A Peer-To-Peer Platform for Simulating Distributed Virtual Environments

Silvia Rueda, Pedro Morillo, Juan M. Orduiia
Departamento de Informadtica
Universidad de Valencia
E-mail: Juan.Orduna@uv.es

Abstract

The current expansion of multi-player online games has
promoted the growth of large scale distributed virtual envi-
ronments (DVEs). In these systems, peer-to-peer architectu-
res have been proved as an efficient scheme for supporting
massively multi-player applications. In order to research on
this type of architecture, stand-alone simulators do not take
into account inconsistencies due to network latency, and it
is necessary to develop a distributed tool that allows to si-
mulate large-scale DVEs in an efficient way. In this paper,
we propose a distributed platform for simulating the beha-
vior of Peer-To-Peer DVEs. This simulator is implemented
following a modular architecture. It is capable of providing
the main performance metrics in distributed systems, and it
contains all the elements involved in real DVE simulations
like the awareness method and the graphic interface. As a
result, this tool can be used in real simulations of Peer-to-
Peer DVEs, becoming an invaluable tool for capturing the
behavior of this kind of systems.

1. Introduction

Nowadays, the extensive use of multi-player online ga-
mes has promoted the use of large scale distributed virtual
environments (DVEs). Users in these systems share a 3D
virtual world and can interact among them and with the ele-
ments of the virtual scene. Usually, each system user is re-
presented inside the virtual world by an entity called avatar.
Users control their avatars through a client computer, which
should render the images of the virtual 3D environment that
the user would see if he was located at that point of the vir-
tual world. Currently, large scale DVEs can simultaneously
support thousands and even hundreds of thousands clients.
Clients can connect to these systems through different net-
works, and usually through Internet. Although DVE sy-
stems are present in many different applications [33], such
as civil and military distributed training [20], collaborative
design [31] and e-learning [5], the most extensive exam-

ple of DVE systems are commercial, massively multi-player
online games (MMOG) [35, 8, 16, 27, 2].

Peer-to-peer architectures were proposed some years ago
for DVE systems [10, 18]. In classic peer-to-peer architec-
tures, each client computer is also a system server, and the
control of the simulation is distributed among all the cli-
ent computers. In hybrid peer-to-peer architectures, only
some of the client computers act as system servers. Figure 1
shows an example of a DVE system based on a peer-to-peer
architecture.

Figure 1. An example of a DVE system based
on a peer-to-peer architecture

Peer-to-peer architectures seem to be an efficient scheme
for supporting Distributed Virtual Environments [22]. Ho-
wever, in order to allow an in-depth research on P2P DVE, it
is necessary to develop an efficient simulation tool capable
of managing simulations and evaluating the performance of
medium and large-scale DVEs.

Currently, in other fields of computer science like image
compression or algorithmic analysis there are standardized
methodologies for performance evaluation [32, 1]. Howe-
ver, the field of Distributed Virtual Environments still lacks
a standardized evaluation methodology. As a result, the li-
terature on this subject shows a great heterogeneity in the

way that these systems are evaluated [4, 7, 14, 17, 25].

In this paper, we propose a distributed peer-to-peer simu-
lator of P2P DVEs. The distributed nature of the simulator
allows taking into account distributed features that stand-
alone simulators cannot evaluate, like inconsistencies due
to network latency, computer delays, clock drifts, etc. This
simulator is based on the methodology proposed in [23, 24],
and it takes into account crucial parameters like the num-
ber of avatars in the system, their distribution in the virtual
world and their movement pattern, among other aspects.
The simulator includes mechanisms for evaluation and data
acquisition in real time, and it accurately reproduces the be-
havior of a Distributed Virtual Reality system. This simu-
lator has been used for researching on the saturation of P2P
DVE systems [30, 29], providing the necessary evaluation
data for the research on these systems.

The rest of this paper is organized as follows: Section 2
describes the the main modules and functionalities of the
proposed simulator. Section 3 shows some examples of
use of the peer-to-peer simulator, as well as some perfor-
mance evaluation results of different DVE configurations.
Section 4 shows some conclusions and future work to be
done, and finally Section 5 shows the acknowledgment to
the institutions supporting this work.

2. A Distributed Peer-to-peer Simulator

The literature on P2P DVEs does not describe any distri-
buted simulator for this kind of systems. Therefore, we have
developed a simulator that is capable of performing the eva-
luation, parameterization and result acquisition in real time
during the simulation of DVEs. This simulator accurately
reproduce the behavior of a peer-to-peer DVE composed of
N avatars (for the sake of shortness, in the rest of the paper
we will refer to avatars also to denote the client computer
controlling the avatars) interconnected through a network
that uses point-to-point TCP/IP communications implemen-
ted upon BSD socket APIs. Additionally, there is a single
central entity, denoted as the Loader, that manages the cli-
ents to join the system. The simulator follows the main
standards for modeling collaborative virtual environments
[9, 13, 15].

2.1 Simulator Description

Since the purpose of the performance evaluation is to
study how the system behavior evolves when it is wor-
king, not how clients join the system, the simulator uses
some configuration files for system initialization, the joi-
ning of new avatars to the simulation and also the initial
interconnection of avatars with their neighbors. These files
include informations such as the initial location of avatars

in the virtual world, data about the neighborhood and IP ad-
dresses of all clients in the simulations. All the computers
involved in the simulation should have the same copy of
these configuration files.

In a generic DVE system, each avatar should exchange
messages at least with all the other avatars within its Area of
Interest (AOI) [33]. These messages contain the location of
the avatars in the virtual world, as well as the changes in the
state of other (usually static) elements of the AOI. For the
sake of simplicity, the clients in the simulator exclusively
move with the same movement rate, and they do not change
the state of any other elements in the AOI. This limitation
makes easier the system simulation and evaluation, since all
the messages contain the same kind of information and it is
possible to control when each movements are made. In its
turn, this control allows stopping the simulation and making
any correction if necessary.

A simulation is defined in this simulator as the set of 100
iterations. Each iteration, in its turn, is defined as a single
movement of all the avatars in the virtual world. The virtual
scene consists of a 2D square whose sides are 200 meters
long. We have chosen this size because in this way (taking
into account the number of iterations and the maximum di-
stance traveled by the avatar in a single movement) an avatar
can go in a single simulation from the center of the world to
any of the vertices of the world.

During the simulation, each time that a given avatar ¢
makes a movement, it reports about its movements to all its
neighbors by sending updating messages. Among other in-
formations, these updating messages contain a timestamp
indicating the instant when the message was generated.
When an avatar receives an updating message, it returns an
acknowledgment message to the sending avatar. When the
sender avatar receives the acknowledgment it can compute
the round-trip delay for the message by simply subtracting
the timestamp in the message from the current time. Since
both instants (the instant when the updating message is ge-
nerated and the instant when the acknowledgment arrives
to its destination) are time-stamped in the same computer,
clock shifts between different computers are avoided. We
have denoted the round-trip delays for all the messages sent
by a client as the Average System Response (ASR) for that
client. Among other output results, the simulator provides
not only the ASR for each client, but also the average value
of the ASR provided to all the clients in the simulation.

The simulator is composed of two different kind of app-
lications, written in C++. One of them implements the cli-
ents, and the other one implements the central manager or
Loader [26] to whom the rest of the clients should connect
to in order to join the system. Both type of applications use
different threads for managing the connections that should
be established. As indicated above, the communications are
implemented by means of sockets.

Each client has a main thread that manages the actions
required by the user. Additionally, for each of its neighbors
each client has also two different threads, one for listening
and one for sending information. In the same way, the cen-
tral Loader has two communication threads for each client
in the system, and also a main thread. The Loader do not
represent a system bottleneck, because once an avatar has
joined the system it no longer needs to exchange informa-
tion with the Loader.

Each client initially has (by means of a configuration file)
the IP addresses of those other clients that are going to be
its neighbors initially. That is, each client needs a configu-
ration file with its initial location in the virtual world, the
list of its initial neighbors, and also the IP addresses and
the listening ports of these neighbors. Once all the simula-
tion clients have connected to the Loader, the Loader itself
broadcasts a synchronizing message for starting the simula-
tion. From that instant, avatars can move within the virtual
world.

Since one of the main issues in peer-to-peer DVEs is the
awareness method [34], the simulator should be provided
with an awareness mechanism. Concretely, we have imple-
mented the VON method [12], the method proposed in [14],
and also the COVER method [21] as a simulator option. In
order to achieve this feature, the clients also have an addi-
tional thread for eventually performing supernode tasks if
necessary (as the COVER method requires). Since the be-
havior of the threads in the system is independent, we have
solved the concurrency concerns by creating in each peer
client a queue of messages and a specific thread for proces-
sing this queue. In each peer client, all the listening threads
(one for each current neighbor) drop the received messa-
ges either on the avatar queue or on the supernode queue,
depending of the type of message. The main thread of the
avatar is the one in charge of processing the messages in
the queue of incoming messages. In the same way, the main
thread of the supernode processes the messages in the queue
of incoming messages for the supernode. An analog scheme
is used for sending messages. The main thread of the cli-
ent adds messages to the different sending queues (one for
each current neighbor). The corresponding sending thread
is in charge of processing the messages (sending them in or-
der to the neighbor to whom the thread is connected). This
scheme allows sending in-order messages without blocking
the sending thread. In order to guarantee correct concurrent
accesses to the queues, we have used locks to implement the
critical sections of these accesses. The same mechanism is
also used for implementing the communications in the Loa-
der. In order to illustrate these mechanisms, Figure 2 shows
the communications among the different client applications
in the proposed peer-to-peer simulator.

As Figure 2 shows, each client application can perform
client functions as well as supernode functions (if the CO-

Loader Client 1

[stteneﬂhreau (smymead [LlsleneﬂhreadIsengeymeag) ListenerThread | | SenderThread

I [[

i i i !

Client2

Figure 2. Communications between different
clients in the simulator

VER awareness method is used). The communications bet-
ween a client application ¢ (running on a given client com-
puter) and other client j in the simulation are performed
by means of two threads, one for listening from the socket
and one for sending to the socket communicating 7 and j.
A socket is established between ¢ and j because of one of
these reasons: ¢ needs to communicate with j because j
is the Loader, because j is a neighbor within the AOI of ¢
or because j is an uncovered avatar and % is a supernode
of j (when the COVER awareness method is used). Alt-
hough each client requires multiple threads, the peer-to-peer
scheme allows this workload, as shown in section 3.

A simulation in the proposed simulator consists of a gi-
ven number of iterations. Each iteration consists of all avat-
ars making a new movement. When a given avatar arrives
to the 101th iteration (it has already performed 100 move-
ments) it leaves the simulation, notifying about it to both the
Loader and its current neighbors. Additionally, the simula-
tor generates a simulation log with all the relevant informa-
tion produced during the simulation, for a detailed off-line
analysis.

Although in real systems there are no communications
between the Loader and each client after the client has joi-
ned the system, the simulator implements a monitoring al-
gorithm that allows to measure the awareness rate (the per-
centage of clients that have correctly computed which other
clients are their current neighbors [21, 34]) in real time. In
order to achieve this feature, each client has two different
phases in its cycle time. In the first phase, the client mo-
ves the avatar and notifies its new position in the virtual
world to all its neighbors. In the second phase, the client
sends the Loader information containing its new position
and which other clients it considers as its current neighbors.
In this way, the Loader can compute the percentage of cli-
ents that have correctly computed which other avatars are
its neighbors (the awareness rate). Additionally, this moni-
toring algorithm also measures the awareness delay of avat-
ars. These performance measurement consists of the time
interval between the instant when a new neighbor enters the
AOI of a given avatar 7 and the instant when the own avatar
1 considers that neighbor as its neighbor.

The simulator allows a high number of configuration op-

tions, in order to study a wide range of situation that can
arise in P2P DVEs. Concretely, the configurable attributes
of the client application in the proposed simulator are the
following ones:

Avatar identifier: Every avatar should have a unique iden-
tifier. However, this identifier can be changed ad-hoc.

Awareness monitoring: If this option is active, then the
awareness rate is monitored by the Loader (the avatar
should notify the Loader its current position and which
other clients it considers as its neighbors).

Awareness period: Delay between each movement of the
avatar and the instant when the client notifies the Loa-
der its current neighbors.

AOI'size: Size of the AOI for the avatar controlled by the
client. This parameter is directly related with the pre-
sence factor [23] (the number of neighbors that can see
a given avatar currently), and in its turn this parameter
has an effect on the workload generated to the hosting
client.

Quad-tree size: Minimum region size (COVER awareness
method).

Uncovered threshold: Maximum number of uncovered
avatars in a region (COVER awareness method).

Number of AE: Number of active entities (awareness me-
thod shown in [14]).

Iterations: Number of iterations in the simulation.

Additionally, the simulator has a global configuration file
for establishing global simulation options. These options
are the following ones:

DVE size: Number of clients in the simulation.
Log file: Name of the log file for the simulation.

Updating period: Period between iterations, that is, the
time between two consecutive movements of the avat-
ars.

Awareness algorithm: Awareness method to be used in
the simulation (COVER,VON, or the one shown in
[14]).

Initial distribution: This parameter determines the initial
location of the avatars in the virtual world. The current
options allowed are the uniform distribution of avatars,
the skewed distribution and the clustered distribution.
As an illustrative example, Figure 3 shows how avatars
would be allocated in a 2-D square virtual world when
following each one of these distributions.

a) b) c)

Figure 3. Initial distributions of avatars sup-
ported by the simulator

Movement pattern: This parameter determines the diffe-
rent paths that each avatar can follow in the simula-
tion. Concretely, the simulator supports three move-
ment patterns: Changing Circular Pattern (CCP) [3],
Hot-Points-ALL (HPA) [11] and also Hot-Point-Near
(HPN) [19]. CCP considers that all avatars in the vir-
tual world move randomly around the virtual scene fol-
lowing circular trajectories. HPA considers that there
exists certain “hot points” where all avatars approach
sooner or later. This movement pattern is typical of
multiuser games, where users must get resources (as
weapons, energy, vehicles, bonus points, etc,) that are
located at certain locations in the virtual world. Fi-
nally, HPN also considers these hot-points, but only
avatars located within a given radius of the hot-points
approach these locations. In order to illustrate these
movement patterns, Figure 4 shows the final distribu-
tion of avatars that a 2-D virtual world would show if
these movement patterns were applied to an uniform
initial distribution of avatars. The nine combinations
of the initial distributions and movement patterns co-
ver any possible situation in a virtual world.

A) B) @]

Figure 4. Movement patterns supported by
the simulator: a) CCP, b) HPN, and c) HPA

2.2 Internal Implementation

Since the purpose of the simulator is to become a peer-to-
peer platform for simulating peer-to-peer DVEs, the imple-
mentation of the simulator consists of the software to per-
form the tasks that a peer node should potentially perform:

standard node tasks, supernode tasks (COVER awareness
method) and Loader tasks. The software architecture used
to implement a peer node is modular, and each module has
been performed as a C++ class. Figure 5 shows a XML
scheme of all the modules implemented, as well as the in-
teractions among them.

MessageManager

“’“"“5‘" !
o =

[istenerThread |
I

Supemode

Figure 5. Modular architecture of a peer node.

The classes implemented for this scheme are the follo-
wing ones:

MessageManager class: This is a generic class that inclu-
des a thread for processing requests and also a FIFO
queue where other objects can drop their requests.

CPUusageThread class: Thread in charge of periodically
monitoring the utilization of the CPU as well as other
resources (number of messages sent, etc.).

Quad-tree class: This class represent the hierarchical divi-
sion of the virtual world. It contains information about
the current scene tree and the client identification of
the supernode of each region.

Node class: This class represents each one of the regions
in the quad-tree.

CBlockingSocket class: A communication class that is ba-
sed on sockets for reading and writing messages, liste-
ning for connections requests, etc..

SenderThread class: This class is derived from the Mes-
sageManager class, and it is in charge of taking out and
sending the messages in the MessageManager FIFO
queue. In order to sned the messages, it uses an object
belonging to the CBlockingSocket class.

Supernode class: This thread is derived from the Messa-
geManager class, and it processes the messages sent to
the client when that client is the supernode of a region.

ElementDVE class: This is a generic class. Both the cli-
ents and the Loader derive from this class, that contains

the common methods and attributes of both applicati-
ons: list of clients in the system, methods for obtaining
the initial configuration, etc..

Loader class: It is the main class for the Loader client, and
it derives from the MessageManager class. It proces-
ses the requests that the listening threads (one for each
avatar in the simulation) receive. This processing con-
sists of computing the awareness rate in real time, syn-
chronizing the start of the simulation, etc.

LoaderThread class: This class is composed of listening
threads used for receiving the clients requests. It exists
one object of this class for each client in the simulation.
In order to receive a message, it uses an object of the
CBlockingSocket class.

Client class: This is the main class of the client applica-
tion. It processes all the requests that the listening
threads (connected either to the Loader or to other cli-
ents) receive and drop in its queue. It contain methods
for moving the avatar, computing the neighbors, sen-
ding data to the Loader, etc. It uses objects belonging
to the SenderThread class for sending information to
the rest of clients (including the Loader). It also inclu-
des an object of the Supernode class.

ClientThread class: This class is composed of listening
threads that are used for receiving requests either from
the clients or from the Loader. It exists an object of
this class for each neighbor client and another additio-
nal object for the Loader. When these objects receive
a message they drop the message either on the client
queue or on the supernode queue.

3. Examples of use

We have used the proposed simulator for evaluating the
performance of peer-to-peer DVEs. Also, we have used it
to evaluate the performance of different awareness methods
[14, 12, 21]. These methods had been previously evaluated
on sequential systems. However, there are a lot of situations
in a real distributed system that do not arise in a stand-alone
(sequential) simulator, it is executed on a single computer
and therefore time-space inconsistencies due to network la-
tency, computer delays, clock drifts, etc. do not actually
exist. Only a distributed simulator like the one proposed in
this paper is able to reproduce such situations.

Figure 6 shows the ASR values (latency values) obtai-
ned when using the considered awareness method in a given
DVE configuration (consisting of 100 avatars using an AOI
radius of 10 meters). In this Figure, the X-axis shows the
iteration number, and the Y-axis shows the average ASR
value obtained for that iteration. Concretely, in this case

we have considered the awareness method proposed in [14]
with two different sizes of the list of Active Entities, 10
and 20 neighbors. The plots corresponding to these awaren-
ess methods are labeled as ’KW10” and "KW20”, respec-
tively. The awareness method proposed in [12] is labeled as
”VON”, and the awareness method proposed in [21] is labe-
led as COVER. In this case, the simulation results show that
the awareness method that provides the lowest ASR values
is the COVER method.

0.1

KW10
= KW20
s VON
008 [| —=— CO 1

0.06 - b

- WMWMWW

002 1

ot

0 10 20 30 40 50 60 70 80 90
Iteration

ASR (secs.)

Figure 6. ASR values obtained with different
awareness methods.

Figure 7 shows the awareness delays obtained by the
considered awareness methods for the same DVE configu-
ration. In this case, the Y-axis shows the awareness delays
provided by the simulator. These values show that the CO-
VER method provides the best awareness delays during the
whole simulation.

0.6

05

0.4 | 1

03 1

Ap (secs.)

0.2 1

0.1 b

Iteration

Figure 7. Awareness delays obtained with dif-
ferent awareness methods.

Table 1 shows another performance results that can be
achieved with the proposed simulator. Concretely, it shows
the awareness rates provided by the considered awareness
methods for the same DVE configuration. This table show
on each row the average awareness rates achieved in a si-
mulation by a given method when avatars follow a given
combination of initial distribution and movement pattern of
avatars. Each column shows the results achieved for a dif-
ferent DVE size. Concretely we have considered in this ex-
ample a P2P DVE of 100, 500 and 1000 avatars.

KW10
100 av. 500av. 1000 av.
UNF-CCP 90.9 95.9 96.1
UNF-HPA 85.5 85.9 96.0
UNF-HPN 81.8 92.0 98.2
SKW-CCP 92.7 97.5 96.8
SKW-HPA 88.7 91.8 97.9
SKW-HPN 88.7 94.5 98.0
CLS-CCP 96.4 96.8 97.6
CLS-HPA 90.9 93.5 94.4
CLS-HPN 90.9 96.4 98.7
VON
100 av. 500av. 1000 av.
UNF-CCP 90.8 94.1 92.1
UNF-HPA 79.4 63.8 92.5
UNF-HPN 89.3 81.1 93.6
SKW-CCP 98.2 92.0 96.3
SKW-HPA 90.3 83.0 88.5
SKW-HPN 89.7 79.4 91.2
CLS-CCP 85.4 87.7 94.6
CLS-HPA 88.6 77.3 89.4
CLS-HPN 92.4 84.8 94.7

COVER
100 av. 500av. 1000 av.
| ALL 100 | 100 [100

Table 1. Awareness rates provided by diffe-
rent awareness methods

Each value in Table 1 has been computed as the ave-
rage value of 10 different simulations with the same in-
put parameters. For the sake of shortness, in this case we
have shown in this table the results for the KW10, VON
and COVER method. Also, the results for the COVER me-
thod where all the same (100%) for all the combinations
of movement patterns. Therefore, we have shown only a
single row for this awareness method. These results show
how two of the considered awareness methods (KW10 and
VON) do not actually provide a full (100%) awareness rate

(as claimed by heir authors), when non-uniform movement
patterns are followed. These results can only be obtained
with a distributed platform for simulating P2P DVEs.

Additionally, the proposed simulator can be used as the
kernel of any P2P DVE application, due to its modular ar-
chitecture. The graphical interface for the particular appli-
cation can be easily linked to the Client module described
above. As a result, the implementation of the graphical in-
terface is independent of the high-level graphic library. In
order to show that this feature can be used for real simula-
tions, Figure 8 shows two different snapshots for a peer-to-
peer simulation of an evacuation in a naval scenario. In this
case, the avatars are the passengers and the crew on a boat,
and the goal is to perform the boat evacuation as fast and
safe as possible. The graphical interface has been develo-
ped on OpenSceneGraph 1.2 [6]

Figure 8. Avatars evacuating a boat.

Additionally, Figure 9 shows a snapshot of another peer-
to-peer simulation where the avatars are cars and the virtual
world is a city. In this case, the purpose of the simulation
tool is the training of novel drivers. The graphical interface
has been developed on OpenGL Performer 3.2 [28]

All these figures show how the monitoring algorithms
and the computations made to evaluate the system perfor-
mance do not affect the graphical quality of the simulations.

4. Conclusions and Future Work

In this paper, we have proposed a distributed platform
for simulating the behavior of Peer-To-Peer DVEs. This si-
mulator takes into account crucial parameters like the num-
ber of avatars in the system, their distribution in the virtual
world and their movement pattern, among other aspects. It
includes mechanisms for evaluation and data acquisition in
real time, and it accurately reproduces the behavior of a Dis-
tributed Virtual Reality system.

The software architecture used to implement a peer node
is modular, and each module has been performed as a C++

Figure 9. Peer-to-peer simulation of cars dri-
ving inside a city.

class. In this way, the overhead added to clients for measu-
ring the performance metrics in a peer-to-peer DVE have no
significant effects on the system response. As a result, the
simulator has been used in real simulations to characterize
the behavior of peer-to-peer DVEs, becoming an invaluable
tool for capturing the behavior of this kind of systems.

5. Acknowledgments

This work has been jointly supported by the Spa-
nish MEC and European Commission FEDER funds un-
der grants Consolider Ingenio-2010 CSD2006-00046 and
TIN2006-15516-C04-04.

References

[1] E. Alba, F. Luna, and A. Nebro. Advances in parallel hete-
rogeneous genetic algorithms for continuous optimization.
International Journal of Applied Mathematics and Compu-
ter Science, 14(3), 2004.

[2] Anarchy Online: : http://www.anarchy-online.com.

[3] N. Beatrice, S. Antonio, L. Rynson, and L. Frederick. A
multiserver architecture for distributed virtual walkthrough.
In Proceedings of ACM VRST 02, pages 163-170, 2002.

[4] E.J. Berglund and D. R. Cheriton. Amaze: a multiplayer
computer game. [EEE Software, 2(3):30-39, 1985.

[5] C.Bouras, D. Fotakis, and A. Philopoulos. A distributed vir-
tual learning centre in cyberspace. 4th International Confe-
rence on Virtual Systems and Multimedia, VSMM98, Gifu-
Japan, 1998.

[6] D. Burns and R. Osfield. Open scene graph a: Introduction,
b: Examples and applications. In Proceedings of the IEEE
Virtual Reality 2004 (VR’04), pages 265-265. IEEE Com-
puter Society, 2004.

(7]

(8]
(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

Z. Choukair, D. Retailleau, and M. Hellstrom. Environ-
ment for performing collaborative distributed virtual envi-
ronments with qos. In Proceedings of the International Con-
ference on Parallel and Distributed Systems (ICPADS’00),
pages 111-118. IEEE Computer Society, 2000.

Everquest: http://everquest.station.sony.com/.

FIPA. Fipa agent management specification, 2000. Availa-
ble at http://www.fipa.org/specs/fipa00023/.

E. Frecon and M. Stenius. Dive: A scalable network archi-
tecture for distributed virtual environments. Distributed Sy-
stems Engineering Journal, 5(3):91-100, September 1998.
F. C. Greenhalgh. Analysing movement and world transi-
tions in virtual reality tele-conferencing. In Proceedings of
5th European Conference on Computer Supported Coopera-
tive Work (ECSCW’97), pages 313—, 1997.

S. Y. Hu and G. M. Liao. Scalable peer-to-peer networked
virtual environment. In Proceedings ACM SIGCOMM 2004
workshops on NetGames *04, pages 129-133, 2004.

IEEE. 1278.1 IEEE Standard for Distributed Interactive
Simulation-Application Protocols (ANSI), 1997.

Y. Kawahara, T. Aoyama, and H. Morikawa. A peer-to-peer
message exchange scheme for large scale networked virtual
environments. Telecommunication Systems, 25(3):353-370,
2004.

F. Kuhl, R. Weatherly, and J. Dahmann. Creating Compu-
ter Simulation Systems: An Introduction to the High Level
Architecture. Prentice-Hall PTR, 1999.

Lineage: http://www.lineage2.com.

J. C. Lui and M. Chan. An efficient partitioning algorithm
for distributed virtual environment systems. [EEE Trans.
Farallel and Distributed Systems, 13, 2002.

M. R. Macedonia, M. Zyda, D. R. Pratt, D. P. Brutzman, and
P. T. Barham. Exploiting reality with multicast groups: A
network architecture for large-scale virtual environments. In
Proceedings of the 1995 IEEE Virtual Reality Annual Sym-
posium, pages 2—10, 1995.

M. Matijasevic, K. P. Valavanis, D. Gracanin, and I. Lovrek.
Application of a multi-user distributed virtual environment
framework to mobile robot teleoperation over the internet.
Machine Intelligence & Robotic Control, 1(1):11-26, 1999.
D. Miller and J. Thorpe. Simnet: The advent of simulator
networking. /IEEE TPDS, 13, 2002.

P. Morillo, W. Moncho, J. M. Orduiia, and J. Duato. Provi-
ding full awareness to distributed virtual environments based
on peer-to-peer architectures. Lecture Notes on Computer
Science, 4035:336-347, 2006.

P. Morillo, J. Ordufa, and J. Duato. A scalable synchro-
nization technique for distributed virtual environments ba-
sed on networked-server architectures. In Proceedings of
the 35th IEEE International Conference on Parallel Proces-
sing (ICPP’06) Workshops, pages 74-81. IEEE Computer
Society Press, 2006.

P. Morillo, J. M. Orduna, M. Fernindez, and J. Duato. On
the characterization of avatars in distributed virtual worlds.
In EUROGRAPHICS’ 2003 Workshops, pages 215-220. The
Eurographics Association, 2003.

P. Morillo, J. M. Orduiia, M. Fernindez, and J. Duato.
On the characterization of distributed virtual environment

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]
(33]
[34]

(35]

systems. In Euro-Par’ 2003 - Lecture Notes in Compu-
ter Science 2790, pages 1190-1198. ACM, Springer-Verlag,
2003.

P. Morillo, J. M. Orduiia, M. Fernandez, and J. Duato. Im-
proving the performance of distributed virtual environment
systems. IEEE Transactions on Parallel and Distributed Sy-
stems, 16(7):637-649, 2005.

M. Oliveira, J. Crowcroft, and M. Slater. Components for
distributed virtual environments. PRESENCE: Teleopera-
tors and Virtual Environments, 10(1):56-61, 2001.

Quake: http://www.idsoftware.com/games/quake.

J. Rohlf and J. Helman. Iris performer: a high performance
multiprocessing toolkit for real-time 3d graphics. In SIG-
GRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 381—
394, New York, NY, USA, 1994. ACM Press.

S. Rueda, P. Morillo, and J. M. Orduiia. On the charac-
terization of peer-to-peer distributed virtual environments.
In Proceedings of International Conference on Cyberworlds
2007 (Cyberworlds’07), Hannover, Germany. IEEE Compu-
ter Society Press, 2007.

S. Rueda, P. Morillo, J. M. Orduiia, and J. Duato. On the
characterization of peer-to-peer distributed virtual environ-
ments. In Proceedings of the IEEE Virtual Reality 2007
(IEEE-VRO7), Charlotte, NC, USA., pages 107-114. IEEE
Computer Society Press, 2007.

J. Salles, R. Galli, and A. C. A. et al. mworld: A multiuser
3d virtual environment. [EEE Computer Graphics, 17(2),
1997.

D. Salomon. A guide to data compression methods.
Springer-Verlag, 2001.

S. Singhal and M. Zyda. Networked Virtual Environments.
ACM Press, 1999.

R. B. Smith, R. Hixon, and B. Horan. Collaborative Virtual
Environments. Springer-Verlag, 2001.

World of warcraft: http://www.worldofwarcraft.com.

