Practica 4

Predicción de fiabilidad

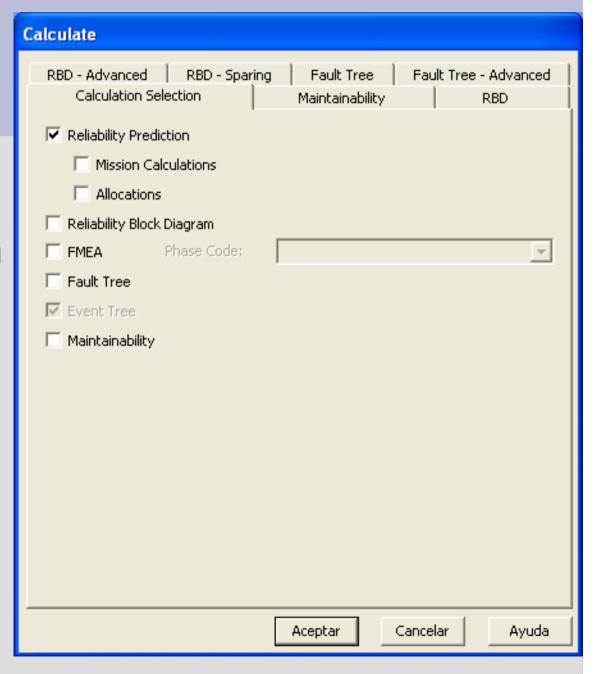
Claves

- Objetivo: Utilizar un programa "comercial"
- Emplear MIL-HDBK-217F2
- Practica:
 - Describir los componentes del sistema
 - Describir las condiciones de funcionamiento
- Realizar análisis
 - Cálculo de tasas de fallos
 - Cálculo con diagramas de bloques
 - Cálculos con árboles de fallos

Descripción del sistema

Assembly PCB							
	Part Number	Category		Subcategory		Reference Designator	Quantity
1	PCB	Connection	_	Board with Plated Thru Holes	T	PCB	1,00
Assembly Microcontroller							
	Part Number	Category		Subcategory		Reference Designator	Quantity
1	80C51	Integrated Circuit	▼	Microprocessor	▼	U1	1,00
2	GRM42-2200	Capacitor	▼	General Ceramic (CK, CKR)	▾	C1-C2	2,00
3	CL12M	Miscellaneous	▾	Quartz Crystal	▾	Y1	1,00
4	74HCT573	Integrated Circuit	▼	Logic, CGA or ASIC	▾	U2	1,00
5	BAL74	Semiconductor	▾	Diode	▾	D1	1,00
6	ECEV1A	Capacitor	▼	Lead Mount, Elec, Alum (CE)	▾	C6	1,00
7	GRM42-1010	Capacitor	▾	General Ceramic (CK, CKR)	▾	C3-C4-C5	3,00
Assembly Communications							
	Part Number	Category		Subcategory		Reference Designator	Quantity
1	MAX232	Integrated Circuit	•	Linear	•	U6	1,00
2	ECEV1A	Capacitor	▼	General Ceramic (CK, CKR)	▼	C10-C11-C12-C13	4,00
3	AMPDB9	Connection	▼	General	▼	P1	1,00
Assembly Memory							
	Part Number	Category		Subcategory		Reference Designator	Quantity
1	AT29C257	Integrated Circuit	▼	Memory	▼	U4	1,00
2	MM5256	Integrated Circuit	▼	Memory	▼	U5	1,00
3	GRM42-1010	Capacitor	▾	General Ceramic (CK, CKR)	▼	C7-C8-C9	3,00
4	74HCT00	Integrated Circuit	•	Logic, CGA or ASIC	▼	U3	1,00

Datos generales

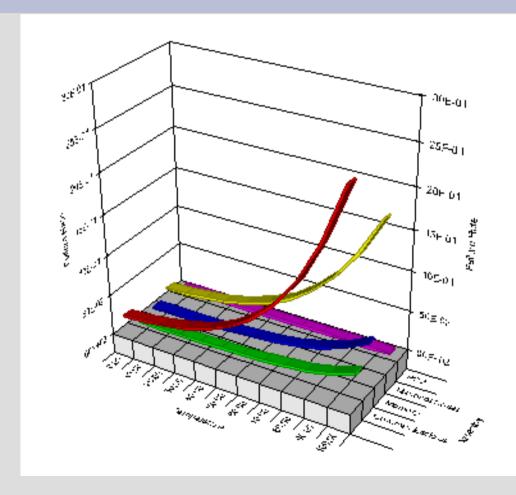

- Número de dispositivo
- Categoría: C.I., condensador, semiconductor ...
- · Subcategoría: Micro, diodo, cerámico, lógica
- Referencia
- Cantidad
- Modelo: MIL-HDBK-217F2

Datos para la predicción

- Valores (capacidad, frecuencia)
- Tensiones aplicadas y máximas (Condensador)
- Calidad: comercial
- Encapsulado
- Planos del Circuito Impreso

Cálculos

- Project Calculate
 - Reliability Prediction


Gráficas

Tools-Graphs

Failure Rate only

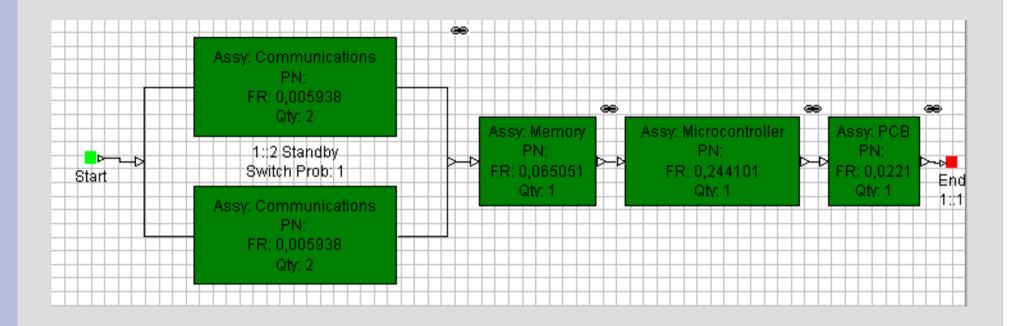
F. Rate over Temperature

Assemblies

Nuevo proyecto

Modificaciones

- Se guarda el proyecto con Save As
- Se eliminan los C de 100nF
- Se añaden 2 planos al PCB
- Se eliminan U2 y U3 y se añade en el S.
 Microcontrolador una GAL22V10
- Se cambian C9-C12 por unos de 50V


Análisis

- System->Calculation Data:
- Modificar temperatura y entorno de funcionamiento

Diagrama de bloques

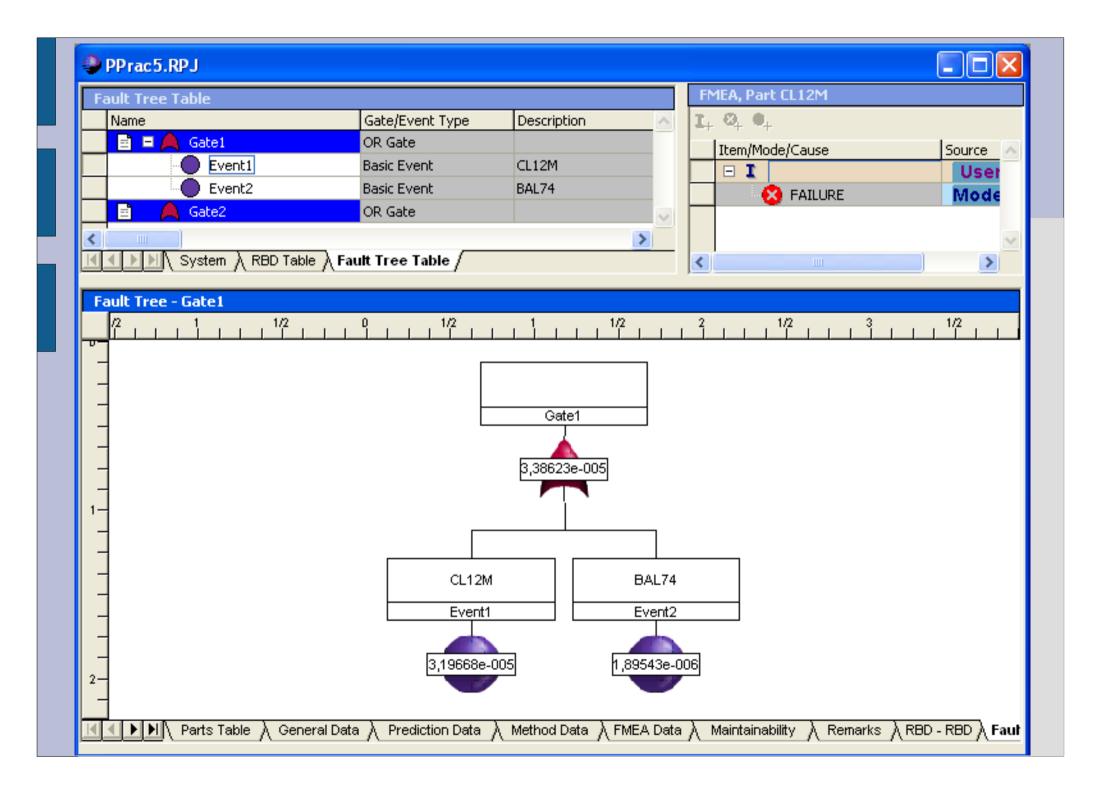

- Seleccionar RBD-RBD
- Insertar default figures (4 bloques serie)
- Para cada uno
 - Seleccionar en el System Tree un componente
 - Boton derecho en el bloque y 'set data link'
- Para el bloque de comunicaciones
 - Boton derecho y en Calculation properties:
 - Cantidad 2, Tipo de Redundancia: standby
- Realizar el mismo cálculo de predicción de fiabilidad

Diagrama de bloques

Árboles de Fallos

- Los componentes no tienen que ser reparables
- Seleccionar pestañas de Fault Tree
- Insert New Top Gate
- Seleccionar Gate1
- Insert events en la ventana de abajo (2 eventos)
- Para cada evento:
 - Set data link adecuado al fallo
 - Propiedades->Calculation data->Failure Rate Percentaje = %
 de ocurrencia del fallo
- Project->Calculate->Fault Tree

