuttppuutt(());;
 c chheecckkppooiinntt__hheerree(());;

 22 July 1994 9

 LIBCKPT(1V) LIBCKPT(1V)

 } }

 } }

 As a final example, observe how l li ibbcckkpptt handles
 read only data through the use of the _ u_s_a_g_e argu-
 ment to e exxcclluuddee__bbyytteess(()). If data is read from disk
 into an array B of size ARRAYSIZE, and array B is
 never changed, then B should be included in exactly
 one checkpoint, the first. The _ u_s_a_g_e argument to
 e exxcclluuddee__bbyytteess(()) should be C CKKPPTT__RRDDOONNLLYY in this case
 to inform l li ibbcckkpptt that the indicated region should
 be exluded from all checkpoints AFTER THE NEXT, but
 that this region SHOULD be included in the next
 checkpoint.

 # #iinncclluuddee <<cchheecckkppooiinntt..hh>>

 c ckkpptt__ttaarrggeett((aarrggcc,, aarrggvv))
 i inntt aarrggcc;;
 c chhaarr * ***aarrggvv;;
 { {

 / /** t thhee nneexxtt 33 ssttaatteemmeennttss ccoouulldd aappppeeaarr i inn aannyy oorrddeerr * *//

 e exxcclluuddee__bbyytteess((BB,, AARRRRAAYYSSIIZZEE,, CCKKPPTT__RRDDOONNLLYY));;
 e exxcclluuddee__bbyytteess((AA,, AARRRRAAYYSSIIZZEE,, CCKKPPTT__DDEEAADD));;
 r reeaadd__aarrrraayy__BB(());;

 w whhiil lee((11)) { {
 g geett__iinnppuutt(());;
 i if f ((ddoonnee)) bbrreeaakk;;
 d doo__ccaallccuullaatti ioonn(());;
 w wrriit tee__oouuttppuutt(());;
 c chheecckkppooiinntt__hheerree(());;

 } }

 } }

 FFIILLEESS
 c ckkpptt..tteemmpp..?? temporary checkpoint file
 c ckkpptt..?? checkpoint files
 . .cckkppttrrcc parameter file

 NNOOTTEESS
 If checkpointing is _ n_o_t enabled via the parameter file or
 the =_ c_h_e_c_k_p_o_i_n_t flag, calls to c chheecckkppooiinntt__hheerree(()),
 i inncclluuddee__bbyytteess(()), or e exxcclluuddee__bbyytteess(()) all return -1 and set
 _ e_r_r_n_o to N NOOCCKKPPTT. This need not be considered an error.

 22 July 1994 10

 LIBCKPT(1V) LIBCKPT(1V)

 These return values and error codes are provided for the
 convenience of the user.

 If an application which uses checkpointing and reads from
 s sttddiinn is begun by redirecting s sttddiinn via the shell’s redi-
 rection capabilities, and the application is interupted
 and restarted with the =r reeccoovveerr flag, you must redirect
 s sttddiinn again from the same file. All other open files will
 be re-opened by l li ibbcckkpptt You may not redirect s sttddoouutt or
 s sttddeerrrr, nor use pipes, in any application which uses this
 checkpointing tool.

 All old checkpoint files, c ckkpptt..??, must be removed from the
 checkpoint directory before beginning an application which
 uses checkpointing.

 Your application should not change the current working
 directory (or make other changes to the system state).
 Doing so will prevent l li ibbcckkpptt from writing checkpoint
 files to the correct directory.

 BBUUGGSS
 This tool cannot operate if the application reads from or
 writes to a pipe.

 This tool cannot operate if the application redirects s sttdd--
 o ouutt or s sttddeerrrr.

 This tool does not restore calls to s siiggnnaall(()), (and uses
 s siiggnnaall(()) itself), so that applications attempting to catch
 signals using the system call s siiggnnaall(()) cannot be check-
 pointed.

 The only system state restored by l li ibbcckkpptt is the open file
 table. Thus your application should not assume that sys-
 tem calls it has made (other than for I/0) are still in
 effect upon recovery.

 22 July 1994 11

