
 Elsevier Editorial System(tm) for Future Generation Computer Systems

 Manuscript Draft

Manuscript Number:

Title: Ensuring the Performance and Scalability of Peer-To-Peer Distributed Virtual Environments

Article Type: SS: P2P and Grid Systems - Antonopoulos

Keywords: Distributed applications; Performance evaluation

Corresponding Author: Professor Juan Manuel Orduña Huertas, Ph.D.

Corresponding Author's Institution: Universidad de Valencia

First Author: Silvia Rueda, Ph. D

Order of Authors: Silvia Rueda, Ph. D; Pedro Morillo, Ph.D; Juan Manuel Orduña Huertas, Ph.D.;

José Duato, Ph.D

Abstract: Large scale distributed virtual environments (DVEs) have become a major trend in

distributed applications, mainly due to the enormous popularity of multi-player online games in the

entertainment industry. Peer-to-peer (P2P) architectures have been proposed as an efficient and

truly scalable solution for this kind of systems. However, in order to design efficient P2P DVEs

these systems must be characterized, measuring the impact of different client behaviors on system

performance.

This paper presents the experimental characterization of P2P DVEs. The results show that the

saturation of a given client exclusively has an effect on the surrounding clients in the virtual world,

having no noticeable effect at all on the rest of clients. Nevertheless, the interactions among clients

that can take place in this type of systems can lead to the temporal saturation of an unbounded

number of clients, thus limiting the performance of P2P DVEs. In this paper, we also discuss and

propose a technique for avoiding the saturation of the client computers in P2P DVEs. The

evaluation results show that the performance and the scalability of P2P DVEs are significantly

improved. These results can be used as the basis for an efficient design of P2P DVEs.

Ensuring the Performance and Scalability of

Peer-To-Peer Distributed Virtual Environments

P.Morillo, S. Rueda, J. M.Orduñaa, J.Duatob

aDepartamento de Informática - Universidad de Valencia - Spain
bDISCA - Universidad Politécnica de Valencia - SPAIN

Abstract

Large scale distributed virtual environments (DVEs) have become a major
trend in distributed applications, mainly due to the enormous popularity of
multi-player online games in the entertainment industry. Peer-to-peer (P2P)
architectures have been proposed as an efficient and truly scalable solution
for this kind of systems. However, in order to design efficient P2P DVEs
these systems must be characterized, measuring the impact of different client
behaviors on system performance.

This paper presents the experimental characterization of P2P DVEs. The
results show that the saturation of a given client exclusively has an effect on
the surrounding clients in the virtual world, having no noticeable effect at
all on the rest of clients. Nevertheless, the interactions among clients that
can take place in this type of systems can lead to the temporal saturation
of an unbounded number of clients, thus limiting the performance of P2P
DVEs. In this paper, we also discuss and propose a technique for avoiding
the saturation of the client computers in P2P DVEs. The evaluation results
show that the performance and the scalability of P2P DVEs are significantly
improved. These results can be used as the basis for an efficient design of
P2P DVEs.

Key words: Distributed Applications, Performance Evaluation

Email addresses: Silvia.Rueda@uv.es, Pedro.Morillo@uv.es,

Juan.Orduna@uv.es (P.Morillo, S. Rueda, J. M.Orduña), jduato@gap.upv.es (J.Duato)

Preprint submitted to Future Generation Computer Systems December 17, 2008

* Manuscript
Click here to view linked References

http://ees.elsevier.com/fgcs/viewRCResults.aspx?pdf=1&docID=1839&rev=0&fileID=51828&msid={961DB5D8-E9E5-45A4-B1D8-87B1E236B02C}

1. Introduction

The current expansion of massively multi-player online games (MMOGs)
has promoted the growth of large scale distributed virtual environments
(DVEs). These highly interactive systems simulate a 3-D virtual world where
multiple users share the same scenario. Each user is represented in the sha-
red virtual environment by an entity called avatar, whose state is controlled
by the user through a client computer. The system renders the images of
the virtual world that each user would see if he was located at that point
in the virtual environment. Thousands and even hundreds of thousands of
client computers can be simultaneously connected to the DVE [1]. The client
computers can be connected through different networks, and even through
Internet [2, 3, 4, 5, 6].

In these systems, architectures based on networked servers have been the
major standard for DVEs during the last years [7, 8, 9, 10, 11, 12]. In these
architectures, the control of the simulation relies on several interconnected
servers. Client computers are assigned to one of the servers in the system.
When a client computer modifies the state (usually the position, but it can
also modify the appearance or other statefull information) of an avatar, it
also sends an updating message to its server, which in turn must propagate
this message to other servers and clients. The main reasons for the preva-
lence of networked-server architectures over peer-to-peer architectures have
been the control of the simulation and the awareness problem. Effectively, if
there are only a few servers that are controlled by the application owner, the
chance of non-desired client behaviors is greatly reduced. On other hand,
the awareness problem consists of ensuring that each avatar (for the sake
of shortness, in the rest of the paper we will use the term avatar to denote
the client computer controlling that avatar) is aware of all the avatars in its
neighborhood [13]. Usually, the Area Of Interest (AOI) [14] of an avatar is
considered as the neighborhood for that avatar. In networked-server archi-
tectures, the awareness of each avatar can be easily provided by the servers,
since they periodically synchronize among them [15, 16, 17] and therefore
they know the approximate location of each avatar in the scene at each in-
stant. Taking into account the AOI size, the servers can compute which
other avatars are the neighbors of each avatar. Nevertheless, the inter-server
dependences shown by networked-server architectures prevent these schemes
from quickly adapting to the workload generated by users behavior [8], parti-
cularly for the case of MMOGs, where up to hundreds of thousands of clients

2

can be simultaneously connected to the system.
Peer-to-peer (P2P) architectures were proposed in the nineties for DVEs

[18, 19, 20]. In classic peer-to-peer architectures, each client computer is also
a system server, and the control of the simulation is distributed among all
the client computers. In hybrid peer-to-peer architectures, only some of the
client computers act as system servers. Peer-to-peer architectures seem to be
the most flexible scheme in order to provide good scalability for large scale
DVEs [21], and several online games based on P2P architectures have been
designed last years [22, 23, 24, 25, 26, 27]. Several awareness methods have
been proposed for solving the awareness problem [28, 29, 30, 31, 32], at the
cost of imposing both additional communications between different avatars
and additional computations (performed by the client computers controlling
these avatars). In this scenario, the design of truly efficient P2P DVEs can
allow these architectures to become the major trend in a near future. In order
to achieve such goals, the joint impact that the user behavior, the awareness
method and other computations can have on the real system performance
must be actually measured. Particularly, it must be guaranteed that these
architectures are less prone to saturation than the networked-server architec-
tures under different user behavior.

Based on that motivation, in this paper we propose the characterization
of peer-to-peer DVEs by performing real-system measurements. The cha-
racterization results show that, unlike in networked-server architectures, the
system flexibility remains unchanged with the number of client computers
connected to the system. That is, the peer-to-peer scheme easily adapts to
the workload generated by users behavior, since every client can also act as
a server. Also, the results show that the saturation of a given client exclusi-
vely has an effect on the surrounding clients in the virtual world, having no
effects at all on the rest of avatars. Finally, the characterization results show
that the use of a peer-to-peer scheme does not prevent client computers from
reaching saturation. That is, under certain behaviors an unbounded number
of clients could reach saturation, seriously affecting the scalability and/or
the performance of P2P DVEs. In order to solve this problem, in this paper
we also propose a technique for avoiding client saturation. Unlike another
existing techniques proposed for MMOGs [33, 34], our proposal is focused on
the state of the client computer, rather than on the application requirements,
and it exclusively drops obsolete messages containing location updates. As a
result, it does not require the analysis of obsolescence relationships [34] that
depend on the application, and it can be adjusted to fulfill any given time

3

constraint. The performance evaluation results show that the benefits achie-
ved by preventing client computers from reaching saturation are higher than
the drawbacks of loosing information about the current state of other cli-
ent computers. Thus, the selected method avoids client saturation on DVEs
based on P2P architectures while maintaining the awareness rate (the per-
centage of correct detections of new neighbors) close to 100%, regardless of
the movement pattern and the initial distribution of avatars. Therefore, the
proposed technique can ensure the performance and the scalability of P2P
DVEs.

The rest of the paper is organized as follows: Section 2 details the propo-
sed characterization setup that allows to experimentally study the behavior
of peer-to-peer DVEs. Next, Section 3 presents the characterization results.
Section 4 describes the proposed method for avoiding the saturation of the
client computers, and Section 5 shows the performance evaluation of the sa-
turation avoidance technique. Finally, Section 6 outlines some concluding
remarks.

2. Characterization Setup

We propose the characterization of P2P DVEs by simulation. The eva-
luation methodology used is based on the main standards for modeling col-
laborative virtual environments, such as FIPA [35], DIS [36] and HLA [37].
Since DVEs are inherently based on networks, the metrics used for evalua-
ting the performance of these systems include the two main metrics used for
evaluating network performance. These metrics are latency and throughput
[38]. Nevertheless, in order to avoid clock skewing we have selected through-
put and response time (defined as the round-trip delay for the messages sent
by each client) as the performance metrics to be characterized.

Concretely, we have used a distributed simulator modeling a DVE based
on a peer-to-peer architecture. The simulator is written in C++ and it is
composed of two different applications, one modeling the clients and the
other one modeling the central Loader. The Loader is the entity in charge of
the initialization of new avatars when they join the DVE [39], and it is also
denoted as Bootstrap server [28].

Each instance of the client application (as well as the central loader ap-
plication) can be executed either on the same machine (thus composing a
centralized simulator that does not actually communicate clients through the
network) or on a different machine, resulting in a truly distributed simulator.

4

All clients must initially join the system through the central loader. Both
applications use different threads for managing the different connections they
must establish. Such connections are performed by means of sockets.

Each client has a main thread for managing the actions required by the
user and different threads for communicating with its neighbor clients. For
each neighbor, two threads are executed, one for listening and one for sending
messages. Similarly, the central loader has two threads for communicating
with each client in the system and also a main thread. It must be noticed that
once a client has joined the system, that client does not need to communicate
with the central loader any more. Since the goal of this characterization is
to study how the system evolves as clients interact with the environment,
rather than analyzing how new clients join the system, our simulator initially
provides each client with the IP addresses of its initial neighbors.

A simulation consists of each avatar performing 100 movements. An
iteration of the whole system consists of all avatars making a movement. Each
avatar notifies its neighbors as well as the central loader when it reaches the
101th iteration, and then it leaves the system. We have chosen the number
of 100 iterations (movements) for a simulation because it is the number of
movements that the most distant avatar needs to reach the center of the
square virtual world used for characterization purposes. This virtual world
is a 2D square whose sides were 100 meters long. Each time an avatar moves,
it sends a message to all its neighbor avatars (the client computer controlling
that avatar sends a message to the client computers controlling the neighbor
avatars). These destination avatars then send back an acknowledgment to
the sending avatar, in such a way that the sending avatar can compute the
round-trip delay for each message send. We have denoted the average round-
trip delay for all the messages sent by an avatar as the Average System
Response (ASR) for that avatar (for that client computer).

Although we have implemented several different awareness methods in the
simulator, we have used the COVER method for characterization purposes,
since to our knowledge this is the only method that is capable to provide full
awareness under non-uniform movement patterns of avatars [40].

Two different characterization setups have been made, depending on the
metrics to be studied. In order to study the system throughput (the maxi-
mum number of clients the system can support while maintaining full awa-
reness and reasonable latency levels), we have used a cluster of 14 nodes. One
of these PCs hosted the central loader, and the rest of the 13 PCs hosted the
clients in the system in a uniformly distributed way. Each node was a dual

5

Opteron processor running Linux (SuSE 10.1 distribution).
Although a real system does not require communication between each

client and the central loader, we have implemented a monitoring algorithm
to check the awareness rate supported by the system. The awareness rate
can be defined as the percentage of neighbor avatars that are correctly com-
puted by the avatars themselves. In order to compute the awareness rate in
a distributed system, some central entity should know the current location
of all the avatars in the system. Taking into account the AOI of the avatars,
this entity can compute which neighbors are within the AOI of each avatar.
Therefore, each time that an avatar i makes a movement the corresponding
client computer should report to this central entity not only its new location
but also which other avatars it considers as its neighbors. Since the central
entity knows the current location of all the avatars and their AOI size, it can
compute the correct neighbors for i and compare if the neighbors reported
by i are correct or wrong. Since the same process is performed with all the
avatars, it can compute the percentage of avatars that have correctly com-
puted which other avatars are their neighbors (that is, the awareness rate).
Concretely, we have designed the Loader as the central client in charge of
computing the awareness rate. Thus, the monitoring algorithm consists of
each client dividing its cycle time in two phases. In the first phase, clients
move following a given movement pattern (described in Section 3) and they
communicate each other their new location in the virtual space by exchan-
ging messages. In the second phase, each client sends the central loader a
message containing information about its new location and also about which
other clients it considers as its neighbors. Thus, the central Loader can com-
pare the awareness information sent by each avatar with its own awareness
computations (the right ones, since it has information about the location of
all the avatars), and it can compute the percentage of correct awareness com-
putations made by that client. In this way, the central Loader can compute
the awareness rate in real time. We have used a movement cycle of one client
movement each 3.95 seconds. From this period, 2.85 seconds are dedicated
to the first phase and 1.1 seconds are dedicated to the second phase. As a
reasonable latency level, we have considered a threshold ASR value of 250
ms., since this is the highest ASR value that provides users with a good
interaction level [41].

In order to study the system latency, we have used a different characteri-
zation setup. In this case, we have used personal computers interconnected
by a fast Ethernet network, hosting the avatars in a uniformly distributed

6

way. The purpose of such setup is to establish an upper number for the ave-
rage value of the ASR when client computers are slightly loaded. Finally, in
order to study the effects that the saturation of a single client computer has
on the rest of clients, we have used the same setup except that one of the PCs
hosts a single client, and the rest of the PCs host the rest of the clients in a
uniformly distributed way. In these two setups we have not monitored the
awareness rate, and the movement cycle time has been reduced accordingly.
The idea is to move the single hosted client as fast as possible, to force that
client to send a huge number of messages (therefore saturating that client)
and to study the effect that this saturation has on the neighbor clients.

3. Characterization of P2P DVEs

We have simulated the behavior of a set of independent avatars in a
generic DVE based on a P2P architecture. These avatars are located within a
seamless 3D virtual world [1] following three different and well-known initial
distributions: uniform, skewed and clustered [7, 8]. Starting from these
initial locations, in each simulation avatars can move into the scene following
one of three different movement patterns: Changing Circular Pattern (CCP)
[9], HP-All (HPA) [42] and HP-Near (HPN) [43]. CCP considers that all
avatars in the virtual world move randomly around the virtual scene following
circular trajectories. HPA considers that there exists certain “hot points”
where all avatars approach sooner or later. This movement pattern is typical
of multiuser games, where users must get resources (as weapons, energy,
vehicles, bonus points, etc,) that are located at certain locations in the virtual
world. Finally, HPN also considers these hot-points, but only avatars located
within a given radius of the hot-points approach these locations. In order to
illustrate these movement patterns, Figure 1 shows the final distribution of
avatars that a 2-D virtual world (represented as a square map) would show
if these movement patterns were applied to a uniform initial distribution
of avatars. For evaluation purposes, we have considered the nine possible
combinations of the three initial distributions of avatars in the virtual world
and the three movement patterns.

3.1. Scalability

The first feature to be proved in a peer-to-peer scheme is its scalability.
With this purpose, we have performed more than 4000 experiments to study
the behavior of DVEs based on a P2P architecture. In all of them, the system

7

Figure 1: Final distribution of avatars for a) CCP, b) HPN, and c) HPA movement patterns
applied to an initial uniform distribution of avatars.

has provided a full awareness rate while saturation has not been reached by
any CPU. We have made tests with different world sizes S (the number of
connected clients), although for the sake of shortness we show here a single
case with 120 avatars. In all the cases the results were very similar, and the
average ASR values obtained did not vary from one population to another,
showing the inherent scalability of the peer-to-peer scheme.

Concretely, Figure 2 shows a representative example of the experiments
performed in order to study the system throughput. On the X-axis this figure
shows the iteration number of the simulation performed, and on the Y-axis
it shows the average value in seconds for the ASR of all the avatars. Each
point in the plots represents the average ASR of ten different executions of
the same simulation.

Figure 2: Average ASR values for different configurations of a DVE with 120 avatars

Figure 2 shows that the ASR remains always far below the threshold of

8

250 ms., and the awareness rate provided for all the plots in this figure was
100%. Since in these experiments each cluster node hosted 40 avatars, we
can state that there would not be any problem (the CPU utilization would
be far from 100%) when executing one avatar in one PC.

Additionally, we have analyzed the system behavior in a transverse way,
that is, we have studied the average ASR values for different population sizes.
Although we have performed this analysis for all the combinations of initial
distributions and movement patterns, for the sake of shortness we show here
a single case. All the cases showed similar results. Concretely, Figure 3 shows
the average ASR values provided to avatars when following the Uniform-CCP
scheme.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 10 20 30 40 50 60 70 80 90 100Iteration

se
cs

100 AVs
500 AVs

1000 AVs

Figure 3: Average ASR values for different populations of avatars under a Uniform-CCP
combination

Figure 3 shows three flat lines at a different levels, showing that while
the population increases in an order of magnitude (from 100 to 1000 avatars)
the average ASR increases by a factor of two, and it is still far from the QoS
threshold of 250 ms.. Therefore, these experiments prove that the peer-to-
peer scheme is fully scalable, regardless of the number of client computers
connected to the system. Although these results could be expected due to the
inherently distributed nature of the peer-to-peer scheme, it is worth mention
the remarkable differences with the results provided by the networked-server
scheme [8].

9

3.2. Levels of Interaction

Another aspect of P2P DVEs to be characterized is the behavior of the
system under different levels of interactions, that is, under different com-
munication rates and different numbers of neighbors to communicate with.
Concretely, we have measured the average value of the ASR provided to all
avatars for different movement patterns and initial distributions of avatar
in the virtual worlds. Since the workload that a given avatar adds to the
system depends on both the movement rate of the avatar and also on the
number of neighbor avatars in the virtual world [44], we have measured the
ASR provided by the system for different values of these two parameters. In
these tests we used the platform of interconnected PCs and a wide range of
populations sizes. However, for the sake of shortness we will show in this
section the results for a system with 101 avatars. Figure 4 shows the results
for all of the distributions with a cycle period T of 0.6 seconds (all avatars
make a movement every 0.6 seconds) and an AOI of 10 meters, while Fi-
gure 5 shows the results for the same AOI but with a movement period of
0.1 seconds. Then, Figure 6 shows the results for an AOI of 20 meters and
a movement period of 0.6 seconds. All these figures show on the X-axis the
iteration number (a simulation is composed of 100 iterations), and they it
show on the Y-axis the average value of the ASR provided to all the avatars.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50 60 70 80 90 100

UNF CCP
UNF HPA
UNF HPN
SKW CCP
SKW HPA
SKW HPN
CLS CCP
CLS HPA
CLS HPN

Iteration

se
cs

.

Figure 4: Average ASR values for T=0.6 s.& AOI=10 m.

10

All the plots in Figure 4 are flat lines of different ASR values, showing
that the system is below its saturation point and the average ASR does not
indefinitely increase. Moreover, the plots for all the movement patterns are
below 0.02 seconds, far away from the QoS threshold of 250 milliseconds.
Figure 5 shows the results for the same number of avatars when the cycle
period is reduced to 0.1 seconds (the movement rate of all avatars is incre-
ased). In this case, the three plots corresponding to the HPA movement
pattern and the plot for the HPN pattern with a skewed initial distribution
of avatars show a linear increasing with the number of iterations. That is, for
these patterns the client computers are not capable of sending, returning and
processing the number of messages generated by avatars when they move in a
period cycle. This is due to the fact that in the HPN and particularly in the
HPA pattern, avatars tend to crowd the hot points, increasing the number
of neighbors in the AOI in the subsequent iterations. Since they must send
more messages in the same cycle period, the client computers become satu-
rated and the average ASR increases. This behavior shows that the behavior
of the clients (their movement rate and their movement pattern) can have a
significant effect on the overall performance of P2P DVEs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

UNF CCP
UNF HPA
UNF HPN
SKW CCP
SKW HPA
SKW HPN
CLS CCP
CLS HPA
CLS HPN

Iteration

se
cs

.

Figure 5: Average ASR values for T=0.1 s.& AOI=10 m.

Figure 6 shows the results for the same population of avatars and the
same patterns when the AOI size is doubled. The results shown in this figure

11

are similar to those shown in Figures 4 and Figure 5. Figure 6 shows all
the plots except one with a flat slope. Although the average ASR values are
slightly higher than the ones shown in Figure 4, all of them are far away from
0.25 seconds.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50 60 70 80 90 100

UNF CCP
UNF HPA
UNF HPN
SKW CCP
SKW HPA
SKW HPN
CLS CCP
CLS HPA
CLS HPN

Iteration

se
cs

.

Figure 6: Average ASR values for T=0.6 s. & AOI=20 m.

These results show that increasing the AOI size has less significant effects
on system latency than the movement rate of avatars. Also, these results
show that under certain circumstances (for example, when avatars move fast)
the ASR provided to the avatars in a P2P DVE can exceed any threshold
value of the interaction level (several plots in Figure 5 shows a parabolic
slope). Additionally, the number of clients that can potentially suffer from
these effects is not bounded. Therefore, we can conclude that an efficient
behavior of the DVE system is not inherently guaranteed by the Peer-to-
Peer architecture.

3.3. Client Saturation

Additionally, we have studied the effects that a slow client computer or
network link(s) can have on the rest of client computers. For this study, we
have tested the 9 different combinations of initial distributions of avatars and
movement patterns on a real DVE based on a P2P architecture composed of
101 PCs. However, for the sake of shortness we show here only the results

12

for some of these combinations, since all of them were similar. In these
experiments, we have forced a given avatar (controlled by a single client
computer) to move faster and faster, until the number of movements per
second is so high that the client computer cannot send all the messages
to the corresponding neighbors within the same cycle period. Under these
conditions, we have measured the latency (the ASR) provided to different
avatars.

The COVER awareness method [30] distinguishes between different kinds
of neighbors of a given avatar i. First, the first level neighbors (L1) are those
avatars located inside the AOI of avatar i. Next, the second level neighbors
(L2) are those avatars that are L1 neighbors of the L1 neighbors of i and
are not inside AOI of avatar i. That is, the second level neighbors are the
neighbors of the neighbors of i. Therefore, we have computed the average
ASR value provided to i, the average ASR value provided to its L1 neighbors,
the average ASR value provided to its L2 neighbors and the average ASR
value provided to rest of the avatars in the system.

For the sake of shortness, we will show the results for DVEs with 101
avatars and AOI of 10 meters. Figure 7 shows the results for the uniform
distribution with a movement rate of 2.1 seconds and the CCP movement
pattern. In this and the subsequent figures, we have labeled the ASR value
provided to avatar i as AV0. The average ASR values provided to the L1
neighbors of i have been labeled as L1N, the average ASR values provided to
the L2 neighbors of i have been labeled as L2N, and the average ASR values
provided to the rest of avatars have been labeled as NTN.

Figure 7 shows that for the combination of uniform distribution of avatars
and a CCP movement pattern the saturation of AV0 mainly has an effect on
its L1 neighbors, and it has no significant effects neither on its L2 neighbors
nor on the rest of avatars.

Figure 8 shows the results for the combination of a uniform distribution
of avatars and an HPAll movement pattern. In this case, while the plot for
AV0 has a parabolic shape, the shape of the plot for L1 neighbors is linear
with a low slope. The plot for the L2 neighbors is similar to the plot for
L1 neighbors, except that from the 70th iteration up it becomes negligible.
The plot for the rest of avatars is a flat line with a negligible value. These
plots indicate that the effects of the saturation of AV0 (the client computer
controlling AV0) are one order of magnitude lower in its L1 and L2 neighbors,
while they are negligible in the rest of avatars.

Figure 9 shows the results for a uniform initial distribution of avatars

13

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

AV0
L1N
L2N
NTN

Iteration

se
cs

.

Figure 7: Effects of a client saturation on different kinds of avatars under a Uniform-CCP
combination

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

AV0
L1N
L2N
NTN

Iteration

se
cs

.

Figure 8: Effects of a client saturation on different kinds of avatars under a Uniform-
HPALL combination

14

following an HPNear movement pattern. In this case, the shape of the plot
for AV0 is linear with a high slope, while the shape of the plot for L1 neighbors
is linear with a low slope and the plots for the L2 neighbors and the rest of
the avatars are flat lines. That is, the difference between the HPA and HPN
movement patterns makes that in the latter case the L2 neighbors are not
affected by the saturation of a given avatar.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

AV0
L1N
L2N
NTN

Iteration

se
cs

.

Figure 9: Effects of a client saturation on different kinds of avatars under a Uniform-
HPNear combination

Figures 10 and 11 show the results for the skewed initial distribution of
avatars and CCP and HPAll movement patterns, respectively. The results
for the HPNear movement pattern were very similar to the ones for HPAll
movement pattern, and we are not including them for the shake of shortness.
The results in these two Figures are similar to those in Figures 8 and 9,
respectively. That is, the saturation of a given client has a significant effect
on the L1 neighbors, and this effect is one order of magnitude lower than the
ASR provided to the saturated avatar if an HPN movement pattern is used.
On the contrary, if a HPAll movement pattern is used then the L2 neighbors
are also affected by the saturation.

Therefore, with all these results we can state that the effects of the sa-
turation of a given avatar are limited to L1 and L2 neighbors. The rest of
avatars are not affected. The reason for the behavior shown in Figure 7 is
the circular movement of CCP pattern. This pattern propagates and incre-
ases the high ASR values of the L1 neighbors to other L1 neighbors as the

15

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

AV0
L1N
L2N
NTN

Iteration

se
cs

.

Figure 10: Effects of a client saturation on different kinds of avatars under a Skewed-CCP
combination

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

AV0
L1N
L2N
NTN

Iteration

se
cs

.

Figure 11: Effects of a client saturation on different kinds of avatars under a Skewed-HPAll
combination

16

simulation proceeds. However, we can conclude that the Peer-to-Peer archi-
tecture does not prevent client computers from reaching saturation if a large
amount of neighbors move fast. Moreover, the number of client computers
that can suffer from these effects is not bounded. Therefore, the performance
of the DVE can be significantly decreased under certain user behaviors. In
order to ensure a good system performance regardless of the users behavior,
a saturation avoidance technique should be developed for P2P DVEs.

4. A Saturation Avoidance Technique for P2P DVEs

In this section, we discuss and propose a saturation avoidance technique
for P2P DVEs. Unlike another existing techniques proposed for MMOGs [33,
34], our proposal is focused on the state of the client computer, rather than
on the application requirements, and it exclusively drops obsolete messages
containing location updates. As a result, As a result, it does not require the
analysis of obsolescence relationships that depend on the application, and it
can be adjusted to fulfill any given time constraint. Some preliminary results
show that this technique can effectively avoid the client saturation in P2P
DVEs [45] without the need of analyzing obsolescence relationships [34]. In
this way, the proposed technique can be used with any P2P DVE application.

The workload that a given avatar adds to a DVE basically depends on
two factors, the movement rate of that avatar and the number of neighbo-
ring avatars[8]. Therefore, the computational workload that a given client
computer should support in a P2P DVE is directly related to the number
of neighbor avatars in the virtual world and also to the movement rate of
that avatar and its neighbors. Additionally, the computational requirements
of each client computer also depends on the current state of the simulation
(computing requirements for updating and rendering the 3D virtual environ-
ment, the time required for establishing new connections, etc.).

In large-scale DVEs, a given avatar a can be frequently surrounded by
a high number of neighbors moving fast. In such situations, avatar a will
receive a new message containing the updated location of its neighbors each
time that any of its neighbors moves. If the client computer controlling the
avatar a supports a high load (its CPU(s) utilization rate is (are) close to
100% due to the simulation state), it cannot process such updating messages
at the required rate, and the processing of such messages is delayed (they
are saved in a FIFO buffer). As a result, the processing of these messages
becomes useless (since they provide obsolete information). Moreover, the

17

delayed processing of such messages also requires some computational power,
therefore contributing even more to the saturation of the client computer.
The basic idea of the proposed method is to discard the oldest updating
messages when the client is close to saturation, and to process only the
newest messages.

It must be noticed that, unlike the random packet dropping that can take
place within some overlay frameworks proposed for P2P DVEs [46, 47], our
proposal consists of selectively dropping the oldest messages. The discar-
ding of the obsolete messages is performed at the instant when the avatar
is going to make a new movement. We have chosen that instant because
a new movement implies the sending of updating messages to the neighbor
avatars, thus increasing the workload on that client. In order to prevent the
client computer to reach saturation, in our proposal the useless workload is
discarded before increasing the useful workload. Our proposal does not take
into account obsolescence relationships among messages as other proposals
for MMOGS do [33, 34]. The reason is that our proposal exclusively dis-
cards messages containing locations update, and therefore an older message
inherently becomes obsolete. Also, our proposal differs from the RIO-like
technique [34] in that it is focused on system performance, instead of user
perception. Therefore, it exclusively discards obsolete messages, based on
the client computer state (when it is close to saturation), regardless of the
interactivity threshold. Nevertheless, the final goal is the same one: to avoid
the performance degradation.

We have considered four different alternative methods for discarding ob-
solete updating messages. These are the following ones:

• Discarding Messages DM1: First, this method checks if the queue of
messages pending of processing is empty. If not, all the messages in
the queue are discarded. This method is based on assuming that un-
der normal circumstances all the messages are quickly processed, and
therefore the existence of pending messages indicates that the client
computer has reached saturation.

• Discarding Messages DM2: This method is similar to the previous one,
except that the queue of pending messages is emptied only if the queue
size exceeds the number of current neighbors of the avatar. This al-
ternative is based on the fact that each avatar approximately receives
as much messages as the number of neighbors it has, and therefore we
should allow to increase the queue size up to this threshold value.

18

• Discarding Messages DM3: This alternative selectively discards those
messages whose waiting time at the queue is greater than a certain
threshold value. This is a less aggressive alternative (it does not discard
recent messages).

• Discarding Messages DM4: This alternative takes into account the per-
centage of CPU utilization in order to activate the discarding of messa-
ges. If the CPU utilization of the client computer exceeds a threshold
percentage, then it discards all the messages whose waiting time at the
queue is greater than a certain threshold value.

We have measured the performance of all the alternative techniques. For
comparison purposes, we have also measured the performance of the origi-
nal system without applying any saturation avoidance technique. We have
used the ASR as the metric for evaluating the performance of the different
alternatives. The figures below show different plots, labeled as DM1 to DM4,
denoting the four alternative strategies. The plot labeled as ”ORIGINAL”
denotes the original system (without using any saturation avoidance tech-
nique). We have tried the nine combinations of initial distributions and
movement patterns, but for the shake of shortness we only show here the
results for some of these combinations.

Concretely, Figure 12 the performance results for the considered alter-
natives and for the combination of Uniform initial distribution and HPA
movement pattern. Figure 12 shows that only the plot for the original sy-
stem has a parabolic slope. The rest of the plots show an slight increase of
the ASR values and then all of them show an almost flat slope. These results
show that all of the considered techniques are able to avoid the system sa-
turation (the ASR values reached by any of the alternatives are not greater
than 100 milliseconds, still far from the threshold value of 250 milliseconds).

Figure 13 shows the performance results for the considered alternatives
and for the combination of Skewed initial distribution and the CCP move-
ment pattern. Figure 13 shows that again the only plot whose ASR values
exceed the threshold value of 250 milliseconds is the plot for the original me-
thod. The four considered alternative methods manage to keep the system
below the saturation point. Although there are no significant differences
among the plots corresponding to the alternative methods, the DM4 tech-
nique seems to provide the lowest ASR values. Additionally, this technique
guarantees that the messages are discarded only if necessary (it is the only

19

Figure 12: Average ASR values for different methods of message discarding under a UNF-
HPA combination

technique that takes into account the current state of the CPU). Therefore,
we have chosen the DM4 option as the technique to be implemented.

We have denoted the DM4 alternative method as DPMess, for Discarding
Pending messages. Thus, the DPMess technique consists of checking the CPU
utilization rate of the client computer each time that the avatar hosted by
that client moves, in order to detect if the computer is close to saturation.
In that case, the client computer should check all the updating messages
that are pending from processing, and it should discard those messages older
than a certain threshold value (by deleting them from the FIFO buffer). The
pseudocode of the proposed algorithm could be the one shown in Figure 14

It is worth mention that the DPMess technique only discards messages
containing location updates of other avatars. It does not discard any message
containing information concerning the awareness method. In this way, it
provides an awareness rate as high as possible.

The DPMess technique has two parameters that should be tuned, the
CPU threshold value and the t threshold value. The first one defines the
limit for considering a client computer as saturated, and the second one
defines the limit for considering an updating message as obsolete. We have
chosen for the first parameter a CPU utilization of 90%, because this is the
limit proposed in the literature for considering a server (in a DVE based on

20

Figure 13: Average ASR values for for different methods of message discarding under a
SKW-CCP combination

a networked-server architecture) as saturated [8]. We have experimentally
tuned the second parameter. Although the results corresponding to this
tuning are not shown here due to space limitations, we have obtained the
best results for a tthreshold value of 0.005 seconds.

5. Performance Evaluation

We propose the performance evaluation of the saturation avoidance tech-
nique by simulation. For completely evaluating the performance of the pro-
posed technique we have used different metrics. In order to measure the
overall performance of the system, we have used the round-trip delay (the
ASR) of the messages sent by each client computer. Additionally, we have
studied other parameters specific from peer-to-peer DVEs. Concretely, we
have studied the awareness rate achieved in each simulation and also the
average delay between the instant when a new neighbor enters the AOI of a
given avatar and the instant when that avatar knows about that neighbor.
We have denoted this parameter as the Awareness Delay. Finally, we have
also studied the percentage of messages discarded by the proposed method.

We have studied the behavior of the proposed algorithm for the nine com-
binations of initial movement patterns and initial distributions of avatars.

21

1 i f CPUcurrent > CPUthreshold then

2 For ALL messages in pending msg queue

3 i f msg.type = location update then

4 i f T ime − msg.t recv > t threshold then

5 discard (msg)
6 end

7 end

8 end

9 end

Figure 14: Algorithm for discarding messages.

Also, we have performed simulations with different populations sizes (dif-
ferent numbers of avatars) and for different movement rates. Nevertheless,
for the shake of shortness we only present here some representative results
for a population size of 100 avatars. The results for the different possible
configurations were similar to the ones shown in this section.

In order to study the performance of the proposed method, we have stu-
died the system behavior under both a high and a low workload levels. Con-
cretely, we have used a high movement rate (all avatars performing a new
movement every 0.15 seconds) in order to generate a high workload, and a
lower movement rate (a new movement every 0.5 seconds) to generate a low
system workload.

For comparison purposes, we show in this section the simulation results
for each DVE configuration when using the DPMess technique and also the
results obtained without applying the DPMess. We have denoted the plots
corresponding to the former option as ”DPMess”, and the ones corresponding
to the latter option as ”Original”. We have not compared these results
with the results provided by the existing techniques [33, 34] because these
techniques are not comparable to the DPMess technique. The former ones
focus on providing the interactivity required by the application, regardless of
the system state, while the latter focuses on avoiding the saturation of the
client computers.

5.1. Latency

First, we have studied the system latencies (Average System Response)
achieved with the proposed technique. Figure 15 shows the average ASR

22

values obtained for a system supporting a high workload (each avatar per-
forming a movement every 0.15 seconds) when avatars move following the
combination of HPA movement pattern-skewed initial distribution. This fi-
gure shows on the X-axis the iteration number, and on the Y-axis it shows
the average ASR value obtained for all the avatars in that iteration.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 10 20 30 40 50 60 70 80 90

A
S

R
 (

se
cs

.)

Iteration

ORIGINAL
DPMess

Figure 15: Average ASR values obtained under a high workload

The plot for the DPMess method in Figure 15 shows a flat slope, kee-
ping the average ASR values below 0.04 seconds, far away from the latency
values considered as acceptable for users [41]. However, the plot correspon-
ding to the simulation without the proposed technique (Original) shows a
significant and constant slope, linearly increasing the average ASR values as
the simulation proceeds. These results show that when the system is under
a high workload then preventing avatars from reaching saturation provides
significant benefits in term of the response time offered to avatars.

5.2. Awareness

Additionally, we have studied how the proposed technique affects to the
awareness rate provided to avatars, since providing a good awareness rate
is a necessary condition for achieving time-space consistency in DVEs. On
the one hand, if an avatar becomes saturated and it does not respond to its
neighbors in time, then the awareness rate of its neighbors could be affected.

23

On the other hand, the impact of rejecting messages could have an effect on
the awareness rate, and therefore it should be analyzed.

In order to measure the awareness rate, at each iteration each avatar
sends information about its position and which other avatars it considers as
its neighbors to the central loader, as we described above. The central loader
can determine from this information if each avatar must be aware or not
of all its neighbors. By means of the central loader, we have measured the
ratio between the number of neighbors that each avatar should detect and
the number of neighbors that each avatar has actually detected. We have
denoted this parameter as the awareness rate Cs for each avatar.

Figure 16 shows the results for the awareness rate when the system is
under a high workload. In this Figure, the X-axis shows the current iteration,
whereas the Y-axis shows the average value for the Cs parameter obtained
in each iteration.

 95

 96

 97

 98

 99

 100

 0 10 20 30 40 50 60 70 80 90

A
w

ar
en

es
s

ra
te

(%
)

Iteration

ORIGINAL
DPMess

Figure 16: Awareness Rates (%) provided under a high workload

Figure 16 shows that preventing avatars from reaching saturation (by dis-
carding messages) does not have any significant effect on the awareness rates
provided to avatars when the system is under a high workload. Although
the awareness rate provided by the DPMess method is slightly lower in some
initial iterations, it reaches a rate of 100% and keeps on providing that rate
for most of the iterations. The awareness rate provided by this method is

24

not lower than 99% in any case.

5.3. Awareness Delay

Another important parameter that could be affected by the proposed
method is the awareness delay. This parameter can be defined as the time
interval from the instant when an avatar i enters the AOI of an avatar j

to the instant when avatar i receives the acknowledgment from j as a new
neighbor. We have denoted this parameter as AD. This parameter is crucial,
since it determines the maximum time-space inconsistencies that can arise
in the system. We must study if the use of the DPMess method has any
significant effect on this parameter.

Figure 17 shows the results for the awareness delay when the system is
under a high workload (combination SKEWED-HPA and a new movement
every 0.15 s.). This figure shows on the X-axis the iteration number, while
it shows on the Y-axis the average awareness delays (the average AD value)
obtained for all the avatars in that iteration. The plots in this figure (and
also the plots in the next one) only show forty iterations. The reason for this
behavior is the combination SKEWED-HPA. When using this movement
pattern, all the avatars tend to crowd on a single point of the virtual world.
From iteration 40, no avatar enters in the AOI of another avatars, since all
of them are so close among them that they can only make small movements
trying to find alternative paths to their destination point. Therefore, from
that iteration these small movements are no large enough to allow the avatars
to enter or exit another avatars AOI.

Figure 17 shows that if the proposed method is not used, then some signi-
ficant delays appear (two peaks arise in the ”Original” plot). Although these
peaks do not last more than several iterations, they reach an order of magni-
tude of several seconds. Therefore, unacceptable time-space inconsistencies
can occur during some iterations. These peaks are due to the distribution
of avatars and the movement pattern in these experiments. A significative
number of clients reach saturation during some of the iterations, greatly in-
creasing the awareness delay. However, when using the DPMess method
(DPMess plot) these two peaks produced by the momentary saturation of
some clients dissappear. These results indicate that if clients are close to
saturation, then (when the messages are processed) they provide obsolete in-
formation about the location of other avatars. If messages are not processed
within a given period, then it is a better strategy to discard them in order
to process faster the most recent messages. In this way, the awareness delay

25

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90

A
D

 (
se

cs
.)

Iteration

ORIGINAL
DPMess

Figure 17: Awareness Delay values provided under a high workload

is kept below acceptable values during the whole simulation. Therefore, the
proposed method not only does not have an effect on this parameter, but it
improves the system behavior.

5.4. Discarding Rate

Another important parameter to be studied is the Discarding Rate, that
is, the percentage of received messages that the proposed method discards.
This parameter is important in order to study how the network efficiency is
reduced by the DPMess method, because the more messages are discarded,
the more network bandwidth is wasted. This parameter also shows the per-
centage of messages that should be discarded in order to avoid the system
saturation. Concretely, we have defined the Discarding Rate DR as

DR =
Discarded Messages

Received Messages
(1)

For the shake of shortness, we only present here the results for the com-
bination SKEWED-HPA, that is the combination whose results has been
shown when studying the rest of parameters. That is, the next figure shows
the percentage of messages discarded in order to obtain the results shown in
the previous subsections.

26

Concretely, Figure 18 shows the results obtained when the system is under
a high workload (a new movement every 0.15 seconds).In this figure the X-
axis shows the iteration number and the Y-axis shows the average Discarding
Rate value obtained for all the avatars in that iteration.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 10 20 30 40 50 60 70 80 90

D
R

Iteration

ORIGINAL
DPMess

Figure 18: Average Discarding Rate values provided under a high workload

Figure 18 shows that the percentage of discarded messages by the propo-
sed method is very low (it does not reach 0.6%). Only by discarding such a
small percentage of messages, the rest of performance parameters are impro-
ved as shown above.

However, all these results can be due to the fact that the system is not
under deep saturation. In order to ensure that the proposed method provides
good performance regardless of the saturation level of the system, we have
measured the performance when the movement rate of avatars is one order
of magnitude higher. Again, we have simulated the nine combinations of
initial distributions and movement patterns, although we show here only a
single case, for the sake of shortness. All the results were similar. Concretely,
Figure 19 shows the results for the combination of Skewed initial distribution
and HPA movement pattern.

Figure 19 shows that the proposed method is efficient also under deep
saturation conditions. Effectively, the plot corresponding to DPMess method
has a flat slope and it reaches ASR values around 250 milliseconds, while the

27

Figure 19: Average ASR values provided under deep saturation

plot labeled as original has a constant slope and it reaches values around
eight seconds. When comparing Figure 15 and Figure 19 it can be clearly
seen that the plot corresponding to DPMess method is similar in both figures.
Therefore, the proposed method efficiently avoids saturation, regardless of
the workload conditions.

6. Conclusions

In this paper, we have proposed the characterization of peer-to-peer DVEs
by performing real-system measurements. The characterization results show
that, unlike in networked-server architectures, the system flexibility remains
unchanged with the number of client computers connected to the system.
That is, the peer-to-peer scheme easily adapts to the workload generated by
users behavior, since every client can also act as a server. Also, the results
show that the saturation of a given client exclusively has an effect on the
surrounding clients in the virtual world, having no effects at all on the rest
of avatars. Finally, the characterization results show that the use of a peer-
to-peer scheme does not prevent client computers from reaching saturation.
That is, under certain behaviors an unbounded number of clients could reach
saturation, seriously affecting the scalability and/or the performance of P2P
DVEs. In order to solve this problem, in this paper we have also proposed a

28

technique for avoiding client saturation. Unlike another existing techniques
proposed for MMOGs, our proposal is focused on the state of the client
computer, rather than on the application requirements, and it exclusively
drops obsolete messages containing location updates. As a result, it does not
depend on the application, and it can be adjusted to fulfill any given time
constraint.

The performance evaluation results show that the benefits achieved by
preventing client computers from reaching saturation are higher than the
drawbacks of loosing information about the current state of other client com-
puters. Thus, the selected method avoids client saturation on DVEs based
on P2P architectures while maintaining the awareness rate (the percentage of
correct detections of new neighbors) close to 100%, regardless of the workload
generated by the users behavior. Therefore, the proposed technique can en-
sure the performance and the scalability of P2P DVEs.

Acknowledgment

This work has been jointly supported by the Spanish MICINN and Eu-
ropean Commission FEDER funds under grants Consolider-Ingenio 2010
CSD2006-00046 and TIN2006-15516-C04-04.

References

[1] T. Alexander, Massively Multiplayer Game Development II, Charles Ri-
ver Media, 2005.

[2] World of warcraft: http://www.worldofwarcraft.com.

[3] Everquest: http://everquest.station.sony.com/.

[4] Lineage: http://www.lineage2.com.

[5] Quake: http://www.idsoftware.com/games/quake.

[6] Anarchy Online: : http://www.anarchy-online.com.

[7] J. C. Lui, M. Chan, An efficient partitioning algorithm for distributed
virtual environment systems, IEEE Trans. Parallel and Distributed Sy-
stems 13.

29

[8] P. Morillo, J. M. Orduña, M. Fernández, J. Duato, Improving the perfor-
mance of distributed virtual environment systems, IEEE Transactions
on Parallel and Distributed Systems 16 (7) (2005) 637–649.

[9] N. Beatrice, S. Antonio, L. Rynson, L. Frederick, A multiserver archi-
tecture for distributed virtual walkthrough, in: Proceedings of ACM
VRST’02, 2002, pp. 163–170.

[10] M. R. Macedonia, A taxonomy for networked virtual environments,
IEEE Multimedia 4 (1) (1997) 48–56.

[11] P. Morillo, S. Rueda, J. M. Orduña, J. Duato, A latency-aware partitio-
ning method for distributed virtual environment systems, IEEE Tran-
sactions on Parallel and Distributed Systems 18 (9) (2007) 1215–1226.
doi:http://dx.doi.org/10.1109/TPDS.2007.1055.

[12] C. Greenhalgh, A. Bullock, E. Frecon, D. Llyod, A. Steed, Making net-
worked virtual environments work, Presence: Teleoperators and Virtual
Environments 10 (2) (2001) 142–159.

[13] R. B. Smith, R. Hixon, B. Horan, Collaborative Virtual Environments,
Springer-Verlag, 2001.

[14] S. Singhal, M. Zyda, Networked Virtual Environments, ACM Press,
1999.

[15] P. Morillo, J. Orduña, J. Duato, A scalable synchronization technique
for distributed virtual environments based on networked-server archi-
tectures, in: Proceedings of the 35th IEEE International Conference
on Parallel Processing (ICPP’06) Workshops, IEEE Computer Society
Press, 2006, pp. 74–81.

[16] L. Gautier, C. Diot, Design and evaluation of mimaze, a multi-player
game on the internet, in: Proceedings of IEEE Multimedia Systems
Conference, 1998, p. 233.

[17] E. Cronin, B. Filstrup, A. R. Kurc, S. Jamin, An efficient synchroni-
zation mechanism for mirrored game architectures, Kluwer Multimedia
Tools and Applications 23 (1).

30

[18] J. Calvin, A. Dickens, B. Gaines, P. Metzger, D. Miller, D. Owen, The
simnet virtual world architecture, in: Virtual Reality Annual Interna-
tional Symposium, IEEE, 1993, pp. 450–455.

[19] E. Frecon, M. Stenius, Dive: A scalable network architecture for distri-
buted virtual environments, Distributed Systems Engineering Journal
5 (3) (1998) 91–100.

[20] S. Mooney, B. Games, Battlezone: Official Strategy Guide, BradyGame
Publisher, 1998.

[21] S. Rueda, P. Morillo, J. M. Orduña, J. Duato, On the characterization
of peer-to-peer distributed virtual environments, in: Proceedings of the
IEEE Virtual Reality 2007 (IEEE-VR07), Charlotte, NC, USA., IEEE
Computer Society Press, 2007, pp. 107–114.

[22] A. R. Bharambe, M. Agrawal, S. Seshan, Mercury: Supporting scalable
multi-attribute range queries, in: In SIGCOMM, 2004, pp. 353–366.

[23] A. Bharambe, J. Pang, S. Seshan, Colyseus: a distributed architec-
ture for online multiplayer games, in: NSDI’06: Proceedings of the 3rd
conference on Networked Systems Design & Implementation, USENIX
Association, Berkeley, CA, USA, 2006, pp. 12–12.

[24] T. Hampel, T. Bopp, R. Hinn, A peer-to-peer architecture for
massive multiplayer online games, in: NetGames ’06: Procee-
dings of 5th ACM SIGCOMM workshop on Network and system
support for games, ACM, New York, NY, USA, 2006, p. 48.
doi:http://doi.acm.org/10.1145/1230040.1230058.

[25] L. Chan, J. Yong, J. Bai, B. Leong, R. Tan, Hydra: a massively-
multiplayer peer-to-peer architecture for the game developer, in: NetGa-
mes ’07: Proceedings of the 6th ACM SIGCOMM workshop on Network
and system support for games, ACM, New York, NY, USA, 2007, pp.
37–42. doi:http://doi.acm.org/10.1145/1326257.1326264.

[26] H. Backhaus, S. Krause, Voronoi-based adaptive scalable transfer revi-
sited: gain and loss of a voronoi-based peer-to-peer approach for mmog,
in: NetGames ’07: Proceedings of the 6th ACM SIGCOMM workshop
on Network and system support for games, ACM, New York, NY, USA,
2007, pp. 49–54. doi:http://doi.acm.org/10.1145/1326257.1326266.

31

[27] L. Fan, H. Taylor, P. Trinder, Mediator: a design frame-
work for p2p mmogs, in: NetGames ’07: Proceedings of the
6th ACM SIGCOMM workshop on Network and system sup-
port for games, ACM, New York, NY, USA, 2007, pp. 43–48.
doi:http://doi.acm.org/10.1145/1326257.1326265.

[28] Y. Kawahara, T. Aoyama, H. Morikawa, A peer-to-peer message ex-
change scheme for large scale networked virtual environments, Telecom-
munication Systems 25 (3) (2004) 353–370.

[29] B. Knutsson, H. Lu, W. Xu, B. Hopkins, Peer-to-peer support for mas-
sively multiplayer games, in IEEE Infocom, March 2004. (2004).
URL citeseer.ist.psu.edu/knutsson04peertopeer.html

[30] P. Morillo, W. Moncho, J. M. Orduña, J. Duato, Providing full awaren-
ess to distributed virtual environments based on peer-to-peer architec-
tures, Lecture Notes on Computer Science 4035 (2006) 336–347.

[31] M. R. Macedonia, M. Zyda, D. R. Pratt, D. P. Brutzman, P. T. Bar-
ham, Exploiting reality with multicast groups: A network architecture
for large-scale virtual environments, in: Proceedings of the 1995 IEEE
Virtual Reality Annual Symposium, 1995, pp. 2–10.

[32] S.-Y. Hu, J.-F. Chen, T.-H. Chen, Von: a scalable peer-to-peer network
for virtual environments, IEEE Network 20 (4) (2006) 22–31.

[33] C. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, On main-
taining interactivity in event delivery synchronization for mir-
rored game architectures, Global Telecommunications Conference
Workshops, 2004. GlobeCom Workshops 2004. IEEE (2004) 157–
165doi:10.1109/GLOCOMW.2004.1417568.

[34] C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti, A rio-
like technique for interactivity loss-avoidance in fast-paced mul-
tiplayer online games, Comput. Entertain. 3 (2) (2005) 3–3.
doi:http://doi.acm.org/10.1145/1063723.1063730.

[35] FIPA, Fipa agent management specification, available at
http://www.fipa.org/specs/fipa00023/ (2000).

32

[36] IEEE, 1278.1 IEEE Standard for Distributed Interactive Simulation-
Application Protocols (ANSI) (1997).

[37] F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation
Systems: An Introduction to the High Level Architecture, Prentice-Hall
PTR, 1999.

[38] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks: An Engi-
neering Approach, IEEE Computer Society Press, 1997.

[39] M. Oliveira, J. Crowcroft, M. Slater, Components for distributed virtual
environments, PRESENCE: Teleoperators and Virtual Environments
10 (1) (2001) 56–61.

[40] S. Rueda, P. Morillo, J. M. Orduña, A comparative study of
awareness methods for peer-to-peer distributed virtual environ-
ments, Comput. Animat. Virtual Worlds 19 (5) (2008) 537–552.
doi:http://dx.doi.org/10.1002/cav.v19:5.

[41] T. Henderson, S. Bhatti, Networked games: a qos-sensitive application
for qos-insensitive users?, in: Proceedings of the ACM SIGCOMM 2003,
ACM Press / ACM SIGCOMM, 2003, pp. 141–147.

[42] F. C. Greenhalgh, Analysing movement and world transitions in virtual
reality tele-conferencing, in: Proceedings of 5th European Conference on
Computer Supported Cooperative Work (ECSCW’97), 1997, pp. 313–.
URL citeseer.ist.psu.edu/greenhalgh97analysing.html

[43] M. Matijasevic, K. P. Valavanis, D. Gracanin, I. Lovrek, Application of
a multi-user distributed virtual environment framework to mobile robot
teleoperation over the internet, Machine Intelligence & Robotic Control
1 (1) (1999) 11–26.

[44] P. Morillo, J. M. Orduña, M. Fernández, J. Duato, On the characteri-
zation of avatars in distributed virtual worlds, in: EUROGRAPHICS’
2003 Workshops, The Eurographics Association, 2003, pp. 215–220.

[45] S. Rueda, P. Morillo, J. M. Orduña, A saturation avoidance technique
for peer-to-peer distributed virtual environments, in: Proceedings of

33

International Conference on Cyberworlds 2007 (Cyberworlds’07), Han-
nover, Germany., IEEE Computer Society Press, 2007, pp. 171–178.
doi:10.1109/CW.2007.9.

[46] I. Baumgart, B. Heep, S. Krause, Oversim: A flexible overlay network si-
mulation framework, in: IEEE Global Internet Symposium, 2007, 2007,
pp. 79–84. doi:10.1109/GI.2007.4301435.

[47] S. D. Webb, W. Lau, S. Soh, Ngs: an application layer network game
simulator, in: IE ’06: Proceedings of the 3rd Australasian conference
on Interactive entertainment, Murdoch University, Murdoch University,
Australia, Australia, 2006, pp. 15–22.

34

Silvia Rueda received the M.S. degree in Computer En-

gineering from the University of Valencia (Spain) and

the Ph.D., from the same university, with a dissertation

about "Improving the Scalability of Distributed Virtual

Environments". Currently, Dr. Rueda is an Assistant pro-

fessor in the Department of Informatics, at the University

of Valencia (Spain). She belongs to the GREV group of this

Department. Her research adresses distributed virtual

environments systems, virtual reality, nature inspired

algorithms and scalability.

Pedro Morillo received the M.S. degree in Computer

Engineering from the University of Valencia (Spain)

and the Ph.D., from the same university, with a

dissertation about “Improving the Performance in Dis-

tributed Virtual Environments”. Currently, Dr. Morillo

is an Associate professor in the Department of Infor-

matics, at the University of Valencia (Spain). In this de-

partment, he belongs to the Networking and Virtual

Environments group (GREV), where he focuses on the

design and the development of network architectures

for Distributed Virtual Environments. Furthermore, his

research adresses distributed virtual environments sys-

tems, load balancing, metaheuristics and cluster com-

puting. He served also as Visiting Scientist at Iowa

State University (Ames, IO, USA) in 2004 and Univer-

sity of Louisiana (Lafayette, LA, USA) in 2006. For more

details on his work, go to: http://informatica.uv.es/pmorillo

Juan M. Orduña received the MS in computer engineer-

ing from the Technical University of Valencia, Spain,

in 1990. He worked at Telefónica de España, Man-

pel Electrónica, S.A. and at the Technical University

of Valencia as a computer engineeer. He received the

PhD. in computer engineering from the University of

* Biographies (Text)

Valencia in 1998. His research has been developed in-

side the ACCA team. Currently, he is a lecturer profes-

sor in the Department of Informatics, at the University

of Valencia, SPAIN, where he leads the GREV re-

search group (http://grev.uv.es). He is member of the

HiPEAC network of excellence (http://www.hipeac.net/),

and his research is currently supported by the Spanish MEC

and the European Commission. It addresses Networks-

on-Chip, Distributed Virtual Environments and Crowd

simulations.

Jose Duato received the MS and PhD degrees

in electrical engineering from the Technical

University of Valencia, Spain, in 1981 and

1985, respectively. He is currently a professor

in the Department of Computer Engineering

(DISCA) of the same university. He was also

an adjunct professor in the Department of

Computer and Information Science, Ohio State

University. His current research interests include

interconnection networks, multiprocessor archi-

tectures, networks of workstations, and switch fabrics for IP routers. He

has published more than 280 refereed papers. He proposed a powerful

theory of deadlock-free adaptive routing for wormhole networks. He

served as a member of the editorial boards of IEEE Transactions on

Parallel and Distributed Systems and IEEE Transactions on Computers.

He has served as cochair or member of the program committee for more

than 40 conferences, including the most prestigious conferences in his

area (HPCA, ISCA, IPPS/SPDP, ICPP, ICDCS, Europar, and HiPC). He

is a member of the IEEE Computer Society.

Biographies (Photograph) Rueda

Biographies (Photograph) Morillo

Biographies (Photograph) Orduña

Biographies (Photograph) Duato

